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Abstract  

Amyotrophic lateral sclerosis (ALS) is a multisystem disorder. This view is widely supported 

by clinical, molecular and neuroimaging evidence. As a consequence, predicting clinical 

features requires a comprehensive description of large-scale brain activity. Flexible dynamics 

is key to support complex adaptive responses. In health, brain activity reconfigures over time, 

involving different brain areas. Brain pathologies can induce more stereotyped dynamics, 

which, in turn, are linked to clinical impairment. Hence, based on recent evidence that brain 

functional networks become more connected as ALS progresses, we hypothesized that loss of 

flexible dynamics in ALS would predict their clinical condition. 

To test this hypothesis, we quantified flexibility utilizing the “functional repertoire” (i.e. the 

number of unique patterns) expressed during the magnetoencephalography (MEG) recording, 

based on source-reconstructed signals. Specifically, 42 ALS patients and 42 healthy controls 

underwent MEG and MRI recordings. The activity of the brain areas was reconstructed in the 

classical frequency bands, and the functional repertoire was estimated to quantify spatio-

temporal fluctuations of brain activity. In order to verify if the functional repertoire predicted 

disease severity, we built a multilinear model and validated it using a k-fold cross validation 

scheme. 
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The comparison between the two groups revealed that ALS patients showed more stereotyped 

brain dynamics (P < 0.05), with reduced size of the functional repertoire. The relationship 

between the size of the functional repertoire and the clinical scores in the ALS group was 

investigated using Spearman’s coefficient, showing significant correlations in both the delta 

and the theta frequency bands. In order to prove the robustness of our results, the k-fold cross 

validation model was used. We found that the functional repertoire significantly predicted 

both clinical staging (P < 0.001 and P < 0.01, in delta and theta bands, respectively) and 

impairment (P < 0.001, in both delta and theta bands). 

In conclusion, our work shows that: 1) ALS pathology reduces the flexibility of brain 

dynamics; 2) sub-cortical regions play a key role in determining brain dynamics; 3) reduced 

brain flexibility predicts the stage of the disease as well as the severity of the symptoms. 

Based on these findings, our approach provides a non-invasive tool to quantify alterations in 

brain dynamics in ALS (and, possibly, other neurodegenerative diseases), thus opening new 

diagnostic opportunities as well as a framework to test disease-modifying interventions.  
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Introduction  

Amyotrophic Lateral Sclerosis (ALS) is caused by a combination of pathogenic processes, 

not limited to motor neurons, but rather involving the whole brain1–3. Neuroimaging studies 

confirm that ALS is a multisystem disorder characterized by alterations in motor and extra-

motor brain regions4–7. Accordingly, despite the main symptoms being associated to motor 

dysfunction, up to 50% of ALS patients develop cognitive and/or behavioral impairment, and 
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about 13% develop the behavioral variant of Frontotemporal Dementia (bvFTD)1,3,8–10. A 

strong pathophysiological link between these two pathologies is confirmed by the presence of 

a hexanucleotide repeat mutation in the C9orf72 gene11–13 and by TAR-DNA binding protein-

43 (TDP-43) inclusions observed in both ALS and FTD10,14. The abnormal accumulation of 

TDP-43 in neurons and glial cells of multiple brain regions has been identified as one of the 

major culprits in both ALS and FTD with ubiquitinated inclusions13,15,16.  

Accounting for symptoms induced by widespread neurodegeneration requires a precise 

description of the fine-tuned, large-scale interactions among brain regions17. In fact, the 

large-scale brain organization has been shown to undergo extensive changes in ALS18. In 

particular, the progression of the disease shifts the (time-averaged) functional brain networks 

toward hyper-connectedness19. 

The temporal organization of the interactions among regions is rich and contains both 

oscillatory and bursty (also referred to as “scale-free”, 1/f activity, fast transients or neuronal 

avalanches) components20. Such bursty activations account for most of the (time-averaged) 

functional connectivity21,22. Furthermore, rapid peaks of activations have been linked to 

behavioral outcomes, underlying their physiological significance23. Hence, time-averaged 

functional connectivity might not be enough to account for complex symptoms, and the 

specific, time-resolved patterns of activations might instead be relevant. In fact, complex 

brain functions require both reliable communication among brain regions as well as the 

prompt ability to reconfigure their interactions24,25. From a physical perspective, it was 

posited that the brain operates in a near-critical regime, which is at the edge of a phase 

transition and optimizes computational functions26. This fact would account for many 

statistical properties that are observed in real data, and large-scale bursts of activations are 

interpreted as “neuronal avalanches”, which occur at multiple spatial and temporal scales27. 

