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 2 

ABSTRACT 23 

 24 

The ability to distinguish between SARS-CoV-2 variants of concern (VOCs) is of ongoing interest due to 25 

differences in transmissibility, response to vaccination, clinical prognosis, and therapy. Although detailed 26 

genetic characterization requires whole-genome sequencing (WGS), targeted nucleic acid amplification 27 

tests can serve a complementary role in clinical settings, as they are more rapid and accessible than 28 

sequencing in most laboratories. 29 

 30 

We designed and analytically validated a two-reaction multiplex reverse transcription quantitative PCR 31 

(RT-qPCR) assay targeting spike protein mutations L452R, E484K, and N501Y in Reaction 1, and del69-32 

70, K417N, and T478K in Reaction 2. This assay had 95-100% agreement with WGS in 502 upper 33 

respiratory swabs collected between April 26 and August 1, 2021, consisting of 43 Alpha, 2 Beta, 20 34 

Gamma, 378 Delta, and 59 non-VOC infections. Validation in a separate group of 230 WGS-confirmed 35 

Omicron variant samples collected in December 2021 and January 2022 demonstrated 100% agreement. 36 

 37 

This RT-qPCR-based approach can be implemented in clinical laboratories already performing SARS-38 

CoV-2 nucleic acid amplification tests to assist in local epidemiological surveillance and clinical decision-39 

making. 40 

41 
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INTRODUCTION 42 
 43 

Since the original strain of SARS-CoV-2 virus was first discovered in late 2019, numerous new variants 44 

have been identified, including variants of concern (VOCs) Alpha (B.1.1.7 and Q.*), Beta (B.1.351), 45 

Gamma (P.1 and sublineages), Delta (B.1.617.2 and AY.*) and Omicron (B.1.1.529 and BA.*). 46 

Importantly, these VOCs differ in their clinical prognosis, transmissibility, antibody susceptibility, and 47 

response to vaccination (1-21). Whole-genome sequencing (WGS) has played a critical role in identifying 48 

the emergence of these new variants (22-24), and millions of distinct sequences have been deposited 49 

into public repositories such as the Global Initiative on Sharing Avian Influenza Data consortium's 50 

database (GISAID). However, WGS has a relatively long turnaround time, is labor-intensive, and requires 51 

instruments, bioinformatics support, and specially-trained staff that may not be widely available to many 52 

clinical laboratories. Therefore, the development of reverse transcription quantitative PCR (RT-qPCR) 53 

assays to detect and differentiate SARS-CoV-2 variants may be an important real-time complement to 54 

WGS epidemiologic surveillance, and may directly impact the clinical care of individual patients by 55 

informing selection of expensive and potentially difficult-to-source monoclonal antibody therapies (1, 6, 56 

12-16, 19, 20, 25).  57 

 58 

In this study, we report the design of a multiplex RT-qPCR assay that detects the del69-70, K417N, and 59 

T478K mutations in SARS-CoV-2 spike protein and targets the wild-type 69-70 sequence as an internal 60 

control. We further evaluate the performance of this assay in combination with our previously described 61 

RT-qPCR assay for the detection of L452R, E484K, and N501Y (26), and demonstrate the utility of this 62 

targeted mutational analysis to accurately distinguish among VOCs.63 
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MATERIALS AND METHODS 64 

 65 

Assay Design 66 

The spike protein mutations associated with each variant that are interrogated by the RT-qPCR assays 67 

are summarized in Figure 1. In the first reaction (Reaction 1), we utilized our previously described RT-68 

qPCR assay to detect L452R, E484K, and N501Y mutations in spike Receptor Binding Domain (RBD) 69 

(26). The present study describes the combination of this assay with a second, newly designed reaction 70 

