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ABSTRACT 16 
 17 
Wearable sensors can continuously and passively detect potential respiratory infections, before or absent symptoms. 18 
However, the population-level impact of deploying these devices during pandemics is unclear. We built a compartmental 19 
model of Canada’s second COVID-19 wave and simulated wearable sensor deployment scenarios, systematically varying 20 
detection algorithm accuracy, uptake, and adherence. With current detection algorithms and 4% uptake, we found that 21 
deploying wearable sensors could have averted 9% of second wave SARS-CoV-2 infections, though 29% of this reduction is 22 
attributed to incorrectly quarantining uninfected device users. Improving detection specificity and offering confirmatory 23 
rapid tests each minimized incorrect quarantines and associated costs. With a sufficiently low false positive rate, increasing 24 
uptake and adherence became effective strategies for scaling averted infections. We concluded that wearable sensor 25 
deployment can meaningfully contribute to pandemic mitigation; in the case of COVID-19, technology improvements or 26 
supporting measures are required to reduce social and economic costs to acceptable levels. 27 
 28 
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INTRODUCTION 31 
 32 
Infectious disease outbreaks can have devastating health and economic consequences. Effective public health strategies are 33 
crucial for limiting transmission and minimizing these harms. One approach to controlling viral spread during pandemics – 34 
a “Find, Test, Trace, Isolate” (FTTI) strategy – relies on identifying and quarantining infectious individuals1. However, the 35 
COVID-19 pandemic has demonstrated that FTTI systems reliant on lab-based tests are often limited by missed hidden 36 
infection chains, which result from presymptomatic and asymptomatic transmission, and slow test result turnaround 37 
times2,3. Digital contact tracing and frequent use of rapid tests have the potential to fill these gaps, but both approaches have 38 
faced implementation barriers: inadequate participation levels, concerns around privacy and feasibility, and limited test 39 
availability4–6. 40 
 41 
Wearable sensors have already been established as tools to detect deviations from users’ physiological baselines7. Recent 42 
findings suggest that wearable sensors may also be able to detect infections caused by respiratory pathogens, including SARS-43 
CoV-2, before or absent symptoms8–10. Alavi et al, for example, developed an algorithm that analyzes patterns in smartwatch-44 
captured overnight resting heart rate and provides real-time alerts of potential presymptomatic and asymptomatic SARS-45 
CoV-2 infection10. If such algorithms were widely deployed, wearable sensors could be promising tools for outbreak 46 
mitigation, enabling FTTI systems to more rapidly identify (and subsequently isolate) infectious individuals, particularly 47 
those without symptoms. Wearable sensors would also offer the unique benefit of passive monitoring, which minimizes 48 
required user engagement, and could operate in privacy-preserving fashion because sensor data would not need to be shared 49 
with a centralized database. With these potential benefits in mind, several studies have focused on developing wearable 50 
sensor-based infectious disease detection algorithms; however, to the best of our knowledge, the real-world impact of 51 
deploying these devices for pandemic mitigation has yet to be explored. 52 
 53 
In this study, we assessed how wearable sensors can help reduce the burden of infection during a pandemic with the 54 
overarching goal of guiding future research investment and policy. To do so, we used COVID-19 as an example and explored 55 
counterfactual scenarios in which these devices were deployed to combat Canada’s second wave. We built a compartmental 56 
epidemiological model in which wearable devices notify users of potential infection and prompt users to seek a confirmatory 57 
lab-based test, self-isolating while waiting for the result. We aimed to (1) assess the baseline impact of deploying currently 58 
available detection algorithms, (2) investigate how detection accuracy and behavioural parameters influence this impact, and 59 
(3) explore a complementary strategy in which rapid antigen tests are used to confirm wearable-informed notifications of 60 
potential infection. 61 
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METHODS 63 
 64 
Counterfactual Scenarios 65 
We simulated Canada’s second COVID-19 wave (September 1, 2020 to February 20, 2021). This time window allowed us 66 
to capture the dynamics of wearable sensor deployment during an acute phase of the pandemic, prior to broad vaccine 67 
availability, and at a time when the technology would have been ready and deployable. 68 
 69 
First, we considered a baseline scenario in which wearable device users can download an application with currently available 70 
detection algorithms10. Then, we investigated the impact of technology and behavioural parameters: detection sensitivity and 71 
specificity; uptake, defined as the proportion of the population that has downloaded the application and uses their wearable 72 
device often enough; and adherence, defined as the proportion of users who comply with recommended next steps after a 73 
positive notification. Finally, we explored a complementary intervention where wearable device users with a positive 74 
notification are offered a confirmatory rapid antigen test before they are prompted to seek a lab-based test and self-isolate. 75 
 76 
Model description 77 
We built a compartmental model based on a Susceptible, Exposed, Infectious, Removed (SEIR) framework (Figure 1). We split 78 
the Infectious state into three sub-states: Presymptomatic, Asymptomatic, and Symptomatic. All infected individuals enter the 79 
Presymptomatic infectious state after a latency period following exposure; some go on to develop symptoms (Symptomatic) 80 
while others do not (Asymptomatic). 81 
 82 