Neuronal avalanches are tightly regulated and their spatial spreading pattern is constrained by 
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the structural connectome28. In a healthy brain, neuronal avalanches constantly reconfigure 

over time, and recruit different groups of regions, resulting in the brain exploring a large 

number of patterns. The number of patterns, or size of the functional repertoire, provides a 

measure of brain flexibility, and is linked to healthy brain functioning. For example, a 

reduction of the functional repertoire relates to clinical impairment in Parkinson’s disease29.  

Hence, given the hyper-connected static functional topology observed in ALS19, we 

hypothesized that brain dynamics would be more stereotyped in ALS patients as compared to 

healthy controls. Furthermore, if complex brain functions require flexibility, and brain 

impairments derived from ALS could impair flexibility, a restriction of the functional 

repertoire should indicate functional impairment.  

To estimate flexibility, we used source-reconstructed magnetoencephalographic (MEG) data, 

which have a time resolution of milliseconds. We filtered the signal in the classical frequency 

bands, and defined a neuronal avalanche as an event that begins when at least one brain 

region deviates from its baseline activity, and ends when all regions restore their typical level 

of activity (Fig. 1). Given a neuronal avalanche, we defined its corresponding pattern as the 

set of all the brain areas that were recruited. Finally, we defined the functional repertoire as 

the set of the unique patterns that happened over time (i.e. the part of the state-space that has 

been visited), and used its size as a proxy for the flexibility of the brain dynamics. We further 

hypothesized that the restriction of the functional repertoire would indicate worse clinical 

conditions. To test this claim, we built a model to predict the disease severity starting from 

the functional repertoire of ALS patients. 
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Materials and methods  

Cohort description  

Forty-two ALS patients (32 males, 10 females; mean age ± SD, 64.81 ± 12.83) were recruited 

from the ALS Center of the First Division of Neurology of the University of Campania 

“Luigi Vanvitelli” (Naples, Italy). Patients were right-handed and native Italian speakers 

diagnosed with ALS according to the revised El-Escorial criteria of ALS30. None of the 

patients showed any mutation in the screened genes SOD1, TARDBP, FUS/TLS, and 

C9ORF72. Forty-two age-matched healthy controls (28 males, 14 females; mean age ± SD, 

63.10 ± 10.46) were also included in the study.  

For clinical assessment, we used the total Amyotrophic Lateral Sclerosis Functional Rating 

Scale-Revised (ALSFRS-R)31. To quantify disease staging we used the ALS clinical staging 

systems. Hence, patients were also classified according to both the King's32 and the Milano-

Torino Staging (MiToS)33 disease staging systems which are based on the appearance of 

sequential clinical milestones during ALS.  

More clinical details and descriptive information about the cohort are reported in Table 1.  

The following inclusion criteria were used: (1) no use of drugs that could interfere with MEG 

signals; (2) no other major systemic, psychiatric or neurological diseases; and (3) no focal or 

diffuse brain damage at routine MRI. The study protocol was approved by the Local Ethics 

Committee (University of Campania “Luigi Vanvitelli”) with protocol number 591/2018, and 

all participants provided written informed consent in accordance with the Declaration of 

Helsinki. 
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Brain network analysis 

MRI acquisition 

As previously described34, MRI images of 35 patients and 31 healthy controls were acquired 

on a 3T scanner equipped with an 8-channel parallel head coil (General Electric Healthcare, 

Milwaukee, WI). MR scans were acquired after the MEG recording or at least a month 

before. In particular, three dimensional T1-weighted images (Gradient-echo sequence 

Inversion Recovery prepared Fast Spoiled Gradient Recalled-echo, time repetition = 6988 

ms, TI = 1100 ms, TE = 3.9 ms, flip angle = 10, voxel size = 1 x 1 x 1.2mm3) were acquired. 

The remaining participants (7 patients and 11 controls) did not complete the MRI because of 

the difficulty in lying down or because they refused to perform the MRI scan. A standard 

MRI template was used in this case. 

MEG acquisition 

The MEG system was developed at the Institute of Applied Sciences and Intelligent Systems 

“E. Caianiello” of the National Research Council, Pozzuoli, Naples35. MEG data were 

acquired with a 163-magnetometers system placed in a magnetically shielded room (AtB 

Biomag UG, Ulm, Germany) to reduce background noise. Data acquisition, pre-processing, 

and source reconstruction were as previously described36. 

