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ABSTRACT  161 

Objectives: To characterize the clinical severity of COVID-19 caused by Omicron, Delta, and Alpha SARS-162 

CoV-2 variants among hospitalized adults and to compare the effectiveness of mRNA COVID-19 vaccines 163 

to prevent hospitalizations caused by each variant.  164 

Design: A case-control study of 11,690 hospitalized adults. 165 

Setting: Twenty-one hospitals across the United States. 166 

Participants: This study included 5728 cases hospitalized with COVID-19 and 5962 controls hospitalized 167 

without COVID-19. Cases were classified into SARS-CoV-2 variant groups based on viral whole genome 168 

sequencing, and if sequencing did not reveal a lineage, by the predominant circulating variant at the 169 

time of hospital admission: Alpha (March 11 to July 3, 2021), Delta (July 4 to December 25, 2021), and 170 

Omicron (December 26, 2021 to January 14, 2022). 171 

Main Outcome Measures: Vaccine effectiveness was calculated using a test-negative design for COVID-172 

19 mRNA vaccines to prevent COVID-19 hospitalizations by each variant (Alpha, Delta, Omicron). Among 173 

hospitalized patients with COVID-19, disease severity on the WHO Clinical Progression Ordinal Scale was 174 

compared among variants using proportional odds regression. 175 

Results: Vaccine effectiveness of the mRNA vaccines to prevent COVID-19-associated hospitalizations 176 

included: 85% (95% CI: 82 to 88%) for 2 vaccine doses against Alpha; 85% (95% CI: 83 to 87%) for 2 doses 177 

against Delta; 94% (95% CI: 92 to 95%) for 3 doses against Delta; 65% (95% CI: 51 to 75%) for 2 doses 178 

against Omicron; and 86% (95% CI: 77 to 91%) for 3 doses against Omicron. Among hospitalized 179 

unvaccinated COVID-19 patients, severity on the WHO Clinical Progression Scale was higher for Delta 180 

than Alpha (adjusted proportional odds ratio [aPOR] 1.28, 95% CI: 1.11 to 1.46), and lower for Omicron 181 

than Delta (aPOR 0.61, 95% CI: 0.49 to 0.77). Compared to unvaccinated cases, severity was lower for 182 
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vaccinated cases for each variant, including Alpha (aPOR 0.33, 95% CI: 0.23 to 0.49), Delta (aPOR 0.44, 183 

95% CI: 0.37 to 0.51), and Omicron (aPOR 0.61, 95% CI: 0.44 to 0.85).  184 

Conclusions: mRNA vaccines were highly effective in preventing COVID-19-associated hospitalizations 185 

from Alpha, Delta, and Omicron variants, but three vaccine doses were required to achieve protection 186 

against Omicron similar to the protection that two doses provided against Delta and Alpha. Among 187 

adults hospitalized with COVID-19, Omicron caused less severe disease than Delta, but still resulted in 188 

substantial morbidity and mortality. Vaccinated patients hospitalized with COVID-19 had significantly 189 

lower disease severity than unvaccinated patients for all the variants.   190 
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INTRODUCTION 191 

The coronavirus disease 2019 (COVID-19) pandemic has been defined by both the distribution of highly 192 

effective vaccines and the serial emergence of new severe acute respiratory syndrome coronavirus-2 193 

(SARS-CoV-2) genetic variants [1]. Variants of concern are new genetic versions of the virus with 194 

increased transmissibility, a change in virulence or disease presentation, or a decrease in effectiveness 195 

of mitigation measures, available vaccines, or therapeutics [2]. There are now five WHO designated 196 

SARS-CoV-2 variants of concern: Alpha (B.1.1.7 and descendant lineages), Beta (B.1.351), Gamma (P.1), 197 

Delta (B.1.617.2 and AY lineages), and Omicron (B.1.1.529 and BA lineages). 198 

First identified in Spring 2021, the highly contagious Delta variant rapidly replaced other SARS-199 