 83 
Figure 1: Compartmental model. Subscript “W” denotes a wearable user and “NW” indicates otherwise. Two key model equations are 84 
presented below; remaining parameters, equations, and assumptions are outlined in Supplementary Appendix Section 1. 85 
 86 
To incorporate wearable sensor deployment, we stratified Susceptible, Exposed, and Infectious states by whether individuals 87 
are device users or not. Wearable device users can enter Quarantined states if they are notified of potential infection, and if 88 
they adhere to this notification by seeking a confirmatory lab-based test and self-isolating while awaiting the result. We made 89 
the simplifying assumption that users notified of potential infection either adhered to all recommended next steps or ignored 90 
the notification. We set the nominal lab-based test turnaround time to 2 days, and explored faster and slower turnaround 91 
times in Supplementary Appendix Section 511. Susceptible users could be Incorrectly Quarantined due to a false positive 92 
notification and would re-enter the Susceptible state after receiving their lab-based test result. Exposed and Infectious device 93 
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users would be Correctly Quarantined and would enter the Removed state (a longer quarantine until recovery) after their lab-94 
based test confirms infection. 95 
 96 
We assumed perfect lab-based test accuracy and did not account for potential reinfections, which were likely negligible 97 
during the simulation period12. We did not include a pathway for Symptomatic device users to enter Quarantined states 98 
because it is likely that a large fraction of these individuals already underwent some degree of self-isolation – behaviour 99 
accounted for in the historical transmission rate (β). In some scenarios, we also included a step where compliant users take a 100 
confirmatory rapid antigen test: if positive, we assumed they then take a lab-based test, self-isolating while awaiting the result; 101 
if negative, we assumed they return to normal behaviour. We investigated the impact of antigen test sensitivity in 102 
Supplementary Appendix Section 5. 103 
 104 
Simulation approach 105 
To perform simulations, we first extracted the historical transmission rate (β) from the Institute for Health Metrics and 106 
Evaluation (IHME) infection model, a time series “nowcasting” model for incidence of infection in Canada (π)13. The IHME 107 
model estimates π by analyzing trends in confirmed cases, hospitalizations, and deaths; it validates the inferred π using 108 
seroprevalence data. We downloaded these data from the IHME website on December 7, 2021. We used modelled values for 109 
the incidence of infection because confirmed case counts are subject to incomplete case ascertainment and thereby 110 
underestimate the extent of infection14. We calculated β from π using Equation (1); this time series for the historical 111 
transmission rate incorporates all policy (e.g., restrictions, business closures, testing availability) and behavioural (e.g., 112 
adherence to restrictions, quarantines) measures that occurred. N represents the size of the entire population and λ represents 113 
the transmission potential in infected individuals without symptoms relative to those with symptoms. 114 
 115 

 116 
 117 
We then applied β according to Equation (2) to simulate counterfactual scenarios. Because some Susceptible, Exposed, and 118 
Infectious device users undergo self-isolation in the simulations, overall transmission decreases even though the transmission 119 
rate for all others remains unchanged. In Supplementary Appendix Section 5, we investigated the possibility that users not 120 
notified of potential infection act in a riskier fashion relative to historical behaviour15. a is a coefficient used to study this 121 
possibility and is nominally set to 1. Other model parameters, equations, and assumptions are presented in Supplementary 122 
Appendix Section 1. 123 
 124 
We modeled asymptomatic prevalence (ρ), detection algorithm sensitivity (σw) and specificity (νw), and adherence (ψ) as beta-125 
distributed random variables because these parameters were important sources of variance in our assessment of wearable 126 
sensors as pandemic mitigation tools. We sampled these variables and used the resulting values to generate an epidemic 127 
trajectory. We repeated this process 1,000 times, using these Monte Carlo simulations to model uncertainty in our estimates. 128 
 129 
Outcome measures 130 
We calculated the number of averted infections and the percent reduction in the burden of infection to quantify the health 131 
impact of wearable sensor deployment. We measured the number of days incorrectly spent in quarantine per month per 132 
device user (a consequence of false positive notifications) as the primary indicator of the strategy’s social burden. To assess 133 
resource consumption, we quantified the number of additional lab-based tests (and rapid antigen tests, where applicable) 134 
required each day, on average. Finally, to provide more complete intuition around offering rapid antigen tests as a 135 
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complementary intervention, we generated a first-order estimate of net healthcare expenditures in applicable scenarios, 136 
subtracting savings from costs. We approximated savings as the costs avoided by averting hospitalizations: we multiplied 137 
averted infections, the infection hospitalization ratio, and the average cost per hospitalization. We inferred the infection 138 
hospitalization ratio by dividing the total number of COVID-19 hospitalizations by the total number of infections during 139 
the simulation period. We approximated costs as expenditures required to fund lab-based tests and rapid antigen tests. 140 
Further details on this economic analysis are provided in Supplementary Appendix Section 3. We adhered to CHEERS 141 
guidelines for health economics cost benefit analyses16. 142 
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RESULTS 144 
 145 
Baseline impact of wearable sensor deployment 146 
We first investigated the baseline scenario in which detection algorithms that currently exist are made publicly available for 147 
device users to download and use (Figure 2)10. Upon notification of potential presymptomatic or asymptomatic infection, 148 
users are prompted to seek a confirmatory lab-based test, self-isolate while awaiting the result (nominally, for 2 days), and 149 
quarantine until recovery if positive. We used the nominal parameters in Supplementary Table 2, setting uptake, adherence, 150 
detection sensitivity, and detection specificity to 4%, 50%, 80%, and 92%, respectively. 151 
 152 

 153 
Figure 2: Baseline scenario for wearable sensor deployment. Time series depiction of the incidence of infection (A), the number of 154 
wearable device users incorrectly in quarantine (B), and the daily demand for lab-based tests (C). Uptake, adherence, detection sensitivity, 155 
and detection specificity are set to 4%, 50%, 80%, and 92%, respectively. 156 
 157 
With 4% uptake, 219,700 (95% CI: 198,700–241,600) infections could have been averted during Canada’s second COVID-158 
19 wave – a 9.4% (95% CI: 8.5–10.3%) reduction in the burden of infection. However, the social costs were high: between 159 
~75,000 and ~125,000 device users were incorrectly self-isolating on any given day (Figure 2b). Moreover, between ~40,000 160 
and ~65,000 additional lab-based tests were required each day (Figure 2c), corresponding to a 51.8% (95% CI: 41.0–64.0%) 161 
increase in demand relative to historical volumes. Historically, ~101,000 lab-based tests were performed each day, on average, 162 
during the simulation time frame13,17. The number of individuals incorrectly in quarantine and daily demand for lab-based 163 
tests were steady over time because they depend on the number of Susceptible device users, adherence, and detection 164 
specificity; the gradual decrease can be attributed to the flow of users into the Removed state. 165 
 166 
Tradeoff between detection algorithm sensitivity and specificity 167 
After their initial release on technology platforms, health detection algorithms can be updated and improved as more real-168 
world data are collected. However, it is often challenging to dramatically raise detection sensitivity and specificity at the same 169 
time. We explored the implications of this tradeoff (Figure 3), varying detection sensitivity and specificity while keeping 170 
uptake and adherence constant at 4% and 50%, respectively. 171 
 172 
Increasing detection sensitivity increased the number of averted infections by prompting more Infectious users to self-isolate 173 
(Figures 3a and 3b). On the other hand, increasing specificity had a two-part effect. First, as specificity approached 100%, the 174 
number of days incorrectly spent self-isolating approached zero (Figure 3c); sensitivity had negligible impact on incorrect 175 
quarantines. Second, by virtue of decreasing the number of incorrect quarantines, increasing specificity resulted in a larger 176 
pool of Susceptible individuals; in turn, fewer infections were averted. However, despite this second effect, incorrect 177 
quarantines were not central to the strategy’s public health impact. In the baseline scenario presented above (80% detection 178 
sensitivity, 4% uptake, and 50% adherence), a 6.7% (5.9–7.3%) reduction in the burden of infection was still achievable with 179 
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perfect detection specificity. As well, while 28.6% (95% CI: 18.3–38.2%) of averted infections could be attributed to incorrect 180 
quarantines in the baseline scenario, this proportion decreased as sensitivity improved (Supplementary Figure 4). 181 
 182 
In theory, increasing detection sensitivity would increase demand for lab-based tests; however, this effect paled in comparison 183 
to the number of lab-based tests prompted by false positive notifications (Figure 3d). Lab-based test demand expectedly 184 
decreased as detection specificity increased. 185 
 186 