Briefly, before each acquisition, four reference positions (nasion, right, and left preauricular 

and apex) were digitalized on the subject’s head using Fastrak (Polhemus®). 

Electrocardiographic and electrooculographic signals were co-recorded37. 

The brain activity of each subject was recorded in two segments, each 3.5 minutes long, 

during resting state with eyes closed. The instructions were delivered immediately before 

each recording via intercom. Data were acquired with a sampling frequency of 1024 Hz, and 

a 4th-order Butterworth IIR band-pass filter was then applied to remove components below 
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0.5 and above 48.0 Hz38. The filter was implemented offline using MatLab scripts within the 

Fieldtrip toolbox 20145639.   

Data pre-processing 

At this stage, the principal component analysis (PCA) was used to orthogonalize the sensors 

over the base of the reference sensor, as to remove environmental noise. Then, after visual 

selection of the data from an experienced operator, supervised independent component 

analysis (ICA) was used to remove physiological artifacts such as electrocardiogram and eye 

blinks (if present). 

Source reconstruction 

Source reconstruction was performed using a beamforming procedure implemented in the 

Fieldtrip toolbox39, similarly to Sorrentino and colleagues19. Firstly, the fiducial points of 

each participant were used to co-register the MEG data to the native subject-specific MRI. 

Subsequently, using the brain volume conduction model proposed by Nolte40, a Linearly 

Constrained Minimum Variance (LCMV) beamformer41 was used to reconstruct time series 

related to the centroids of 116 regions of interest (ROIs), derived from the Automated 

Anatomical Labeling (AAL) atlas42,43. Both the atlas and the MRI were aligned to the head 

coordinates. For each source, we projected the time series along the dipole direction that 

explains the most variance by means of singular value decomposition. We then considered 

the first 90 ROIs for further analysis, excluding the cerebellum given the low reliability of the 

reconstructed signal in this region44. The source-reconstructed signals were filtered in the 

classical frequency bands: delta (0.5 – 4.0 Hz), theta (4.0 - 8.0 Hz), alpha (8.0 - 13.0 Hz), 

beta (13.0 - 30.0 Hz) and gamma (30.0 - 48.0 Hz). 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2022. ; https://doi.org/10.1101/2022.02.07.22270581doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.07.22270581
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

Analysis of brain dynamics 

Neuronal avalanches and branching parameter 

To quantify spatio-temporal fluctuations of brain activity, we first estimated neuronal 

avalanches. As previously described45,46, an avalanche is defined as an event starting when an 

unexpected fluctuation of regional activity is present, and ending when all regions are 

inactive and back to normal activity. The number of events in all ROIs in an avalanche 

corresponds to its size. Note that the position of the brain regions in space are not considered, 

therefore two co-activated areas (in time) may even be located in different hemispheres.  

Each of the 90 source-reconstructed signals were z-transformed. Subsequently, each time 

series was thresholded according to a cut-off of 3 standard deviations (i.e., z > |3|)29. To 

confirm that the results are not dependent upon the choice of a given threshold, we repeated 

the analyses setting the threshold to z > |2.5| and z > |3.5|.  

To select a suitable bin length, we computed the branching ratio σ47,48 as follows: for each 

subject, for each time bin size, and for each avalanche, the geometrically averaged ratio of the 

number of events (activations) between the subsequent time bin and that in the current time 

bin was calculated as 
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where σi is the branching parameter of the i-th avalanche in the dataset, Nbin is the total 

amount of bins in the i-th avalanche, nevents (j) is the total number of events active in the j-th 

bin, and Naval is the total number of avalanches in each participant’s recording. 
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In branching processes, a branching ratio of σ = 1 indicates critical processes with activity 

that is highly variable and nearly sustained, σ < 1 indicates subcritical processes in which the 

activity quickly dies out, and σ > 1 indicates supercritical processes in which the activity 

increases as runaway excitation. The bin length equal to three samples yielded a critical 

process with σ = 1 hinting at the avalanches as occurring in the context of a dynamical regime 

near a phase transition. This means that each bin is obtained from three time-points of the 

binarized time-series. In order to confirm the robustness of our results, we investigated 

different time bins, ranging from 1 to 5. To equally compare the dynamics of brain activity 

among the subjects, we took into consideration the same duration for each participant time 

series (122.79 seconds). Segments of equal duration were randomly selected from the whole 

recording. For each avalanche, an avalanche pattern was defined as the set of all areas that 

were above threshold at some point during the avalanche. 