CoV-2 variants and achieved global dominance by Summer 2021 [3]. Early studies suggested potential 200 

for increased risk of hospitalization for Delta-infected individuals compared to prior variants [4–6]. The 201 

highly divergent Omicron variant was identified in mid-November 2021 and quickly became the 202 

dominant variant in much of Europe and North America by late-December 2021 [7]. The overall risk of 203 

hospitalization among those infected with the Omicron variant appears to be lower than those infected 204 

with the Delta variant [8]. However, hospitalizations for Omicron infection do occur and disease severity 205 

and risk for progression to critical illness remain incompletely understood for this variant. 206 

Understanding the epidemiology SARS-CoV-2 variants and the effectiveness of existing vaccines 207 

against them are essential to guide vaccination policies and development of new vaccines. Early studies 208 

suggested reduced vaccine effectiveness against infection and hospitalization for Omicron compared to 209 

earlier variants [9–11]. In most cases, estimates of vaccine effectiveness against the Omicron variant 210 

were based on cases that occurred during time periods in which the Omicron variant exceeded 50% in 211 

genomic surveillance. While efficient, these approaches have the potential for variant misclassification 212 

and inaccurate vaccine effectiveness estimates. Furthermore, little is known about the effectiveness of 213 
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vaccines for the prevention of the most severe manifestations of COVID-19, including respiratory failure 214 

and death, for patients with Omicron infection. 215 

Using observational study designs, the Influenza and Other Viruses in the Acutely Ill (IVY) 216 

Network in collaboration with the United States Centers for Disease Control and Prevention (CDC) is 217 

studying the effectiveness of COVID-19 vaccines against severe disease (Table S1) [12–15]. Here, we 218 

compare the clinical severity of COVID-19 caused by the SARS-CoV-2 Alpha, Delta and Omicron variants 219 

among hospitalized adults in the United States and the effectiveness of mRNA COVID-19 vaccines 220 

against each of these variants. 221 

 222 

METHODS 223 

Design and Setting 224 

We conducted a prospective observational study at 21 hospitals in the United States, with enrollment of 225 

adults hospitalized with laboratory-confirmed COVID-19 and concurrent controls without COVID-19. A 226 

test-negative design was utilized to assess vaccine effectiveness [16]. This program was conducted by 227 

the IVY Network, which is a group consisting of geographically dispersed academic medical centers in 228 

the United States, coordinated from Vanderbilt University Medical Center, and funded by CDC (Table 229 

S1). Participants enrolled in the IVY program with hospital admission dates between March 11, 2021, 230 

and January 14, 2022 were included in this analysis. This program was approved as a public health 231 

surveillance activity with waiver of informed consent by CDC and all participating sites.  232 

This analysis compared the Alpha, Delta, and Omicron SARS-CoV-2 variants in three ways: (1) 233 

vaccine effectiveness of the COVID-19 mRNA vaccines to prevent hospitalizations due to each variant; 234 

(2) disease severity among unvaccinated and vaccinated patients hospitalized with each variant; and (3) 235 
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vaccine effectiveness of the COVID-19 mRNA vaccines to prevent disease progression to invasive 236 

mechanical ventilation or death after hospitalization with each variant. 237 

 238 

Participants 239 

Sites prospectively screened hospitalized adults ≥18 years old for potential eligibility through daily 240 

review of hospital admission logs and electronic medical records. COVID-19 cases included those 241 

hospitalized with a clinical syndrome consistent with acute COVID-19 (≥1 of the following: fever; cough; 242 

shortness of breath; loss of taste; loss of smell; use of respiratory support for the acute illness; or new 243 

pulmonary findings on chest imaging consistent with pneumonia) and a positive molecular or antigen 244 

test for SARS-CoV-2 within 10 days of symptom onset. As described below, COVID-19 case patients were 245 

subclassified based on SARS-CoV-2 variant. Additionally, two control groups were enrolled: 1) “test-246 

negative” controls were adults hospitalized with signs or symptoms consistent with acute COVID-19 who 247 

tested negative for SARS-CoV-2; and 2) “syndrome-negative” controls were adults hospitalized without 248 

signs or symptoms consistent with acute COVID-19 and who tested negative for SARS-CoV-2 [17]. 249 

Controls were selected from lists of eligible participants hospitalized within 2 weeks of enrollment of 250 