 187 
Figure 3: Tradeoff between detection sensitivity and specificity. Averted infections (A), reduction in the burden of infection (B), 188 
days incorrectly spent in quarantine per month per device user (C), and average daily demand for lab-based tests (D), all over the entire 189 
simulation period, as a function of detection sensitivity and specificity. Grey boxes denote nominal sensitivity (80%) and specificity (92%). 190 
 191 
Impact of increasing uptake 192 
Ensuring that public health measures reach sufficient levels of uptake has been a continued challenge through the COVID-193 
19 pandemic. Digital contact tracing and vaccination efforts have demonstrated that well-constructed policies – for example, 194 
incentivizing participation – can improve uptake of measures18,19. Here, we explored the role of uptake to provide relevant 195 
context for the design of wearable sensor deployment policies (Figure 4; Supplementary Figure 1). We estimated that uptake 196 
would fall between 0.5% and 7.5% (Supplementary Tables 2-4) at baseline but chose to present outcomes at all levels of 197 
uptake to illustrate emergent phenomena. We also explored multiple technology scenarios, setting “high” detection 198 
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 9 

sensitivity and specificity at 96.0% and 98.4%, respectively; we based these increases on the respective goals of capturing 20% 199 
more infections and reducing the false positive rate by 80% relative to nominal values. We kept adherence constant at 50%. 200 
 201 
In all technology scenarios, increasing uptake averted more infections, though with diminishing returns (Figures 4a and 4b). 202 
As expected, improving detection specificity resulted in fewer averted infections when uptake is held constant; this effect was 203 
most pronounced at ~30% to ~60% uptake. The number of days incorrectly spent in quarantine per month per device user 204 
remained constant as a function of uptake but decreased from ~2.15 to ~0.45 when detection specificity was increased 205 
(Figure 4c). This ~80% decrease was consistent with our definition of “high specificity” demonstrating that detection 206 
specificity directly influences the burden of incorrect quarantines on device users. The average daily demand for lab-based 207 
tests scaled linearly with uptake, but at a slower rate with improved detection specificity (Figure 4d). 208 
 209 

 210 
Figure 4: Impact of increasing uptake under different technology assumptions. Averted infections (A), reduction in the burden of 211 
infection (B), days incorrectly spent in quarantine per month per device user (C), and average daily demand for lab-based tests (D), all over 212 
the entire simulation period, as a function of increasing uptake. Grey dashed lines denote nominal uptake (4%). In the High Sensitivity 213 
and High Specificity scenarios, detection specificity and sensitivity are kept at their nominal values, respectively. In (C) and (D), the 214 
“Nominal Sensitivity and Specificity” and “High Sensitivity” curves overlap, and the “High Specificity” and “High Sensitivity and 215 
Specificity” curves overlap. 216 
 217 
Impact of increasing adherence 218 
Adherence to public health guidelines also impacts the success of pandemic control measures. Targeted policies – for 219 
example, compensating individuals in self-isolation – could help improve compliance with public health recommendations20. 220 
Here, we explored the role of adherence in wearable sensor deployment strategies (Figure 5; Supplementary Figure 1). We 221 
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 10 

chose to present outcomes at all levels of adherence because compliance with public health guidelines could vary greatly, for 222 
example, from as low as 14% to as high as 86% (Supplementary Table 2). We kept uptake constant at 4% and assessed multiple 223 
technology scenarios using the same definitions of “high” detection sensitivity and specificity as above. 224 
 225 
Adherence meaningfully impacted the burden of infection (Figure 5b). For example, with nominal detection sensitivity and 226 
specificity, increasing adherence among participating wearable device users from 20% to 80% tripled the achieved reduction 227 
in the burden of infection, raising it from 4.2% (95% CI: 3.6–4.7%) to 13.6% (95% CI: 12.4–14.8%). However, increasing 228 
the proportion of users who comply with notifications also magnified the consequences of false positive notifications: the 229 
number of days incorrectly spent self-isolating per month per user (Figure 5c) and the demand for lab-based tests (Figure 5d) 230 
grew proportionally with adherence. These social and resource costs grew at a slower rate with improved detection specificity. 231 
 232 

 233 
Figure 5: Impact of increasing adherence under different technology assumptions. Averted infections (A), reduction in the burden 234 
of infection (B), days incorrectly spent in quarantine per month per device user (C), and average daily demand for lab-based tests (D), all 235 
over the entire simulation period, as a function of increasing adherence. Grey dashed lines denote nominal uptake (4%). In the High 236 
Sensitivity and High Specificity scenarios, detection specificity and sensitivity are kept at their nominal values, respectively. In (C) and (D), 237 
the “Nominal Sensitivity and Specificity” and “High Sensitivity” curves overlap, and the “High Specificity” and “High Sensitivity and 238 
Specificity” curves overlap. 239 
 240 
Impact of offering confirmatory rapid antigen tests 241 
Our earlier findings suggested that false positive notifications of potential infection were the primary cause of unnecessary 242 
quarantines and lab-based tests. Improving detection specificity was one way to decrease false positive notifications. Here, 243 
we investigated whether offering confirmatory rapid antigen tests to users with a positive notification could also contribute 244 
to reducing unnecessary quarantines and lab-based tests (Figure 6; Table 2; Supplementary Table 6). We considered multiple 245 
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 11 

scenarios, each with either low levels of uptake (0.5%) or adherence (14%), nominal levels of uptake (4%) or adherence (50%), 246 
or high levels of uptake (12.5%) or adherence (86%). We examined these scenarios in the cases of nominal detection sensitivity 247 
and specificity, and of “high” detection sensitivity and specificity (using the same definitions of “high” as above). 248 
 249 