Functional repertoire 

For each participant we estimated the functional repertoire, defined as the number of unique 

avalanche patterns expressed during the recording29. Unique indicates that each avalanche 

pattern only counts once towards the size of the functional repertoire (i.e., it does not matter 

if a given avalanche pattern appears only once or multiple times, as only the number of 

different patterns contributes to the functional repertoire). A representation of avalanche 

patterns and functional repertoire is shown in Fig. 1. 

Switching between states 

A switch represents the exceeding of the threshold level, in either direction, and therefore 

occurs when an active region becomes inactive, and vice versa, between two consecutive 

time bins. The switch rate (number of switches over duration), averaged over areas, was 

computed for each participant. 
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Regional influence on avalanche patterns 

At this stage, we split the total functional repertoire into two groups: patterns that occurred in 

both the clinical and control participants (“shared repertoire”), and patterns that were unique 

to either group (“group-specific repertoire”). Then, using the Kolmogorov-Smirnov test, we 

compared the distributions of brain regions occurrences between shared and group-specific 

repertoires, and performed permutation testing to identify which brain regions occurred 

significantly more in group-specific repertoire than in shared repertoire. We then tested if 

these occurrences were higher in the healthy or the patient group. 

Multilinear model analysis 

We then moved on to test the hypothesis that efficient brain dynamics is related to the correct 

functioning of the brain and, hence, the restriction of the functional repertoire related to 

clinical impairment. To test this hypothesis, we built a multilinear model to predict clinical 

measures and the stage of the disease based on demographics, clinical and the efficiency of 

brain dynamics (as measured by the size of the functional repertoire)49. Specifically, we 

considered the ALSFRS-R and the stage of the disease (King’s and MiToS clinical staging 

systems) as dependent variables, while age, education level, gender, disease duration and size 

of the functional repertoire were considered as predictors. Multicollinearity was assessed 

through variance inflation factor (VIF)50,51. In order to strengthen the reliability of our model, 

we performed the k-fold cross-validation, with k = 552. Specifically, k iterations were 

performed to train our model and at each iteration the kth subgroup was used as a test set. 

The same design was also repeated using the leave-one-out cross validation (LOOCV). 

Expressly, we built n multilinear model (where n is the size of the sample included in the 

model), each time excluding a different subject from the model, and verifying the ability of 

the model to predict the clinical value of the excluded subject. 
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Statistical analysis 

To compare age and educational level between ALS patients and healthy controls we 

performed a T-test, while Chi-square was used for gender comparison. Permutation testing or 

Kolmogorov-Smirnov test was performed to compare patients and controls, as appropriate. 

For permutation testing, the data were permuted 10,000 times, and at each iteration the 

absolute value of the difference between the two groups was observed, building a null 

distribution of absolute differences. Finally, the empirical observed difference was rank-

ordered against this distribution, yielding a significance value. The relationship between the 

size of the functional repertoire and clinical scores was investigated in the ALS group using 

Spearman’s correlation coefficient.  

Results were corrected by False Discovery Rate (FDR), for both parameters and frequency 

bands, and the significance level was set at P-value < 0.05. The reported significances refer to 

the corrected ones as described. All statistical analyses were performed using custom scripts 

written in MatLab 2019a. 

Data availability  

The code will be made available on GitHub upon acceptance. The data cannot be made 

available given its clinical nature. The data can be made available upon request to the first 

authors conditional to acceptance by the Ethical Committee. 

 

Results 

Functional repertoire, avalanche patterns and local dynamics 

We used source-reconstructed resting-state MEG data acquired from a cohort of 42 ALS 

patients and 42 age-matched healthy controls in order to quantify the functional repertoire, 
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which is the total number of unique avalanche patterns occurred in each individual. A 

comparison between the two groups revealed that ALS patients expressed a restricted 

functional repertoire, with a lower number of visited patterns. More specifically, we observed 

these results in both the delta (P = 0.046; Fig. 2A) and the theta (P = 0.046; Fig. 2B) 

frequency bands. 