(Reaction 2), which detects the deletion of amino acids 69-70 in the spike N-Terminal Domain (del69-70), 71 

as well as K417N and T478K mutations in the RBD. We use allele-specific RT-qPCR with probe 72 

sequences designed to maximize the difference in annealing temperature between mutant and wild-type 73 

sequences, allowing for differential binding and amplification. The primer/probe sequences for each 74 

mutation site are summarized in Table 1. Additional details are provided in the Supplemental Methods, 75 

ssDNA sequences for analytical experiments (Supplemental Table 1), guidance for interpretation and 76 

reporting (Supplemental Table 2), analytical validation data (Supplemental Table 3), and in-silico analysis 77 

of primer and probe sequences (Supplemental Figure 1).  78 

 79 

Clinical Specimens 80 

The samples included in the initial phase of this study were upper respiratory swab specimens collected 81 

from patients as part of routine clinical care from April 26, 2021 to August 1, 2021. Testing was performed 82 

at Stanford Clinical Virology Laboratory, which provides virologic testing for all Stanford-affiliated hospitals 83 

and outpatient centers in the San Francisco Bay Area. These initial SARS-CoV-2 nucleic acid 84 

amplification tests (NAATs) tests prior to genotyping were conducted according to manufacturer and 85 

emergency authorization instructions as previously described (26), and in the Supplemental Methods. All 86 

samples that tested positive for SARS-CoV-2 RNA were reflexed to genotyping. We then excluded 87 

samples that were initially tested by laboratory-based methods with cycle threshold values (Ct) ≥35 or 88 

relative light units (RLU) ≤1100. We included all available samples initially tested at or near the point of 89 

care as Ct data was not readily available for real-time specimen triage for these samples. We also 90 

excluded follow-up specimens to eliminate patient-level duplicates. Subsequent validation of this assay 91 
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for Omicron variant detection was conducted using a convenience set of 230 Omicron variant samples 92 

with available WGS data collected between December 2, 2021 and January 5, 2022. This study was 93 

conducted with Stanford institutional review board approval (protocol 57519), and individual consent was 94 

waived. 95 

 96 

Whole-Genome Sequencing  97 

To validate the genotyping RT-qPCR reactions, we tested their performance against WGS in a subset of 98 

the samples in the initial April 26, 2021 to August 1, 2021 cohort with Ct <30. Samples with non-dominant 99 

variant typing by RT-qPCR were prioritized for sequencing, with the remaining isolates chosen randomly 100 

to fill a sequencing run. WGS was conducted as described previously, using a lab-developed pipeline 101 

consisting of long-range PCR, followed by fragmentation, then single-end 150-cycle sequencing using 102 

MiSeq reagent kit V3 (Illumina, San Diego, CA) (26). Genomes were assembled via a custom assembly 103 

and bioinformatics pipeline using NCBI NC_045512.2 as reference. Whole-genome sequences with ≥75% 104 

genome coverage to a depth of at least 10 reads were accepted for interpretation. Median number of 105 

aligned reads was 485,870 (interquartile range [IQR] 289,363-655,481), while median genome coverage 106 

to a depth of at least 10 reads was 99.3% (IQR 97.1-99.3%). Mutation calling required a depth of at least 107 

12 reads with a minimum variant frequency of 20%. PANGO lineage assignment was performed using 108 

https://pangolin.cog-uk.io/ running pangolin version 3.1.17, while Nextclade Web v1.13.1 and auspice.us 109 

0.8.0. were used to perform phylogenetic placement (2, 27, 28). Both lineage and clade assignments 110 

were performed on February 1, 2022. WGS data was deposited in GISAID (Supplemental Table 4). 111 

 112 

Statistical Analysis 113 

Positive percent agreement (PPA) and negative percent agreement (NPA) were reported with Clopper-114 

Pearson score 95% binomial confidence intervals (CI) using WGS as the reference method. Analyses 115 

were conducted using the R statistical software package. This study was reported in accordance with 116 

Standards for the Reporting of Diagnostic Accuracy Studies (STARD) guidelines.  117 
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 6 

RESULTS 118 

 119 

During the initial study period of April 26, 2021 to August 1, 2021, the Stanford Clinical Virology 120 

Laboratory received 102,158 specimens from 70,544 unique individuals. A total of 1,657 samples from 121 

unique individuals tested positive for SARS-CoV-2, of which 1,093 (66%) had genotyping RT-qPCR 122 

Reaction 1 and Reaction 2 performed, and 502 (30.3%) had successful WGS performed (Supplemental 123 