COVID-19 cases. Sites attempted to capture all COVID-19 cases admitted to the hospital during the 251 

surveillance period and targeted a case: control ratio of approximately 1:1. Cases and controls were not 252 

individually matched. Respiratory samples from participants were tested for SARS-CoV-2 both locally in 253 

clinical laboratories and centrally at a research laboratory (see Laboratory Analysis section). Cases tested 254 

positive for SARS-CoV-2 at a local laboratory, the central laboratory, or both, while controls tested 255 

negative for SARS-CoV-2 by all testing. Additional details about eligibility criteria and enrollment 256 

practices are described in Supplementary Appendix B [13,14].  257 

 258 
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Data Collection 259 

Trained personnel collected data on demographics, medical conditions, COVID-19 vaccination, and 260 

hospital course through participant (or proxy) interviews and standardized medical record review. 261 

Details of COVID-19 vaccination, including dates and location of vaccination, vaccine product, and lot 262 

number, were collected through a systematic process that included participant (or proxy) interview and 263 

source verification by vaccination card, hospital records, state vaccine registries, and vaccine records 264 

requested from clinics and pharmacies [13,14]. 265 

 266 

Vaccination Status 267 

Vaccine doses were classified as administered if source documentation of the dose was identified or if 268 

the participant/proxy reported a vaccine dose with a complete and plausible date and location. This 269 

analysis focused on COVID-19 mRNA vaccines authorized or approved for use in the United States, 270 

including BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna). Participants were classified based on 271 

the number of mRNA vaccine doses received before illness onset: 0 doses (unvaccinated); 1 dose ≥14 272 

days before illness (partially vaccinated); 2 doses ≥14 days before illness (fully vaccinated); or 3 doses ≥7 273 

days before illness (boosted if immunocompetent, or with primary 3-dose series completed if 274 

immunocompromised). In the primary analysis, vaccine effectiveness was calculated for 2 vaccine doses 275 

for participants enrolled throughout the surveillance period and for 3 vaccine doses for participants 276 

enrolled after third doses were authorized in the United States [18,19]. In a secondary analysis, vaccine 277 

effectiveness was calculated for partial vaccination. Participants were excluded from this analysis if they 278 

received a COVID-19 vaccine other than an mRNA vaccine (e.g., the Ad26.COV2 vaccine from Janssen), 279 

more than 3 vaccine doses , or a third vaccine dose before they were authorized in the United States 280 

[18–20]. 281 
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Laboratory Analysis 282 

Upper respiratory specimens (nasal swabs or saliva) were collected from participants, frozen, and 283 

shipped to Vanderbilt University Medical Center (Nashville, Tennessee), where they underwent reverse-284 

transcription quantitative polymerase chain reaction (RT-qPCR) for detection of two SARS-CoV-2 285 

nucleocapsid gene targets (N1 and N2) [21]. Respiratory specimens positive for SARS-CoV-2 were 286 

shipped to the University of Michigan (Ann Arbor, Michigan) for viral whole-genome sequencing using 287 

the ARTIC Network protocol on an Oxford Nanopore Technologies GridION instrument [22]. SARS-CoV-2 288 

lineages were assigned using Pangolin [23]. The WHO variant assignment was as follows: Alpha (B.1.1.7), 289 

Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2 and AY lineages), Omicron (B.1.1.529 or BA lineages). 290 

 291 

COVID-19 disease severity  292 

We classified COVID-19 disease severity based on the highest severity state reached during the index 293 

COVID-19 hospital admission using a modified version of the WHO COVID-19 Clinical Progression Scale 294 

(Table S2) [13,24]. In this analysis of hospitalized patients, the scale levels included: hospitalized without 295 

supplemental oxygen (level 4), hospitalized with standard supplemental oxygen (level 5), hospitalized 296 

with high flow nasal cannula or non-invasive ventilation (level 6), hospitalized with invasive mechanical 297 

ventilation (level 7), hospitalized with mechanical ventilation and additional organ support (e.g., ECMO, 298 

vasopressors; level 8), and death (level 9). In addition to evaluating the full scale (levels 4-9) as an 299 

ordinal outcome, we also dichotomized the scale at level 7 to facilitate comparison between patients 300 

who experienced death or invasive mechanical ventilation (levels 7-9) vs those who did not experience 301 

death or invasive mechanical ventilation (levels 4-6). 302 

 303 
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Statistical Analysis 304 