In order to prove the robustness of our results to specific choices of the avalanche threshold 

and bin length, we tested these variables across a moderate range of values and repeated the 

analyses. Specifically, we first used different binnings, ranging from 1 to 5. The results 

remained unchanged, with ALS patients displaying a restricted functional repertoire for all 

the binnings explored (for binning = 2, P = 0.009 (delta band) and P = 0.010 (theta band); for 

binning = 3, P = 0.010 (delta) and P = 0.012 (theta); for binning = 4, P = 0.010 (delta) and P 

= 0.015 (theta); for binning = 5, P = 0.011 (delta) and P = 0.019 (theta); see Supplementary 

Fig. 1). Furthermore, the avalanche threshold was modified, ranging from 2.5 to 3.5. For both 

cases the differences between the groups were confirmed (for z = 2.5, P = 0.028 in delta 

frequency band and P = 0.030 in theta frequency band, while for z = 3.5, P = 0.005 and P = 

0.007 in delta and theta bands, respectively; see Supplementary Fig. 2). 

We also evaluated how many times each active region became inactive, and vice versa 

(number of switches), finding no significant differences between the two groups (data not 

shown). These results confirm that brain dynamics is qualitatively altered in ALS patients, as 

compared to controls. In fact, the same number of switches means that the rate at which each 

region changes its status is similar in the two groups. Nonetheless, patients only visit a 

restricted number of patterns as compared to controls. Hence, the restriction of the functional 

repertoire is not due to different activation rates, but to a reduced number of combinations 

that the active regions produce in time.  
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Subsequently, we investigated the influence of specific regions on avalanche patterns. Firstly, 

we compared the distributions of brain regions occurrences between shared and group-

specific patterns. The Kolmogorov-Smirnov test confirmed that the two distributions were 

significantly different (P < 0.001), meaning that there was an uneven involvement of brain 

regions in the avalanches of the two groups. Hence, we conducted a post-hoc analysis 

through a permutation test to identify which brain areas occurred more often in the group-

specific patterns. The analysis highlighted several brain regions occurring significantly more 

in the group-specific repertoire than in shared repertoire (Fig. 3). In particular, in the delta 

frequency band, the right insula (P = 0.011), the right putamen (P = 0.023) and the pallidum 

bilaterally (P = 0.034 and P = 0.049, right and left, respectively) were more often involved in 

avalanches in the ALS group than in the controls (Fig. 3A). Similarly, in the theta band, the 

right Heschl’s gyrus (P = 0.025), the right putamen (P = 0.031), the right pallidum (P = 

0.011) and the right thalamus (P = 0.045) occurred mainly in the ALS-specific repertoire 

(Fig. 3B). 

Multilinear model analysis 

Subsequently, to understand the clinical significance of the restricted functional repertoire 

observed in ALS patients, we correlated the size of the functional repertoire to clinical 

measures such as disease duration, the ALSFRS-R, and both the King’s and the MiToS 

clinical staging systems. 

We observed significant correlations between the number of avalanche patterns and clinical 

features in both the delta and the theta frequency bands. Particularly, in the delta band the 

number of distinct patterns correlates positively with the ALSFRS-R (R = 0.37, P = 0.019; 

see Fig. 4A), and negatively with both the King’s (R = -0.51, P = 0.002; see Fig. 4B) and the 

MiToS (R = -0.41, P = 0.015; see Fig. 4C) disease staging systems. These results can also be 
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observed in the theta frequency band, where the number of avalanche patterns correlates 

positively with the ALSFRS-R (R = 0.40, P = 0.015; see Fig. 5A) and negatively with the 

King’s (R = -0.53, P = 0.002; see Fig. 5B) and the MiToS (R = -0.47, P = 0.005; see Fig. 5C) 

staging systems.  

Then, we used a multilinear model analysis with k-fold cross-validation to evaluate if 

demographics, clinical and brain dynamics features could predict the ALSFRS-R and the 

stage of the disease. We found that the size of the functional repertoire significantly improves 

the predictive capacity of the model in both the delta and the theta frequency bands (Fig. 6 

and Fig. 7). 

In the delta band the model provides significant predictions of the ALSFRS-R (Fig. 6A, R2 = 

0.45), and both the King’s (Fig. 6B, R2 = 0.52) and the MiToS (Fig. 6C, R2 = 0.49) clinical 

staging systems. Similarly, in the theta band, the ALSFRS-R (Fig. 7A, R2 = 0.43), and both 

the King’s (Fig. 7B, R2 = 0.48) and the MiToS (Fig. 7C, R2 = 0.45) staging systems are 

predicted. The comparison between actual and predicted values and the residuals distribution 

obtained through the k-fold validation method52 are shown in the central and the right panel 

of each row of Fig. 6 and Fig. 7, respectively. No significant contribution of education level 

and gender was observed.  

We also validated our model using a LOOCV technique. Results were confirmed in both the 

delta (Supplementary Fig. 3) and the theta frequency bands (Supplementary Fig. 4). 