Figure 2). Of note, Reaction 1 was performed in near real-time, while Reaction 2 was performed 124 

retrospectively. Overall, this subset of sequenced samples, had patient and testing characteristics that 125 

closely resembled those of the larger cohorts (Supplemental Table 5).  126 

 127 

The assay resulted as “Unable to Genotype” in 152 of 1,093 samples (14%) due to lack of amplification of 128 

any target in either or both reactions. Assay failure occurred predominantly in samples originally tested at 129 

or near the point of care (119/341, 35%), where all positive samples were triaged for genotyping without 130 

any filter. In contrast, assay failure occurred much less frequently in samples originally tested in the 131 

moderate-to-high complexity virology lab (33/752, 4%), where samples with lower viral loads were not 132 

triaged for genotyping. 133 

 134 

For the combination of Reactions 1 and 2, the PPAs for del69-70, L452R, T478K, E484K, and N501Y 135 

were 100% (Table 2). Across all six loci, only K417N had a false negative, resulting in a PPA of 96% 136 

(27/28). In this sample, WGS showed a synonymous T to C mutation at position 1254 of the spike gene 137 

corresponding to amino acid position 418, changing the codon from ATT to ATC. This single base pair 138 

substitution likely decreased the annealing temperature, causing probe dropout and a false negative 139 

result. 140 

 141 

The NPAs for del69-70, K417N, T478K, and N501Y were 100% (Table 2). L452R had an NPA of 95% 142 

(94/99) and E484K had an NPA of 99% (464/467). At the L452 locus, there were five samples positive for 143 

L452R mutation by RT-qPCR that were negative by WGS. Manual review of the WGS data showed that 144 

these were likely false negative WGS results due to insufficient (<12 reads) coverage at this codon. There 145 
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were 3-9 reads containing the L452R mutation identified in the WGS primary data in each of these five 146 

samples. These five samples were all in the Delta lineage based on mutations found at other positions by 147 

sequencing. 148 

 149 

For the E484K target, there were three samples that tested positive for the E to K mutation but in fact had 150 

a E484Q mutation determined by WGS. In both the E to K mutation (GAA to AAA) as well as the E to Q 151 

mutation (GAA to CAA), there was a single base substitution at the first position of the codon resulting in 152 

nonspecific probe binding. These three samples had a distinct blunted amplification curve with high Ct 153 

values associated with E484Q, as previously described (29).  154 

 155 

Of note, there was a subset of variant AY.2, involving four specimens in our cohort, that had a V70F 156 

mutation causing both del69-70 and wt69-70 probes not to bind. However, because this variant would 157 

have T478K and K417N detected, the wt69-70 signal was not needed as an amplification control. This 158 

scenario has been reflected in the clinical interpretation table (Supplemental Table 2). 159 

 160 

SARS-CoV-2 positive specimens collected starting December 2, 2021 began to show an unusual 161 

combination of mutations: presence of K417N and del69-70 only in Reaction 2, with all targets including 162 

internal control N501 not detected in Reaction 1. Based on in-silico analysis, we determined that these 163 

cases likely represented Omicron variant. While most Omicron variant strains possess del69-70, K417N, 164 

T478K, and N501Y mutations, they also have mutations at A67V, S477N, and Q498R, which would be 165 

predicted to interfere with binding of the del69-70/wt69-70, T478K, and N501Y/N501 probes, respectively. 166 

The del69-70 probe likely was able to retain some degree of binding due to the wider melting temperature 167 

differential of a 6-nucleotide deletion compared to a point mutation. As such, we validated this assay for 168 

Omicron detection using a set of 230 SARS-CoV-2 positive samples confirmed to be Omicron by WGS. 169 

We found that the unique pattern of K417N and del69-70 in Reaction 2, along with failure to amplify any 170 

target including internal control in Reaction 1, was present in 230/230 (100%, 95% CI 98-100%) Omicron 171 

samples tested. This pattern was not seen in any of the 1,093 non-Omicron samples previously 172 

genotyped. 173 
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 174 

We next predicted the WHO variant designation of samples using RT-qPCR and correlated them with the 175 