COVID-19 cases were classified into Alpha, Delta, and Omicron categories using sequencing information 305 

for cases with lineages identified and by the predominant circulating variant at the time of hospital 306 

admission for those without a lineage identified. Periods of predominant circulation for Alpha, Delta and 307 

Omicron were defined based on time windows when each variant was identified in >50% of cases 308 

successfully sequenced in the study—Alpha period: March 11 – July 3, 2021; Delta period: July 4 – 309 

December 25, 2021; and Omicron period: December 26, 2021 – January 14, 2022. For analyses 310 

evaluating vaccine effectiveness to prevent hospitalization, evaluating cases and controls enrolled 311 

during the same time period was important to maintain accuracy of vaccine effectiveness estimates. For 312 

analyses evaluating vaccine effectiveness against hospitalization, cases and controls in each period 313 

(Alpha, Delta, and Omicron) were compared; cases were excluded from these analyses if they had a 314 

lineage identified by sequencing that was discordant with the period (for example, a Delta lineage 315 

identified in the Omicron period). For severity analyses, only cases were analyzed and maintaining a 316 

temporal relationship with a control group was not necessary; therefore, all cases with sequencing-317 

confirmed Alpha, Delta, or Omicron lineage were analyzed regardless of admission date; in these 318 

analyses, variant group was classified by sequencing confirmation of Alpha, Delta or Omicron lineage, 319 

and then for other cases, by period. 320 

 Vaccine effectiveness of COVID-19 mRNA vaccines (BNT162b2 or mRNA-1273) to prevent 321 

hospitalization for COVID-19 was calculated using a test-negative design, in which the odds of 322 

antecedent vaccination were compared between cases and controls. Participants in the test-negative 323 

and syndrome-negative control groups were pooled based on analyses demonstrating highly similar 324 

vaccine coverage in the two control groups and nearly identical vaccine effectiveness estimates when 325 

either control group was used individually [14]. A multivariable unconditional logistic regression model 326 

was constructed with case-control status as the dependent variable, vaccination status (vaccinated vs. 327 
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unvaccinated) as the primary independent variable and the following covariables selected a priori as 328 

potential confounders: calendar date of admission in biweekly intervals, US Department of Health and 329 

Human Services region (10 regions), age, sex, and self-reported race and Hispanic ethnicity. Post-hoc, 330 

the following variables were considered for potential inclusion as covariates but none of them changed 331 

the adjusted odds ratio (aOR) by more than 5% and were not included in the final analysis: number of 332 

comorbidities, smoking status, living in a long-term care facility before hospital admission and working in 333 

a healthcare setting. Vaccine effectiveness to prevent COVID-19 hospitalization [VE(hospitalization)] was 334 

calculated with the adjusted odds ratio (aOR) from this model as: VE(hospitalization) = (1 – aOR) × 100. 335 

Using this method, vaccine effectiveness against COVID-19 hospitalization as calculated separately for 336 

the Alpha, Delta, and Omicron. Vaccine effectiveness for two vaccine doses was calculated for each 337 

period, and for three vaccine doses for the Delta and Omicron periods. Within each period, vaccine 338 

effectiveness was also calculated for subgroups defined by: immunocompromised status [14]; age group 339 

(18-64 years; ≥65 years); burden of chronic medical conditions (0; ≥1 medical conditions); vaccine 340 

product (BNT162b2; mRNA-1273); and for two vaccine doses recipients, the time between the second 341 

vaccine dose  and symptom onset (14-150 days; >150 days). This threshold of 150 days was selected 342 

based on the recommendation for a third (booster) dose of mRNA vaccine after 5 months for 343 

immunocompetent adults [23]. Results for subgroup analyses that had >150 cases and controls were 344 

reported. 345 

COVID-19 severity by variant and by vaccination status was displayed by plotting the highest 346 

severity level on the modified WHO Clinical Progression Scale attained for each case. COVID-19 severity 347 

was compared among unvaccinated cases by variant (Alpha, Delta, Omicron) and between unvaccinated 348 

and vaccinated cases within each group. In these analyses of severity, patients vaccinated with either 2 349 

or 3 doses of an mRNA vaccine were considered fully vaccinated. These calculations were performed 350 

using a multivariable proportional odds regression model with WHO ordinal scale as the dependent 351 
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variable (levels 4-9), variant group (Alpha, Delta, Omicron) or vaccination status (unvaccinated, 352 

vaccinated) as the primary independent variable and the following covariables: age, sex, race and 353 