 

Discussion 

In this work, we set out to predict clinical impairment in ALS in terms of efficient large-scale 

brain dynamics. Our results showed that ALS patients have a restricted functional repertoire 

as compared to healthy controls. This was demonstrated by the lower number of distinct (i.e., 
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unique) avalanche patterns. The size of the functional repertoire correlates directly with the 

ALSFRS-R and negatively with both the King’s and the MiToS clinical staging systems.  

It has been proposed that the healthy brain operates in a regime that maximizes flexibility of 

activations which, in turn, would underpin adaptive behaviour. With this in mind, we applied 

a recently developed framework to quantify the flexibility of fast brain dynamics29. Previous 

work showed that brain activity displays hyper-connected average topology of the functional 

brain networks in ALS19,34. The dynamic properties that lead to such average topological 

changes are not well understood. A working hypothesis might be that the brain in ALS is 

operating in a sub-optimal dynamical regime, resulting in more stereotyped activity. We 

borrow from statistical mechanics, a solid branch of physics, the concept of neuronal 

avalanches: these are fast, aperiodic bursts of activations that spread across the whole-brain28. 

If the brain is operating in a regime that allows flexible activity, neuronal avalanches 

efficiently reconfigure themselves over time46. All the unique patterns that have occurred (i.e. 

the states that have been visited by the brain) constitute the functional repertoire, and its size 

is used as a proxy for efficient fast brain dynamics29. 

To sample the functional repertoire with sufficient spatio-temporal resolution, we used 

source-reconstructed resting-state MEG data acquired from a cohort of ALS patients and 

matched healthy controls. 

We focused on the brain flexibility because it is now known that efficient reconfigurations of 

brain activated areas are linked to healthy brain functioning53. Therefore, the restriction in the 

number of avalanche patterns observed in ALS patients might reflect the effect of 

pathophysiological changes on the large-scale brain dynamics, as previously observed in 

other neurodegenerative diseases29,54. 

Intriguingly, our results were specific to the delta and the theta frequency bands. However, 

alterations in regional power or static functional connectivity have been described in all 
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frequency bands55–58. Ours is the first M/EEG study directly addressing the dynamic, 

aperiodic, scale-free activity in ALS. Hence, on the one hand, comparing our results with 

previous results, that were based on power-spectra or static connectivity, is not trivial. On the 

other hand, preliminary evidence from fMRI shows altered low-frequency brain dynamics in 

ALS59, which corroborates our results (given the comparable time-scales). However, given 

the different technique and type of analysis, comparing the results should be done cautiously. 

More dynamical M/EEG studies are warranted to confirm that the dynamical alterations in 

ALS are more prominent in slow time-scales. 

In order to test whether some brain regions were specifically important in determining 

pathological patterns of activity, we analyzed shared and group-specific avalanche patterns. 

We classified avalanche patterns either as ‘shared’, if they occurred in both groups, or as 

‘group-specific’, if they occurred in either group. Our results highlighted several brain 

regions being recruited significantly more often in ALS-specific neuronal patterns. In 

particular, basal ganglia were more often involved in avalanches in the ALS group than in the 

healthy controls, in both the delta and the theta frequency bands. This finding may support 

the key role of sub-cortical regions in recruiting cortical areas and supporting coherent 

activity across the brain60. The evidence also corroborates the wide-spread involvement of the 

brain in ALS61. 

In fact, there is converging evidence showing marked atrophy in the hippocampus and in the 

basal ganglia in ALS. In particular, the thalamus, the putamen, the pallidum, the caudate and 

the nucleus accumbens show atrophy in ALS. Intriguingly, these regions are directly 

connected to cortical areas typically affected in ALS62–64. Furthermore, these sub-cortical 

structural modifications are closely associated with changes in cognitive and behavioral 

functioning in ALS63,65,66.  
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Subsequently, we reasoned that, if the functional repertoire is capturing a pathophysiological 

process, then it should be related to the stage of the disease and, in turn, allow its prediction. 

We found, as said, a positive correlation with the ALSFRS-R and a negative correlation with 

both the King’s and the MiToS clinical staging systems. Our findings might be compatible 

with the hypothesis that the neuropathological mechanisms in ALS shift the operational 

regime of the brain to a (presumably) sub-optimal state that no longer allows sufficient 

flexibility to support correct behavior, thereby relating to disability (as measured by the 

ALSFRS-R). 