PANGO lineage assignments based on WGS data (Table 3). Mapping the genotyping results of the 176 

cohort based on RT-qPCR mutation analysis onto the Nextclade phylogenetic tree demonstrated close 177 

correlation with their WHO variant designations (Figure 2). Among the 732 clinical samples that were 178 

tested by both RT-qPCR and WGS, 43 samples (5.9%) were Alpha (B.1.1.7 or Q.3), 2 samples (0.3%) 179 

were Beta (B.1.351), 20 samples (2.7%) were Gamma (P.1 and sublineages), 378 samples (51.6%) were 180 

Delta (B.1.617.2 or AY.*), and 230 samples (31.4%) were Omicron (B.1.1.529 or BA.*). There were no 181 

RT-qPCR false negatives in assigning samples to these lineages. In addition, there were 59 samples 182 

(8.1%) tested by WGS that did not correspond to a WHO VOC as of February 2, 2022. Within this subset, 183 

there were 4 samples that were erroneously assigned as Gamma and 1 that was assigned as Beta by 184 

RT-qPCR. By WGS, these samples were variant of interest (VOI) Mu (B.1.621 or BB.2). This variant 185 

shares mutations E484K and N501Y with both the Beta and Gamma variants. A subset of Mu also 186 

includes the K417N mutation which is seen in the Beta variant. Thus, our PCR assay could not 187 

distinguish VOI Mu from VOCs Beta and Gamma. Our interpretation table included in the supplementary 188 

information reflects this limitation (Supplemental Table 2). The remaining 54 samples did not contain 189 

mutation patterns associated with VOCs. 190 

  191 
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DISCUSSION 192 

 193 

The ability to distinguish between SARS-CoV-2 VOCs is important for epidemiologic surveillance, and in 194 

certain circumstances, the care of individual COVID-19 patients. In this study, we describe a two-reaction, 195 

multiplex RT-qPCR genotyping approach that examines the spike mutations del69-70, K417N, L452R, 196 

T478K, E484K, and N501Y. This targeted mutational analysis can be used to differentiate between the 197 

WHO VOCs Alpha (B.1.1.7 and Q.*), Beta (B.1.351), Gamma (P.1 and sublineages), Delta (B.1.617.2 198 

and AY.*), and Omicron (B.1.1.519 and BA.*), as well as identify samples which cannot be categorized 199 

into a known VOC or VOI. Because the first part of this approach, Reaction 1, has been previously 200 

described, this current study focuses on Reaction 2 and the integrated results of the two-reaction test (26). 201 

Overall, these reactions showed high concordance with WGS, demonstrating over 95% PPA and NPA for 202 

all targeted mutations. 203 

 204 

Several groups have previously described similar approaches to SARS-CoV-2 variant determination by 205 

RT-qPCR and digital droplet RT-PCR, particularly for the spike del69-70, E484K, and N501Y positions 206 

(30-37). Some of these assays included additional mutation sites that were not in our study, such as spike 207 

del144 or ORF1a Δ3675–3677 (30, 36). These earlier assays, published prior to the rise of Delta, 208 

primarily targeted VOCs Alpha, Beta, and Gamma. This was then followed by a surge of reports on the 209 

detection of the Delta variant. Garson et al. utilized double-mismatch allele-specific RT-PCR at L452R 210 

and T478K to differentiate Delta variant from other VOCs in 42 UK patient samples (38). Aoki et al. 211 

described an approach that combines nested PCR along with high-resolution melting analysis at those 212 

same mutations, which was validated in a small Japanese patient cohort (39). Barua et al. used a slightly 213 

different approach, taking advantage of the difference in melting temperature of a probe targeted to Delta 214 

mutation in spike T478K compared to other variants for a Delta-specific RT-FRET-PCR assay (40). 215 

Another defining feature of VOC Delta is spike del156-157, which was the target of a Delta variant PCR 216 

test developed by Hamill et al. (41). To our knowledge, the two-reaction multiplex RT-qPCR approach 217 

outlined in this study examining six different mutation sites is the most comprehensive variant genotyping 218 

test described that can identify Alpha, Beta, Gamma, Delta, and Omicron variants.  219 
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 220 