 250 
Figure 6: Wearable sensor deployment with confirmatory antigen tests. Time series depiction of the incidence of infection (A), the 251 
number of wearable device users incorrectly in quarantine (B), and the daily demand for lab-based tests (C). Detection sensitivity and 252 
specificity are set to their nominal values of 80% and 92%, respectively. 253 
 254 
Table 2: Impact of offering confirmatory antigen tests under different technology assumptions. 95% confidence intervals are 255 
listed in parentheses. Supplementary Table 6 depicts outcomes in analogous scenarios without rapid antigen tests. 256 
Uptake 
(%) 

Adherence 
(%) 

Averted Infections 
(thousands) 

Reduction in 
Burden of 
Infection (%) 

Days/Month in Qi per 
User (thousands) 

Additional Lab-
Based Tests 
Performed per Day 

Additional Rapid 
Tests Performed per 
Day (thousands) 

Net Savings 
($ million) 

Nominal Detection Sensitivity (80%) and Specificity (92%) Scenario 

0.5 14 5.8 (5.0–6.6) 0.2 (0.2–0.3) 1.92 (1.48–2.46) 10 (8 – 12) 1.9 (1.5–2.5) -0.1 (-0.5–0.3) 

0.5 50 18.6 (16.4–20.5) 0.8 (0.7–0.9) 6.85 (5.27–8.55) 34 (29 – 40) 6.9 (5.3–8.6) -0.9 (-2.5–0.6) 

0.5 86 29.0 (26.0–31.4) 1.2 (1.1–1.3) 11.79 (9.20–14.70) 56 (48 – 65) 11.9 (9.3–14.9) -2.4 (-5.2–0.1) 

4.0 14 45.9 (39.2–53.2) 2.0 (1.7–2.3) 1.91 (1.47–2.42) 81 (67 – 95) 15.5 (11.9–19.6) -0.7 (-4.4–2.7) 

4.0 50 145.0 (128.9–159.7) 6.2 (5.5–6.8) 6.89 (5.40–8.49) 270 (230 – 312) 55.7 (43.7–68.7) -8.3 (-20.6–3.1) 

4.0 86 222.1 (200.9–240.9) 9.5 (8.6–10.3) 11.79 (9.35–14.87) 437 (376 – 511) 95.3 (75.7–120.2) -21.7 (-44.9–-1.7) 

7.5 14 85.9 (72.7–99.4) 3.7 (3.1–4.2) 1.90 (1.41–2.46) 150 (123 – 180) 28.9 (21.4–37.3) -1.1 (-8.3–5.5) 

7.5 50 265.4 (235.6–291.7) 11.3 (10.1–12.4) 6.85 (5.32–8.55) 494 (420 – 574) 103.8 (80.7–129.6) -16.7 (-41.7–4.3) 

7.5 86 401.8 (363.6–433.0) 17.1 (15.5–18.5) 11.86 (9.34–14.63) 800 (681 – 926) 179.9 (141.6–221.7) -45.9 (-84.1–-10.3) 

High Detection Sensitivity (96.0%) and Specificity (98.4%) Scenario 

0.5 14 6.9 (6.0–7.8) 0.3 (0.3–0.3) 0.38 (0.20–0.61) 6 (5 – 7) 0.4 (0.2–0.6) 1.7 (1.4–2.0) 

0.5 50 21.6 (20.2–23.0) 0.9 (0.9–1.0) 1.36 (0.73–2.22) 20 (18 – 23) 1.4 (0.8–2.3) 5.1 (4.2–5.8) 

0.5 86 33.2 (31.5–34.8) 1.4 (1.3–1.5) 2.34 (1.27–3.72) 31 (27 – 35) 2.4 (1.3–3.8) 7.6 (6.3–8.7) 

4.0 14 54.7 (48.0–61.6) 2.3 (2.0–2.6) 0.38 (0.20–0.62) 50 (42 – 58) 3.2 (1.7–5.1) 13.2 (10.9–15.5) 

4.0 50 168.4 (158.1–177.9) 7.2 (6.7–7.6) 1.36 (0.73–2.25) 151 (134 – 174) 11.1 (6.1–18.3) 39.5 (33.1–44.9) 

4.0 86 254.2 (242.0–264.9) 10.8 (10.3–11.3) 2.37 (1.24–3.68) 228 (200 – 261) 19.3 (10.2–29.9) 57.5 (46.6–66.5) 

7.5 14 101.6 (90.0–114.8) 4.3 (3.8–4.9) 0.38 (0.20–0.63) 92 (79 – 109) 5.9 (3.1–9.6) 24.6 (20.6–28.9) 

7.5 50 306.6 (288.0–324.2) 13.1 (12.3–13.8) 1.36 (0.74–2.16) 270 (237 – 309) 20.8 (11.5–33.0) 71.7 (59.0–82.0) 

7.5 86 455.4 (433.6–474.1) 19.4 (18.5–20.2) 2.40 (1.34–3.78) 399 (347 – 462) 36.7 (20.6–57.5) 101.4 (81.6–118.0) 

 257 
The use of antigen tests reduced the number of days incorrectly spent in quarantine by ~300-fold by increasing the “effective 258 
specificity” of the strategy (Figure 6b). That is, with antigen tests, the likelihood of a Susceptible user being incorrectly 259 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.07.22270634doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.07.22270634
http://creativecommons.org/licenses/by-nc/4.0/