Consistent with our work, other time-resolved approaches to investigate functional 

connectivity have been used to link brain dynamics to disease severity. In particular, reduced 

temporal variability in network dynamics was found in ALS patients as compared to healthy 

controls. These changes significantly correlated with disease severity, in accordance with our 

results67. 

The fact that the characterization of brain dynamics yields clinically relevant information 

regardless of the specific technique bears promise on the application of this framework to 

measure, non-invasively, pathophysiological processes in patients. 

In this line of thinking, we investigated if brain dynamics could predict the ALSFRS-R and 

the stage of disease using a multilinear model analysis. Our results showed that the size of the 

functional repertoire is a significant predictor of both clinical staging and impairment, even 

after accounting for age, education, gender and disease duration. The ability of the functional 

repertoire to predict clinical disability suggests that brain flexibility is affected by the 

pathophysiological mechanisms and, consequently, could be utilized to measure them non-

invasively. 
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Our work lays the foundation to study the effects that structural neurodegeneration and brain 

atrophy have on the spatio-temporal unfolding of the brain dynamics and, in turn, on 

behavioral outcomes. 

 

 

Conclusions 

Our work shows that: 1) pathophysiological changes in ALS are reflected in reduced 

flexibility and, possibly, less effective communication; 2) sub-cortical regions contribute to 

brain dynamics and are affected by the pathophysiological processes of ALS. However, we 

found these regions from a post-hoc analysis that was not corrected for multiple comparison. 

Hence, this finding should be regarded as merely explorative; 3) the reduction of flexibility in 

ALS predicts disease stage as well as clinical impairment.  

Based on these findings, we show that the framework of “neuronal avalanches” constitutes a 

straightforward, yet mathematically grounded, approach to non-invasively measure 

alterations in the brain dynamics. This, in turn, has potential for diagnostic applications as 

well as to lay hypothesis for targeted therapeutic approaches. 
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Figure legends 

Figure 1. Schematic representation of neuronal avalanches and functional repertoire. 

(A) Source-reconstructed time series. Light blue rectangles represent the time lapses in which 

neuronal avalanches occur; red dots in the rectangles define activated brain regions (signal 

above the threshold) in a certain time interval (msec). (B) In the boxes, avalanche patterns of 

three different neuronal avalanches are illustrated (for simplicity, here avalanches consist of a 

maximum of 4 time frames). An avalanche is defined as an event that begins when at least 

one brain region deviates from its baseline activity (above threshold) and ends when all 

regions display a typical level of activity (below threshold). Given a neuronal avalanche, its 

corresponding pattern is the set of all the brain areas that were recruited at any time. The 
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brains-plots for each time frame of an avalanche show the areas above (yellow) and below 

(blue) threshold. Each matrix represents an avalanche pattern: dark blue squares indicate the 

brain regions (ROIs) activated at a certain time frame, while the light blue ones are all the 

regions that have been activated until that moment. (C) In the green boxes, for each 

avalanche above, the brain-plot and the set of unique avalanche patterns are illustrated. 

Unique means that each avalanche pattern only counts once. The number of unique avalanche 

patterns defines the size of the functional repertoire and is used as a proxy for the flexibility 

of the brain dynamics. 

 

Figure 2. Comparison of the number of unique avalanche patterns. Box plots illustrating 

differences in the size of the functional repertoire in healthy controls (HC) and ALS patients 

(ALS), in delta (A) and theta (B) frequency bands. The central mark in the box indicates the 

median, the edges of the box the 25th and 75th percentiles and the whiskers extend to the 

10th and 90th percentiles. The outliers are plotted individually using dots. Significance P-

value: *P < 0.05. The figure was made using MatLab 2019a. 

 

Figure 3. Mapping of brain regions occurring significantly more in the ALS-specific 

unique avalanche patterns. In particular, in the delta frequency band (A), the right insula (P 

= 0.011), the right putamen (P = 0.023) and the pallidum bilaterally (P = 0.034 and P = 

0.049, right and left, respectively) are more often involved in avalanches in the ALS group 

than in the controls. Similarly, in the theta band (B), the right Heschl’s gyrus (P = 0.025), the 

right putamen (P = 0.031), the right pallidum (P = 0.011) and the right thalamus (P = 0.044) 

occur mainly in the ALS-specific repertoire. Significance P-value: P < 0.05. The image was 

made using MatLab 2019a, including BraiNetViewer v. 1.62.  
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Figure 4. The relationship between brain dynamics and clinical features in the ALS 

group in the delta frequency band. (A) Positive correlation between the number of unique 

avalanche patterns and the ALSFRS-R (R = 0.37, P = 0.019); (B) negative correlation 

between the number of patterns and the King’s clinical staging system (R = -0.51, P = 0.002); 