Hispanic ethnicity, and number of underlying medical conditions (0, 1, 2, 3, or ≥4 classes of chronic 354 

conditions). An adjusted proportional odds ratio (aPOR) >1.0 from these models indicated more severe 355 

disease for the later variant than a comparator earlier variant, for example Delta compared with Alpha, 356 

and Omicron compared with Delta. 357 

 Next, the vaccine effectiveness was calculated for mRNA vaccines to prevent disease 358 

progression to invasive mechanical ventilation or death among adults hospitalized with COVID-19. A 359 

multivariable logistic regression model was constructed with the composite of invasive mechanical 360 

ventilation or death as the dependent variable, vaccination status (vaccinated with 2 or 3 doses vs 361 

unvaccinated) as the primary independent variable and the same covariables as included in the severity 362 

proportional odds model. Vaccine effectiveness to prevent in-hospital disease progression was 363 

calculated as: VE(progression) = (1 – aOR) x 100. Using this method, vaccine effectiveness against 364 

disease progression was calculated separately for the Alpha, Delta, and Omicron groups. 365 

Results were considered statistically significant if 95% confidence intervals for odds ratios did 366 

not include the null (OR=1.0) or two-sided p-values were <0.05. Missing values were not imputed; 367 

results were presented with denominators to indicate sample size in each analysis and models included 368 

participants with complete data for all variables in the model. Statistical analyses were performed with 369 

Stata Version 16 (College Station, TX) and SAS 9.4 (Cary, NC). 370 

 371 

RESULTS 372 

Participants and SARS-CoV-2 Variants 373 
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Between March 11, 2021 and January 14, 2022, 14,128 patients were enrolled across 21 hospitals; 2,438 374 

patients were excluded from the primary analyses, most commonly for receiving >1 mRNA vaccine dose 375 

but not classifying into the two-dose or three-dose vaccine recipient categories (n=933) or for receiving 376 

a non-mRNA vaccine (n=682) (Figure S1). The population for analysis included 11,690 patients, including 377 

5,728 COVID-19 cases and 5,962 controls. 378 

  SARS-CoV-2 sequencing results were obtained for 2,599/5,728 (45%) cases in the analytical 379 

population. Among cases with sequencing completed, during the Alpha period 242/421 (57%) cases had 380 

Alpha identified by sequencing, during the Delta period 1,867/1,930 (97%) cases had Delta identified by 381 

sequencing, and during the Omicron period 190/248 (77%) cases had Omicron identified by sequencing 382 

(Figure 1; Table S3).  383 

 384 

Vaccine Effectiveness to Prevent COVID-19 Hospitalizations 385 

After excluding 146/5,728 (3%) cases from the vaccine effectiveness against hospitalization analysis who 386 

had sequence-confirmed lineage discordant from the variant-predominant period (e.g., cases with 387 

sequencing-confirmed Delta variant during the Alpha or Omicron period), 5,582 cases and 5,962 controls 388 

were included in this part of the analysis. Cases included 1,072 from the Alpha period, 3,951 from the 389 

Delta period, and 559 from the Omicron period. Compared to cases in the Alpha and Delta period, cases 390 

in the Omicron group tended to be older, have more underlying medical conditions, and more likely to 391 

have ≥1 prior hospitalization in the past year (Table 1, Table S4). Consistent with increasing vaccine 392 

coverage in the United States population over time, a greater proportion of cases were vaccinated (2 or 393 

3 doses of an mRNA vaccine) during the Omicron period (291/559, 52%) than the Alpha (119/1072, 11%) 394 

and Delta (1080/3951, 27%) periods.  395 
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Vaccine effectiveness for two doses of mRNA vaccine to prevent COVID-19 hospitalization was 396 

85% (95% CI: 82 to 88%) in the Alpha period, 85% (95% CI: 83 to 87%) in the Delta period, and 65% (95% 397 