 12 

prompted to quarantine on a given day fell from (1 – νw) to the product of (1 – νw) and (1 – νa), where νw and νa are detection 260 
algorithm specificity and antigen test specificity, respectively. In earlier scenarios (Figures 4a and 5a), averted infections were 261 
decreased by improving detection specificity more than they were increased by improving detection sensitivity; fewer 262 
infections were averted in the high detection sensitivity and specificity scenarios than in the nominal detection sensitivity 263 
and specificity scenarios. Here, the specificity contributed by the antigen tests diminished the relative impact of improving 264 
detection specificity on averted infections: the “effective specificity” of the strategy was 99.976% with nominal detection 265 
specificity and 99.995% with high detection specificity (Supplementary Table 2)21. Instead, improving detection sensitivity 266 
was what increased the number of averted infections. Importantly, antigen tests had the secondary effect of decreasing the 267 
strategy’s “effective sensitivity” – the product of antigen test sensitivity (91.1%) and detection algorithm sensitivity21. 268 
 269 
Offering confirmatory rapid antigen tests also decreased the demand for lab-based tests by ~200-fold, providing the double 270 
benefit of alleviating the burden on testing infrastructure and decreasing costs (Figure 6c). We earlier found that in a baseline 271 
scenario (4% uptake, 50% adherence, 80% detection sensitivity, 92% detection specificity), between ~40,000 and ~65,000 272 
additional lab-based tests would be required each day (Figure 2c). Here, in an analogous scenario, average daily demand 273 
dropped to 270 (95% CI: 230–312) additional lab-based tests, with 55,700 (95% CI: 43,700–68,700) antigen tests being 274 
performed each day instead (Table 2). Antigen tests were also more cost-effective tools than lab-based tests for confirming 275 
Susceptible users with false positive notifications were not infectious. Accounting for the costs of lab-based tests and savings 276 
associated with averted hospitalizations, we approximated that a baseline scenario would involve $825.7 (95% CI: $645.2–277 
1,035.7) million in net healthcare expenditures (Supplementary Table 6). Here, we approximated that the analogous scenario 278 
would involve $8.3 (95% CI: -3.1–20.6) million in net expenditures (Table 2). Unnecessary lab-based tests drove this ~10-279 
fold difference in costs. 280 
  281 
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DISCUSSION 282 
 283 
We used a counterfactual model of Canada’s second COVID-19 wave to demonstrate that wearable sensors capable of 284 
detecting infectious diseases before or absent symptoms can be useful tools for pandemic mitigation. Through continuous 285 
and non-invasive monitoring of physiological parameters, these devices can conceivably help FTTI systems identify hidden 286 
infection chains with minimal delay and without active user engagement or broad sharing of user data. We showed that (1) 287 
deploying today’s detection algorithms could have meaningfully reduced the second wave burden of infection, but with 288 
substantial social and resource costs; (2) improving detection algorithm specificity and offering confirmatory rapid antigen 289 
tests can help minimize unnecessary quarantines and lab-based tests; and (3) once false positive notifications are minimized, 290 
increasing uptake and adherence become effective strategies to scale the number of averted infections. 291 
 292 
In theory, wearable sensor deployment reduces the burden of infection by decreasing the pool of infectious individuals (a 293 
function of detection algorithm sensitivity). Here, we found that detection specificity played an unexpectedly large role as 294 
well, with false positive notifications of potential infection prompting unnecessary quarantines and thereby decreasing the 295 
pool of susceptible individuals. Thus, although prioritizing uptake and adherence as part of a wearable sensor deployment 296 
strategy could mitigate a substantial number of infections, the unsustainable growth of associated costs should also be 297 
considered. In a baseline scenario, without improvements to detection specificity, every user would spend over two days a 298 
month on average incorrectly quarantining, and ~40,000 to ~65,000 additional confirmatory lab-based tests would be 299 
required each day. The social and economic harm caused by solely promoting uptake or adherence without improvements 300 
to detection specificity would likely undermine public confidence in and compliance with a wearable-based pandemic 301 
mitigation strategy22. Alavi et al found that many false positives were due to the detection algorithm identifying lifestyle-302 
driven changes in resting heart rate (e.g., after intense exercise or alcohol consumption); accounting for these factors using 303 
more advanced algorithms may be one way to target improved detection specificity10. 304 
 305 
We found that the inclusion of confirmatory antigen testing was a valuable mechanism, beyond improving detection 306 
specificity, to increase the “effective specificity” of the strategy and decrease the overall false positive rate. The inclusion of 307 
antigen testing decreased days incorrectly spent in quarantine by ~300-fold and brought the additional demand on lab-based 308 
testing infrastructure to justifiable levels. In general, antigen tests were more cost-effective and immediate tools than lab-309 
based tests to confirm a Susceptible device user was not infectious. However, even with the inclusion of antigen tests, 310 
improvements to detection specificity still had value. Relative to scenarios with nominal detection specificity, with “high” 311 
detection specificity, we observed a ~4-fold reduction in days incorrectly spent in quarantine per month per user, a ~2-fold 312 
reduction in lab-based tests performed each day, and a ~5-fold reduction in antigen tests used each day. Importantly, a 313 
strategy in which antigen tests support the deployment of wearable sensors is notably different from one involving frequent 314 
use of rapid antigen tests for surveillance testing23. On their own, broad antigen test-based screening approaches require 315 
tremendous manufacturing volumes, infrastructure, and funding24. Conversely, wearable sensors can non-invasively detect 316 
infections without active user engagement, reducing the effort required to participate. Further, in the scenarios explored 317 
here, detection algorithm specificity governed how efficiently rapid antigen tests were deployed. 318 
 319 
Our work has important limitations. First, we assumed that SARS-CoV-2 epidemiology and wearable device use were 320 
homogenous within the population. Our determination of the transmission rate from epidemiological data inherently results 321 
in a “well-mixed” approximation for this value averaged over population-level heterogeneities such as age and super-322 
spreading. As well, the COVID-19 pandemic has disproportionately impacted low-income and minority groups, while 323 
younger and wealthier individuals are more likely to own wearable devices25,26. Future studies could consider a policy where 324 
the incentive to download the application is increased to become a subsidy for purchasing a wearable device, reducing the 325 
participation barrier. Second, we used an existing model for the incidence of infection which has its own assumptions and 326 
limitations13. Third, we made the simplifying assumption that all users without symptoms (and that no users with symptoms) 327 
could benefit from wearable-informed prompts to take a confirmatory test and self-isolate. Fourth, we did not consider how 328 
uptake or adherence might vary over time or with detection accuracy18,22. Fifth, we used median values for SARS-CoV-2 329 
infection parameters (e.g., latent period) and did not account for reinfections or vaccinations. Finally, we did not account 330 
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for administrative costs or second order savings (e.g., avoided worker’s compensation payouts for 14-day quarantines). 331 
 332 
To our knowledge, this is the first study to explore the real-world impact of deploying wearable sensors for pandemic 333 
mitigation. Using the example of COVID-19, we demonstrated that these devices have the potential to support FTTI systems 334 
with real-time detection of presymptomatic and asymptomatic infections, and ultimately reduce the burden of infection. 335 
However, in cases with insufficient detection algorithm specificity, complementary interventions that reduce false positives 336 
are required to minimize social costs and resource demands. In the future, there is clear merit to further exploring how 337 
wearable sensors can be incorporated into FTTI systems for pandemic mitigation, and whether these devices continue to 338 
have public health utility once an endemic phase is reached, complementary to vaccines. 339 
  340 
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Supplementary Appendix 
 
 
1. Modeling assumptions, variables, and equations 
 
Supplementary Table 1: SARS-CoV-2 characteristics. We obtained the presymptomatic infectious period by 
subtracting the latent period (3.69 days) from the incubation period (5 days)1,2. We obtained the asymptomatic and 
symptomatic infectious period by subtracting the presymptomatic infectious period (1.31 days) from the total 
infectious period (7 days)1–3. During Monte Carlo simulations, we modeled asymptomatic prevalence as a beta random 
variable with a mean of 0.4 and a sample size of 200; a sample size of 200 is greater than 75% of the study populations 
examined by Oran and colleagues4. 