(C) negative correlation between the size of the functional repertoire and the MiToS staging 

system (R = -0.41, P = 0.015). Spearman’s correlation coefficient was used and results were 

corrected by False Discovery Rate (FDR) correction. Significance P-values: *P < 0.05, **P < 

0.01. The figure was made using MatLab 2019a. 

 

Figure 5. The relationship between brain dynamics and clinical features in the ALS 

group in the theta frequency band. (A) Positive correlation between the number of unique 

avalanche patterns and the ALSFRS-R (R = 0.40, P = 0.015); (B) negative correlation 

between the number of patterns and the King’s clinical staging system (R = -0.53, P = 0.002); 

(C) negative correlation between the size of the functional repertoire and the MiToS staging 

system (R = -0.47, P = 0.005). Spearman’s correlation coefficient was used and results were 

corrected by False Discovery Rate (FDR) correction. Significance P-values: *P < 0.05, **P < 

0.01. The figure was made using MatLab 2019a.  

 

Figure 6. Multilinear model with k-fold cross-validation in the delta frequency band. 

Using as predictors age, education, gender, disease duration and number of patterns, the 

model predicts: (A) the ALSFRS-R (age: P = 0.036, β = -0.17; disease duration: P = 0.004, β 

= -0.06; number of patterns: P < 0.001, β = 0.11); (B) the King’s clinical staging system 

(disease duration: P < 0.001, β = 0.01; number of patterns: P < 0.001, β = -0.02); (C) the 

MiToS clinical staging system (disease duration: P < 0.001, β = 0.01; number of patterns: P < 

0.001, β = -0.01). 
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In the left panel of each row, the explained variance of the variable to be predicted as a 

function of the predictors is illustrated. Significant predictors are indicated in bold; positive 

and negative coefficients are illustrated with β+ and β-, respectively; significance P-values: 

*P < 0.05, **P < 0.01, ***P < 0.001. In the central panel of the rows, scatter plots of the 

comparison between actual and predicted values are represented. The standardized residuals 

(standardization of the difference between observed and predicted values) are shown in the 

right panel of the rows. The distribution results symmetrical with respect to the 0, with a 

standard deviation lower than 2.5. The figure was made using MatLab 2019a. 

 

Figure 7. Multilinear model with k-fold cross-validation in the theta frequency band. 

Using as predictors age, education, gender, disease duration and number of patterns, the 

model predicts: (A) the ALSFRS-R (age: P = 0.034, β = -0.18; disease duration: P = 0.007, β 

= -0.05; number of patterns: P < 0.001, β = 0.05); (B) the King’s clinical staging system 

(disease duration: P = 0.002, β = 0.01; number of patterns: P < 0.001, β = -0.01); (C) the 

MiToS clinical staging system (disease duration: P < 0.001, β = 0.01; number of patterns: P = 

0.002, β = -0.01). 

In the left panel of each row, the explained variance of the variable to be predicted as a 

function of the predictors is illustrated. Significant predictors are indicated in bold; positive 

and negative coefficients are illustrated with β+ and β-, respectively; significance P-values: 

*P < 0.05, **P < 0.01, ***P < 0.001. In the central panel of the rows, scatter plots of the 

comparison between actual and predicted values are represented. The standardized residuals 

(standardization of the difference between observed and predicted values) are shown in the 

right panel of the rows. The distribution results symmetrical with respect to the 0, with a 

standard deviation lower than 2.5. The figure was made using MatLab 2019a. 
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Table 1 Demographic and clinical features of the cohort recruited for the study. 

Parameters ALS patients (n = 42),  
mean (± SD) 

HC (n = 42),  
mean (± SD) P-values 

Demographic and clinical measures 

Age 64.81 (± 12.83) 63.10 (± 10.46) 0.50 

Male/female 32/10 28/14 0.0001*** 

Education 10.21 (± 4.61) 12.38 (± 4.21) 0.03* 

Disease duration (months) 49.21 (± 58.07)   

ALSFRS-R 36.08 (± 8.24)   
 
Significance P-values: *P < 0.05, ***P < 0.001.  
ALS = Amyotrophic Lateral Sclerosis; ALSFRS-R = Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised; HC = healthy 
controls; SD = standard deviation. 
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