CI: 51 to 75%) in the Omicron period (Figure 2). Vaccine effectiveness for three mRNA vaccine doses in 398 

the Omicron period was 86% (95% CI: 77 to 91%), which was similar to the effectiveness of two doses 399 

during the Alpha and Delta periods. Within the Delta period, vaccine effectiveness for two vaccine doses 400 

was lower when the second vaccine dose was >150 days before illness onset (81%; 95% CI: 78 to 84%) 401 

than 14-150 days (88%; 95% CI: 86 to 90%). Within the Delta period, vaccine effectiveness of three 402 

vaccine doses (94%; 95% CI: 92 to 95%) was higher than two doses, with high vaccine effectiveness 403 

observed after a third dose in both immunocompetent (97%; 95% CI: 95 to 98%) and 404 

immunocompromised (87%; 95% CI: 78 to 92%) patients. Within each period, vaccine effectiveness was 405 

lower for immunocompromised patients compared to immunocompetent patients and lower for the 406 

BNT162b2 vaccine than the mRNA-1273 vaccine. Vaccine effectiveness results for partial vaccination 407 

(either 1 dose of an mRNA vaccine or 2 doses with the second dose received <14 days before illness 408 

onset) are described in Supplementary Appendix C. 409 

 410 

COVID-19 Disease Severity 411 

The severity analysis included data collected through January 31, 2022. Of 5,728 case patients in the 412 

study, 5,413 (95%) had complete clinical outcomes data and were included in the severity analysis, 413 

including 1,060 in the Alpha group, 3,788 in the Delta group, and 565 in the Omicron group. Overall, 414 

including both vaccinated and unvaccinated patients, 582/5,413 (11%) COVID-19 patients died within 28 415 

days during the index hospitalization, including 81/1,060 (8%) in the Alpha group, 461/3,788 (12%) in 416 

the Delta group, and 40/565 (7%) in the Omicron group. 417 
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Among unvaccinated cases, COVID-19 severity on the WHO Clinical Progression Scale was 418 

highest for the Delta group (Delta vs Alpha aPOR 1.28, 95% CI: 1.11 to 1.46) and lowest for the Omicron 419 

group (Omicron vs Alpha aPOR 0.79, 95% CI: 0.62 to 1.01; Omicron vs Delta aPOR 0.61, 95% CI: 0.49 to 420 

0.77) (Figure 3). Among unvaccinated cases, in-hospital death occurred in 76/944 (8%) in the Alpha 421 

group, 323/2,743 (12%) in the Delta group, and 25/272 (9%) in the Omicron group (Table 2). COVID-19 422 

severity on the WHO Clinical Progression Scale was substantially lower for vaccinated cases than 423 

unvaccinated cases in each variant group, including Alpha (aPOR: 0.33; 95% CI: 0.23-0.49), Delta (aPOR 424 

0.44; 95% CI: 0.37 to 0.51), and Omicron (aPOR: 0.61; 95% CI: 0.44 to 0.85). 425 

Across all variants, vaccinated COVID-19 patients who died tended to be old and had multiple 426 

medical conditions or immunocompromising conditions. Compared with the 424 unvaccinated COVID-19 427 

patients who died, 158 vaccinated patients who died were older (median 72 vs 61 years; p<0.001), more 428 

likely to be immunocompromised (41% versus 13%; p<0.001), had more categories of chronic medical 429 

conditions (median 3 versus 2; p<0.001), and had more prescribed medications prior to hospital 430 

admission (median 10 versus 5; p<0.001). 431 

 432 

Vaccine Effectiveness to Prevent COVID-19 Disease Progression after Hospitalization  433 

Among patients hospitalized with COVID-19, vaccine effectiveness of mRNA vaccination (2 or 3 doses) to 434 

prevent progression to invasive mechanical ventilation or death was 76% (95% CI: 53 to 88%) for Alpha, 435 

44% (95% CI: 32 to 54%) for Delta, and 46% (95% CI: 12 to 67%) for Omicron. Vaccine effectiveness to 436 

prevent disease progression was observed for immunocompetent patients for all three variants, but not 437 

observed for immunocompromised patients for Delta or Omicron (Figure 4). 438 

 439 
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DISCUSSION 440 

Principal Findings 441 

The predominant circulating SARS-CoV-2 variant in the United States changed from Alpha to Delta in July 442 