Multiplex RT-qPCR SARS-CoV-2 genotyping takes advantage of a commonly-used molecular technique 221 

that can be implemented by laboratories using existing equipment, materials, and personnel. Because 222 

this assay is more accessible and has a more rapid turnaround time than WGS, we envision it serving a 223 

complimentary role to sequencing. The genotyping RT-qPCR can provide more detailed and up-to-date 224 

epidemiological information by increasing the sample size of categorized variants in each geographic 225 

region, and can be essential in tracking local outbreaks in areas without direct access to WGS. For 226 

individual patients, the turnaround time of several hours also allows it to directly impact clinical care. For 227 

example, VOCs show differential susceptibility to monoclonal antibody treatments, and variant reporting 228 

could include this information (Supplemental Table 2) (1). Furthermore, current ongoing trials for small 229 

molecule drugs and other treatments may yield more information about variant-specific treatment 230 

strategies.  231 

 232 

Importantly, RT-qPCR genotyping can help prioritize samples for sequencing. Although sequencing is 233 

needed for identification of novel variants and characterization of viral evolution, pre-screening by RT-234 

qPCR can enrich for samples with atypical mutation patterns, lead to more efficient use of sequencing 235 

resources, and potentially more rapid identification of new variants. 236 

 237 

This RT-qPCR approach has several limitations as evidenced by its assay failure rate of 14% across all 238 

tested samples in our initial cohort. Because multiplex RT-qPCRs involve a mixture of multiple sets of 239 

primers and probes, they are inherently less sensitive than single-target assays. For samples with RNA 240 

concentrations near the lower limits of detection, freeze-thaw cycles could impact RNA stability, and may 241 

not yield consistent results due to stochastic variation. This issue could be alleviated by implementing a 242 

Ct/RLU filter to only genotype samples most likely to yield interpretable results. Within our 1,093 sample 243 

cohort, the lower assay failure rate in samples tested in our clinical virology laboratory (4%) compared to 244 

near-care settings (35%) is likely attributable to genotyping only specimens with higher viral RNA levels. 245 

Note, however, that even with such filtering, mutation analysis by RT-qPCR remains more sensitive than 246 

WGS. The other limitation to this approach is the rapidly changing variant landscape which may render 247 
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such an assay obsolete in the matter of weeks. However, the inclusion of multiple targets in key residues 248 

that influence viral fitness helps guard against this possibility, as evidenced by our ability to detect the 249 

emergence of Omicron variant in our population. Still, flexibility and vigilance are required to re-design 250 

and re-validate these types of assays as novel variants emerge. 251 

 252 

In summary, we developed and validated a two-reaction multiplex RT-qPCR genotyping strategy that 253 

interrogates six clinically relevant mutations within the SARS-CoV-2 spike: del69-70, K417N, L452R, 254 

T478K, E484K, and N501Y. This approach allows for identification of WHO VOCs Alpha, Beta, Gamma, 255 

Delta and Omicron with excellent concordance to WGS. Overall, this method complements WGS, and is 256 

suitable for clinical decision-making, near real-time variant surveillance, and the triage of samples for 257 

sequencing.  258 

  259 
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FIGURE LEGENDS 442 

 443 

Figure 1. Summary of current World Health Organization (WHO)-designated variants of concern (VOC) 444 

along with their expected spike mutations at sites targeted by this two-reaction multiplex SARS-CoV-2 445 

RT-qPCR genotyping approach. These reactions are designed to detect the following mutations: del69-70, 446 

K417N, L452R, T478K, E484K, and N501Y. Shading indicates predicted versus empiric performance of 447 

this assay for the detection and differentiation of these VOCs. While the del69-70, T478K, and N501Y 448 

mutations were all predicted to be not-detected by this assay in samples from Omicron-infected 449 

individuals due to known adjacent mutations in the probe binding site (A67V, S477N, Q498R), del69-70 450 

was detected empirically with diminished efficiency. An asterisk denotes a known limitation of the assay in 451 

differentiating VOCs Beta and Gamma from the variant of interest Mu. 452 

 453 

Figure 2. Nextclade phylogenetic tree of 3,097 SARS-CoV-2 genomes, including all 732 of the 454 

sequenced genomes from this study, and 2,365 genomes from the Nextstrain global reference tree as of 455 