Parameter Symbol Value 
Latent period (exposure to infectiousness) 1 / α 3.69 days1 
Presymptomatic infectious period 1 / τ 1.31 days1,2 
Asymptomatic and symptomatic infectious period 1 / γ 5.69 days1–3 
Asymptomatic prevalence ρ 40%4 
Transmission potential without symptoms relative to with symptoms λ 55%1 
Daily new infections π varies 
Average number of transmissions per infectious person per day β varies 

 
 
Supplementary Table 2: Wearable device and policy parameters. 

Parameter Symbol Nominal Value Notes 
Wearable device 
uptake 

θ 4% We defined uptake as the percent of the population that owns a wearable device, has 
downloaded the detection/notification application, and uses the device enough to collect 
sufficient data for detection. We estimated uptake would range from 0.5% to 7.5% at 
baseline. Supplementary Tables 3 and 4 provide an example of this calculation. 
Device ownership: Estimates from 2018 place device ownership in Canada between 
22% and 25%5,6. 
Download rate: A study found that the baseline download rate of Germany’s national 
contact tracing application was between ~8% and ~11%; incentives could increase this 
rate7. Paré and colleagues found that 57% of owners regularly track their health with 
their device5. Here, we looked at download rates ranging from 10% to 60%. 
Utilization: In research studies where wearable devices were used to track health, usage 
rates ranged from as low as 24%, to 50% in the long run8,9. 

Adherence to 
wearable device 
notification 

ψ 50% We defined adherence as the proportion of wearable device users that comply with 
recommended next steps upon notification of potential infection. At baseline, next steps 
include seeking a confirmatory lab-based test, self-isolating while awaiting a result, and 
quarantining until recovery if the result is positive. With antigen tests, compliant users 
also take a confirmatory rapid antigen test prior to seeking a lab-based test. 
In Israel, at least ~53% of antigen test kit results were reported (~613,000 reports out of 
~1,150,000 kits taken home)10,11. In Norway, up to 70% of those with a suspected 
diagnosis and up to 86% with a positive diagnostic test adhered to quarantine12. 
However, adherence could be as low as ~14%, if one considers Canada’s  COVID Alert 
contact tracing app’s reporting rate in light of confirmed cases as of July 27, 202113. 
During Monte Carlo simulations, we modeled adherence as a beta random variable with 
a mean of 0.5 and a sample size of 1723; 1723 was the sample size for the relevant 
experiment in the Norway study. 

Detection 
algorithm 
sensitivity 

σw 80% We defined sensitivity as the proportion of infected yet asymptomatic wearable device 
users (i.e., Exposed, Presymptomatic, and Asymptomatic) who receive a notification of 
potential infection prior to recovering and entering the Removed compartment. Alavi 
and colleagues’ NightSignal algorithm achieved a sensitivity of ~80%, which is a 
plausible value based on other efforts to develop similar algorithms14,15. 
During Monte Carlo simulations, we modeled sensitivity as a beta random variable with 
a mean of 0.80 and a sample size of 84; 84 was the size of the sample used to calculate 
the NightSignal algorithm’s sensitivity. 

Detection 
algorithm 
specificity 

νw 92% We defined specificity as the probability that, on a given day, a healthy (i.e., Susceptible) 
user does not receive a notification of potential infection. Alavi and colleagues’ 
NightSignal algorithm gave potentially healthy users 0.0819 false positive notifications 
(“red alerts”) per day on average, corresponding to a specificity of ~92%14. 
During Monte Carlo simulations, we modeled specificity as a beta random variable with 
a mean of 0.92 and a sample size of 818; alarm data from 818 potentially healthy users 
in Alavi and colleagues’ dataset were used to calculate the false positive rate. 
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Detection 
algorithm 
sensitivity 
adjustment factor 

κ (1/α + 1/τ + 1/λ)-1 
days-1 

We assumed that σw is applied uniformly across Exposed, Presymptomatic, and 
Asymptomatic states such that by the time infectiousness ends, σw of infected users 
without symptoms are notified. 

Detection 
algorithm 
specificity 
adjustment factor 

χ (1)-1 days-1 We assumed that νw is applied over a period of one day such that on any given day, 
Susceptible users receive an incorrect (i.e., false positive) notification of potential 
infection with probability (1-νw). 

Rapid antigen test 
sensitivity 

σa 91.1% We used the lowest performance reported for Abbot’s Panbio test16. Independent 
evaluations of this test suggest lower sensitivity in presymptomatic and asymptomatic 
individuals17,18. However, we reasoned that the receipt of a wearable-informed 
notification of potential infection raised the pretest probability of infection, thereby 
improving the negative predictive value (NPV) of the tests19. We performed a sensitivity 
analysis on the sensitivity of rapid antigen tests (Supplementary Figure 5). 

Rapid antigen test 
specificity 

νa 99.7% We used the lowest performance reported for Abbot’s Panbio test16. Independent 
evaluations suggest that this test’s specificity is even higher17,18. 

Lab-based test 
turnaround time 

ε 2 days In general, 1-3 days based on Health Canada reporting20. 

Transmission rate 
increase factor 

a 1 Used to test the scenario in which device users who do not receive a notification of 
potential infection act in a riskier fashion, effectively increasing their transmission rate21. 