2021 and then to Omicron in December 2021. Understanding the disease severity caused by each 443 

variant and the effectiveness of available vaccines against them is essential for guiding vaccination 444 

policies and directing future vaccine development. The mRNA COVID-19 vaccines that were authorized 445 

for use in the United States in 2020 (BNT162b2 and mRNA-1273) were highly effective at preventing 446 

hospitalizations for all three variants during the subsequent year. However, three doses of an mRNA 447 

vaccine were necessary to achieve similar effectiveness against Omicron in the winter of 2021-2022 as 448 

two doses achieved for Alpha and Delta variants earlier in the year. Furthermore, while COVID-19 449 

hospitalizations did occur among vaccinated patients, vaccination was associated with reduced risk of 450 

progression to invasive mechanical ventilation or death for all three variants. 451 

Among unvaccinated hospitalized adults with COVID-19, Delta variant caused the most severe 452 

disease, followed by Alpha, and then Omicron. Among hospitalized unvaccinated patients, COVID-19 453 

caused by Omicron was about 79% as severe as Alpha and 61% as severe as Delta. However, the 454 

Omicron variant did cause a substantial amount of critical illness and death, with 15% of all patients 455 

hospitalized with Omicron (vaccinated and unvaccinated) progressing to invasive mechanical ventilation 456 

and 7% dying in the hospital.  457 

 458 

Strengths and Limitations 459 

This work has several strengths. The vaccine effectiveness analyses applied a test-negative design to a 460 

large, hospitalized population of patients with symptomatic, laboratory-confirmed COVID-19 and 461 
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concurrent controls, which enabled control for healthcare seeking behavior, robust subgroup analyses, 462 

and evaluation of outcomes beyond hospital admission, including level of respiratory support and 463 

mortality. Ascertainment of vaccination status was robust, with trained personnel conducting patient 464 

interviews and searching multiple sources of vaccination records on a patient-by-patient basis. 465 

Respiratory samples collected in the study underwent centralized RT-PCR testing and viral whole 466 

genome sequencing, which enabled precise characterization of time periods dominated by different 467 

variants. 468 

The study also had limitations. First, use of hospitalized controls might lead to biased estimates 469 

if control patients had different characteristics than people in the general community; however, vaccine 470 

coverage in the control population within this study tracked closely with that in the adult population in 471 

the United States [25], which lessens this potential concern. Second, this study only evaluated 472 

hospitalized patients and thus does not inform vaccine effectiveness against mild COVID-19 or 473 

differences in disease severity among SARS-CoV-2 variants in the outpatient setting. Third, the study 474 

only evaluated mRNA vaccines and did not assess other types of COVID-19 vaccines. Fourth, the analyses 475 

of in-hospital severity did not account for potential differences in clinical management during the Alpha, 476 

Delta, and Omicron periods that may have impacted outcomes. Fifth, while the test negative design is 477 

the preferred method for evaluating vaccine effectiveness with observational data [16], it has known 478 

potential limitations, including collider bias [26,27]; the risk of collider bias was minimized in the current 479 

study by evaluating only severely ill patients [16]. Sixth, sequencing did not identify a variant for some 480 

cases, typically those with low viral loads in the respiratory sample that underwent testing. Variant 481 

classification for cases without a sequencing-confirmed variant was based on the predominant 482 

circulating variant at the time; variant misclassification was possible for these cases. 483 

 484 

Comparison with Other Studies  485 
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Earlier studies from England [5] and Scotland [4] found an increased risk of hospital admission for Delta 486 

variant compared to Alpha variant. More recent studies have suggested that persons diagnosed with 487 

Omicron variant COVID-19 are less likely than those with Delta to be hospitalized [8]. This study adds 488 

robust measurements of disease severity after hospital admission and demonstrates Delta variant 489 

caused more severe disease than Alpha and Omicron variants, driven largely by higher rates of advanced 490 

respiratory support. 491 

 Emerging vaccine effectiveness estimates globally suggest reduced effectiveness against 492 

Omicron compared with prior variants [28–30], including an estimate of 70% vaccine effectiveness for 493 

two doses of the BNT162b2 vaccine to prevent Omicron hospitalizations in South Africa in November-494 

December 2021 [9]. Using electronic health record data from sites across the United States, the VISION 495 