February 2, 2022. The 732 included genomes are colored by RT-qPCR genotyping predicted variant type, 456 

with each circle representing a sequenced genome. Branch length corresponds to nucleotide divergence. 457 

Sequenced genomes span the breadth of the reference tree. Annotation to the right of the tree 458 

demonstrates the variant type based on whole-genome sequencing (WGS). Variant determination by RT-459 

qPCR matched WGS except for 1 sequence typed as Beta, and 4 sequences typed as Gamma by RT-460 

qPCR which clustered with variant of interest Mu by WGS. 461 

  462 
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TABLES 463 
 464 
Table 1. Reaction 2 Primer and Probe Oligonucleotide Sequences 465 

 466 

 Name Sequence (5’  3’) Final Concentration 

Primers 

del69-70_FWD CATTAAATGGTAGGACAGGGTTA 300 nM 

del69-70_REV ACATTCAACTCAGGACTTGTT 300 nM 

K417N_FWD GCAGCCTGTAAAATCATCTG 300 nM 

K417N_REV CATTTGTAATTAGAGGTGATGAAGTC 300 nM 

T478K_FWD AAAGGAAAGTAACAATTAAAACCT 300 nM 

T478K_REV AGGAAGTCTAATCTCAAACCT 300 nM 

Probes 

del69-70_MT_HEX HEX-CCTAAACAATCTATACCGGTAATT-BHQ1 50 nM 

wt69-70_WT_CY3.5
a
 CY3.5-GGTCCCAGAGACATGTATAG-BHQ2 50 nM 

K417N_MT_CY5 CY5-TAATCAGCAATATTTCCAGT-BHQ2 50 nM 

T478K_MT_FAM FAM-ACCATTACAAGGTTTGCTAC-BHQ1 50 nM 

FWD, forward; REV, reverse; WT, wild-type; MT, mutant; HEX, hexachlorofluorescein; CY3.5, cyanine 3.5; CY5, 467 
cyanine 5; FAM, 5(6)-carboxyfluorescein; BHQ, Black hole quencher

 468 
a 

Included as an internal amplification control for samples without the del69-70 mutation 469 
  470 
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Table 2. Comparison of RT-qPCR and WGS Results for SARS-CoV-2 Spike Gene Mutation Detection in 471 
the Initial Cohort (n=502) 472 
 473 

Spike Mutations WGS pos WGS neg PPA (95% CI) NPA (95% CI) 

Del69-70 
RT-qPCR pos 43 0 

100% (92-100%) 100% (99-100%) 
RT-qPCR neg 0 459 

K417N 
RT-qPCR pos 27 0 

96% (82-100%) 100% (99-100%) 
RT-qPCR neg 1

a 
474 

L452R 
RT-qPCR pos 403 5

 b
 

100% (99-100%) 95% (89-98%) 
RT-qPCR neg 0 94 

T478K 
RT-qPCR pos 379 0 

100% (99-100%) 100% (97-100%) 
RT-qPCR neg 0 123 

E484K 
RT-qPCR pos 35 3

c 

100% (90-100%) 99% (98-100%) 
RT-qPCR neg 0 464 

N501Y 
RT-qPCR pos 70 0 

100% (95-100%) 100% (99-100%) 
RT-qPCR neg 0 432 

RT-qPCR, reverse transcription quantitative polymerase chain reaction; WGS, whole-genome 
sequencing; PPA, positive percent agreement; NPA, negative percent agreement; CI, confidence 
interval 
a
 False negative RT-qPCR result due to synonymous mutation in spike gene amino acid position 418 

(codon ATT -> ATC) causing probe dropout. 
b
 False negative WGS results due to insufficient read count (<12) at this codon. Manual review of 

sequences revealed 3-9 mutant reads in each sample. 
c
 These three samples were found on WGS to be positive for E484Q. While positive for the E484K 

target on RT-qPCR, these samples had a distinct blunted amplification curve associated with E484Q 
as previously described (29). 
  474 
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Table 3. Comparison of RT-qPCR and WGS for SARS-CoV-2 Variant of Concern Detection (n=732) 475 
 476 