 
 
Model equations, in addition to Equation (1), used to extract transmission rate (β) from the IHME infection model: 

 
 
 
Model equations, in addition to Equation (2), used to run simulations: 
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2. Estimating ranges for uptake 
 
Below, Supplementary Tables 3 and 4 delineate how we estimated plausible ranges for uptake in a baseline scenario. 
First, we multiplied the download rate by the proportion of the population that owns a device to obtain a plausible 
range for the proportion of the population that owns the application (Supplementary Table 3). Then, we calculated a 
range for uptake by multiplying the proportion of individuals that own the application by expected levels of utilization 
(Supplementary Table 4). Accounting for utilization was a necessary step because not all individuals who download 
the application to their device use it enough to provide sufficient data for the algorithm to function correctly14. We 
concluded that in a baseline scenario, uptake would likely range from 0.5% to 7.5%. Assumptions around parameter 
values are listed in Supplementary Table 2 above. 
 
 
Supplementary Table 3: Calculation of the proportion of individuals who own the application. 

Application Ownership Device Ownership 
Download Rate 22.0% 23.5% 25.0% 

10.0% 2.2% 2.4% 2.5% 
35.0% 7.7% 8.2% 8.8% 
60.0% 13.2% 14.1% 15.0% 

 
 
Supplementary Table 4: Calculation of the proportion of individuals who own and use the application. 

Uptake Utilization 
Application Ownership 24.0% 37.0% 50.0% 

2.2% 0.5% 0.8% 1.1% 
8.6% 2.1% 3.2% 4.3% 

15.0% 3.6% 5.6% 7.5% 
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3. Estimating economic impact 
 
To generate a first-order estimate of net healthcare expenditures in particular scenarios, we subtracted savings from 
expenditures. Savings included costs avoided from averting hospitalizations. Expenditures included the costs of lab-
based tests and antigen tests, where applicable. We calculated the number of averted hospitalizations and tests from 
our simulations using Equations (22) to (24) below. We multiplied these volumes by the costs in Supplementary Table 
5, as in Equation (25), to generate a first-order approximation of net healthcare expenditures. 
 
 

 
 
 
Supplementary Table 5: Costs used in economic impact calculations and associated assumptions. 

Parameter Value Notes 
Average cost of a COVID-19 
hospitalization 

$23,471 Average cost between January 2020 and March 2021; includes normal visits 
and ICU visits22. Data downloaded on December 16, 2021. 

Infection hospitalization ratio 1.31% We calculated the infection hospitalization ratio by dividing the total number 
of COVID-19 hospitalizations by the total number of infections, all within 
the simulation period23. We offset the hospitalization counts by 7 days to 
align them with infections. 

Cost of an antigen test $5 Based on rates achieved when tests are purchased at scale24. 
Cost of a diagnostic test $100 Large variation in this figure; used rule of thumb25. 
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4. Additional results 
 

 
Supplementary Figure 1: Impact of simultaneously increasing uptake and adherence. Averted infections (A), 
reduction in the burden of infection (B), days incorrectly spent in quarantine per month per device user (C), and 
average daily demand for lab-based tests (D), all over the entire simulation period, as a function of uptake and 
adherence. Grey boxes denote nominal sensitivity (80%) and specificity (92%). 
  

A B

C D
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Supplementary Table 6: Wearable sensor deployment scenarios under different technology assumptions. 95% 
confidence intervals are listed in parentheses. This table serves as a counterpart to Table 2 so that analogous scenarios 
with and without confirmatory antigen tests can be compared. 
Uptake 
(%) 

Adherence 
(%) 

Averted Infections 
(thousands) 

Reduction in Burden 
of Infection (%) 

Days/Month in 
Qi per User 

Additional Lab-Based Tests 
Performed per Day (thousands) Net Savings ($ million) 

Nominal Detection Sensitivity (80%) and Specificity (92%) Scenario 

0.5 14 8.8 (7.5–10.1) 0.4 (0.3–0.4) 0.62 (0.47–0.78) 1.9 (1.4 – 2.4) -30.0 (-38.2– -22.5) 

0.5 50 28.5 (25.7–31.4) 1.2 (1.1–1.3) 2.13 (1.68–2.63) 6.4 (5.1 – 8.0) -102.8 (-128.8– -79.9) 

0.5 86 44.7 (40.6–48.6) 1.9 (1.7–2.1) 3.46 (2.76–4.18) 10.5 (8.4 – 12.7) -167.8 (-204.5– -132.2) 

4.0 14 69.9 (60.0–80.7) 3.0 (2.6–3.4) 0.62 (0.48–0.80) 15.2 (11.8 – 19.4) -240.7 (-311.3– -183.5) 

4.0 50 218.9 (197.1–241.0) 9.3 (8.4–10.3) 2.13 (1.69–2.64) 51.6 (40.9 – 64.1) -825.7 (-1,035.7– -645.2) 

4.0 86 335.5 (306.7–363.2) 14.3 (13.1–15.5) 3.46 (2.79–4.16) 84.0 (67.7 – 100.9) -1,349.6 (-1,637.9– -1,073.9) 

7.5 14 129.1 (110.3–148.0) 5.5 (4.7–6.3) 0.62 (0.48–0.79) 28.4 (22.0 – 36.0) -452.3 (-580.5– -343.8) 

7.5 50 394.1 (358.8–428.2) 16.8 (15.3–18.3) 2.13 (1.69–2.60) 96.9 (77.0 – 118.2) -1,555.8 (-1,918.6– -1,215.5) 

7.5 86 589.9 (543.3–633.0) 25.2 (23.2–27.0) 3.47 (2.79–4.20) 157.8 (126.8 – 191.1) -2,548.3 (-3,111.5– -2,021.9) 

High Detection Sensitivity (96.0%) and Specificity (98.4%) Scenario 

0.5 14 8.1 (7.0–9.2) 0.3 (0.3–0.4) 0.13 (0.07–0.21) 0.4 (0.2 – 0.6) -4.4 (-8.4– -1.3) 

0.5 50 25.1 (23.4–26.9) 1.1 (1.0–1.1) 0.45 (0.24–0.69) 1.4 (0.7 – 2.1) -16.0 (-28.7– -5.4) 

0.5 86 38.5 (36.3–40.9) 1.6 (1.5–1.7) 0.76 (0.40–1.24) 2.3 (1.2 – 3.8) -28.5 (-53.1– -10.0) 

4.0 14 63.4 (55.6–71.1) 2.7 (2.4–3.0) 0.13 (0.07–0.21) 3.1 (1.7 – 5.0) -33.9 (-66.6– -10.7) 

4.0 50 194.1 (180.8–207.5) 8.3 (7.7–8.9) 0.44 (0.24–0.71) 10.8 (5.9 – 17.4) -127.5 (-237.4– -45.6) 

4.0 86 292.2 (275.4–309.1) 12.5 (11.8–13.2) 0.77 (0.41–1.21) 18.7 (10.2 – 29.6) -233.8 (-419.1– -90.3) 

7.5 14 117.7 (103.6–133.6) 5.0 (4.4–5.7) 0.13 (0.07–0.20) 5.8 (3.1 – 9.2) -64.2 (-122.7– -18.3) 

7.5 50 352.2 (328.2–378.0) 15.0 (14.0–16.1) 0.45 (0.24–0.72) 20.5 (11.3 – 32.7) -246.8 (-449.3– -88.9) 

7.5 86 520.4 (493.7–549.2) 22.2 (21.1–23.4) 0.77 (0.43–1.22) 35.4 (20.0 – 55.7) -452.2 (-796.5– -190.4) 
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5. Sensitivity analyses 
 
First, we looked at whether, instead of remaining constant, the transmission rate of device users who do not receive a 
notification of potential infection might in fact increase due to a sense of false confidence (Supplementary Figure 2)21. 
We modulated a in Equation (2) to do so; a 5% increase in the transmission rate, for example, meant a was set to 1.05. 
Increase in transmission among device users relative to historical levels reduced the number of averted infections. The 
number of incorrect quarantines was not impacted. The implication of this finding is that public health leaders would 
need to communicate the limitations of wearable sensors with respect to detecting infections and emphasize that a lack 
of a notification does not rule out potential infection. 
 
 

 
Supplementary Figure 2: Impact of increased transmission among device users who are not notified of potential 
infection in a baseline scenario. We assumed 4% uptake, 50% adherence, and that transmission among non-users 
was unchanged. 
 
 
Second, we looked at the impact of asymptomatic prevalence (Supplementary Figure 3). It was important to perform 
this analysis because our model only accounts for notifications sent to presymptomatic and asymptomatic individuals, 
yet there is still a lack of consensus on a specific value for the asymptomatic prevalence4. As expected, with greater 
asymptomatic prevalence, more individuals could benefit from wearable device use and more infections could be 
averted. The success of this strategy was not dependent on a particular value of asymptomatic prevalence. The number 
of incorrect quarantines was not impacted. 
 
 

 
Supplementary Figure 3: Impact of asymptomatic prevalence in a baseline scenario. We assumed 4% uptake and 
50% adherence. We continued to model asymptomatic prevalence as a beta-distributed random variable 
(Supplementary Table 1). The dashed grey line represents nominal asymptomatic prevalence (40%). 
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Third, we investigated how the decrease in the number of Susceptible individuals resulting from incorrect quarantines 
influenced the number of averted infections in a baseline scenario (Supplementary Figure 4). We compared the number 
of averted infections with nominal (92%) and perfect (100%) detection specificity as detection sensitivity increased. 
In a baseline scenario, a meaningful proportion – 28.6% (95% CI: 18.3–38.2%) in the case of nominal detection 
sensitivity – of averted infections were driven by incorrect quarantines. This proportion decreased with increasing 
sensitivity. Consistent with earlier findings, it remains important to minimize unnecessary quarantines – social costs 
can be substantially reduced while still averting a meaningful number of infections, especially if detection sensitivity 
can be improved in parallel. 
 
 

 
Supplementary Figure 4: Impact of incorrect quarantines on averted infections in a baseline scenario. We 
assumed 4% uptake and 50% adherence. The dashed grey line depicts nominal detection algorithm sensitivity (80%). 
 
 
Fourth, we investigated the impact of lower rapid antigen test sensitivity (Supplementary Figure 5). First, fewer 
infections were averted overall – as discussed, using antigen tests to minimize incorrect quarantines increased the pool 
of susceptible individuals. Second, averted infections grew linearly with test sensitivity: a ~10% increase in test 
sensitivity resulted in a ~14,000 increase in averted infections. These two effects result in a tradeoff between missing 
more infectious individuals (imperfect antigen test sensitivity) and decreasing false positive prompts to seek a lab-
based test and self-isolate while awaiting the results (near perfect antigen test specificity). We believe the use of 
antigen tests as a complementary mechanism could be justified. Although fewer infections are averted relative to 
wearable sensor deployment without antigen tests, hundreds of thousands of infections are still averted relative to the 
counterfactual scenario – and in a resource-efficient and socially acceptable fashion. Certainly, infected individuals 
with a false negative antigen test might act in a riskier fashion – even still, there remains an opportunity to avert a 
substantial number of infections (Supplementary Figure 2). We also point out that improving detecting algorithm 
sensitivity could help counteract the effect of imperfect antigen test sensitivity (Table 2). 
 

 
Supplementary Figure 5: Impact of antigen test sensitivity. We assumed 4% uptake and 50% adherence. The 
dashed grey line represents nominal antigen test sensitivity (91.7%). 
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Fifth, we explored the impact of lab-based test turnaround time to determine whether minimizing this variable should 
be a policy priority (Supplementary Figure 6). Throughout this study, we set turnaround time to its nominal value of 
two days. With longer turnaround times, individuals incorrectly in quarantine would remain there longer, further 
decreasing the pool of Susceptible individuals. As expected, more infections are consequently averted. However, there 
are other mechanisms (e.g., improving detection sensitivity) for increasing averted infections that are not accompanied 
by as large of an increase to social costs. Thus, as is already the case outside the context of wearable sensor 
deployment, it would make sense to minimize turnaround time. 
 
 

 
Supplementary Figure 6: Impact of lab-based test turnaround time. We assumed 4% uptake and 50% adherence. 
 
 
Finally, to understand the impact of detection algorithm sensitivity on the incidence of infection, we investigated the 
scenario in which device users are randomly asked to seek a lab-based test and self-isolate while awaiting the result 
(Supplementary Figure 7). We set the likelihood of being asked to quarantine to the false positive rate, still treating 
detection specificity as a beta-distributed random variable and setting it to its nominal value. As expected, the 
reduction in detection sensitivity substantially reduces the number of averted infections. The number of individuals 
incorrectly in quarantine is unimpacted because it is governed by detection specificity, not sensitivity. 
 
 

 
Supplementary Figure 7: Impact of randomly asking device users to seek a lab-based test and quarantine while 
waiting for the result. We assumed 7.5% uptake, still with 50% adherence, to illustrate the relative difference in the 
incidence of infection. 
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