WGS RT-qPCR 

WHO VOC PANGO lineage Alpha Beta Gamma Delta Omicron Not a VOC All 

Alpha 
All Alpha 43 - - - - - 43 

B.1.1.7 37 - - - - - 37 
Q.3 6 - - - - - 6 

Beta 
Beta - 2 - - - - 2 

B.1.351 - 2 - - - - 2 

Gamma 

All Gamma - - 20 - - - 20 
P.1 - - 13 - - - 13 
P.1.10 - - 5 - - - 5 
P.1.17 - - 2 - - - 2 

Delta 

All Delta - - - 378 - - 378 
B.1.617.2 - - - 29 - - 29 
AY.1 - - - 20 - - 20 
AY.2 - - - 5 - - 5 
AY.3 - - - 5 - - 5 
AY.4 - - - 1 - - 1 
AY.13 - - - 32 - - 32 
AY.14 - - - 59 - - 59 
AY.19 - - - 1 - - 1 
AY.20 - - - 5 - - 5 
AY.23 - - - 1 - - 1 
AY.25 - - - 7 - - 7 
AY.25.1 - - - 25 - - 25 
AY.26 - - - 15 - - 15 
AY.35 - - - 2 - - 2 
AY.43 - - - 2 - - 2 
AY.44 - - - 77 - - 77 
AY.46.2 - - - 1 - - 1 
AY.47 - - - 8 - - 8 
AY.48 - - - 1 - - 1 
AY.52 - - - 1 - - 1 
AY.54 - - - 3 - - 3 
AY.59 - - - 1 - - 1 
AY.62 - - - 1 - - 1 
AY.67 - - - 3 - - 3 
AY.74 - - - 1 - - 1 
AY.75 - - - 10 - - 10 
AY.98.1 - - - 1 - - 1 
AY.100 - - - 3 - - 3 
AY.103 - - - 26 - - 26 
AY.110 - - - 9 - - 9 
AY.114 - - - 1 - - 1 
AY.116.1 - - - 2 - - 2 
AY.118 - - - 5 - - 5 
AY.119 - - - 4 - - 4 
AY.120.1 - - - 1 - - 1 
AY.121 - - - 3 - - 3 
AY.122 - - - 5 - - 5 
AY.126 - - - 2 - - 2 

Omicron 
All Omicron - - - - 230 - 230 

BA.1 - - - - 123 - 123 
BA.1.1 - - - - 107 - 107 

Not a VOC All Non- VOC - 1 4 - - 54 59 
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 A.2.5 - - - - - 6 6 
B.1 - - - - - 3 3 
B.1.1.318 - - - - - 1 1 
B.1.1.519 - - - - - 1 1 
B.1.311 - - - - - 1 1 
B.1.427 - - - - - 3 3 
B.1.429 - - - - - 8 8 
B.1.526 - - - - - 10 10 
B.1.621

a - 1 2 - - - 3 
BB.2

a 
- - 2 - - - 2 

B.1.627 - - - - - 1 1 
B.1.637 - - - - - 11 11 
XB - - - - - 9 9 

All All Variants 43 3 24 378 230 54 732 

WGS, whole-genome sequencing; RT-qPCR, reverse transcription quantitative polymerase chain 
reaction; WHO, World Health Organization; VOC, variant of concern 
a
 Variant of interest Mu with E484K and N501Y mutations, and a subset with K417N, which overlaps with 

VOCs Beta and Gamma 

 477 
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Mutation is predicted to be detected & is empirically detected in this variant

Spike Protein Amino Acid Position

WHO VOC 69-70 K417 L452 T478 E484 N501

Alpha deletion K L T E Y

Beta* WT N L T K Y

Gamma* WT T L T K Y

Delta WT K R K E N

Omicron deletion N L K A Y

Mutation is predicted to be not detected & is empirically not detected in this variant

Mutation is predicted to be not detected but can be empirically detected in this variant
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