Network recently estimated mRNA vaccine effectiveness against Omicron hospitalizations to be to 52% 496 

for two vaccine doses with the second dose received within 180 days before illness onset, 38% for 2 497 

doses received >180 days before illness onset, and 82% for 3 vaccine doses [11]. Prior studies largely 498 

relied on estimating predominant circulating SARS-CoV-2 variants from external data. This study adds 499 

vaccine effectiveness results against severe disease using sequence data from within the study and 500 

demonstrates strong protection against Omicron for three mRNA vaccine doses in the first several 501 

months after receipt of a third dose. 502 

 503 

Policy Implications 504 

These data indicate that Omicron-variant COVID-19 is a serious disease among those who are 505 

hospitalized, and preventative measures are indicated. Vaccination with existing mRNA vaccine 506 

formulations is an effective preventative measure against Omicron, both for the prevention of 507 

hospitalization, and among those hospitalized, for the prevention of progression to critical illness and 508 
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death. COVID-19 deaths in vaccinated individuals do occur, including with the Omicron variant, mostly in 509 

the elderly, the immunocompromised, or those with multiple medical comorbidities. These findings 510 

support recent recommendations in the United States for third mRNA vaccine doses for both 511 

immunocompetent [19] and immunocompromised [18] adults as a key approach to protecting 512 

populations against the Omicron variant. 513 

The serial emergence of new SARS-CoV-2 variants, including Delta and Omicron, has challenged 514 

public health agencies to develop vaccine policies that counter the impact of waning immunity (the 515 

decline in protection of vaccine doses over time against the same variant) and viral immune evasion 516 

(new viral variants that are less susceptible to existing vaccines). Vaccine booster doses of the same 517 

vaccine formulation used in the primary vaccine series are designed to counter waning immunity.  518 

Significant viral immune evasion would require new vaccine formulations targeting new variants to 519 

maintain protection. Boosters were implemented in several countries in response to COVID-19 spikes 520 

with emergence of the Delta variant. This study suggests that these booster doses were largely effective 521 

in preventing severe disease with both Delta and the subsequent Omicron variant. As the COVID-19 522 

pandemic continues to evolve, routine vaccine effectiveness monitoring, especially against severe 523 

disease, and surveillance programs to identify viral variants will be essential to inform decisions about 524 

booster vaccine policies and vaccine strain updates. 525 

 526 

Conclusions 527 

In this large study of hospitalized adults in the United States, mRNA vaccines provided strong protection 528 

against COVID-19 hospitalization caused by the Alpha, Delta, and Omicron variants. Furthermore, 529 

vaccination reduced the risk for COVID-19 progressing to critical illness or death for each of the variants. 530 

While disease severity for patients hospitalized with COVID-19 was somewhat lower for Omicron than 531 
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the Alpha and Delta variants, patients hospitalized with Omicron-variant COVID-19 still had a substantial 532 

risk for critical illness and death. These findings suggest that vaccination against COVID-19, including a 533 

third dose of an mRNA vaccine, is critical for protecting populations against COVID-19-associated 534 

morbidity and mortality. 535 
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Table 1. Characteristics of patients included in the evaluation of vaccine effectiveness to preventing 
COVID-19 hospitalizations, including hospitalized patients without COVID-19 (controls) and hospitalized 
patients with COVID-19 (cases) during the Alpha period (March 11 - July 3, 2021), Delta period (July 4 - 
December 25, 2021), and Omicron period (December 26, 2021- January 14, 2022). (Baseline 
characteristics for cases limited to those with a sequencing-confirmed variant are shown in Table S4.) 
 
Patient Characteristics 

 

All controls  

(n=5962) 

Alpha cases 

(n=1072) 

Delta cases 

(n=3951) 

Omicron cases 

(n=559)  

Age in years, median (IQR) 63 (50-72) 56 (43-65.5) 57 (43-69) 62 (49-73) 

Female sex, No. (%) 2975 (49.9) 519 (48.4) 1803 (45.6) 264 (47.2) 
Race and ethnicity, No. (%)     
    Non-Hispanic White 3611 (60.6) 484 (45.1) 2183 (55.3) 279 (49.9) 

    Non-Hispanic Black 1240 (20.8) 285 (26.6) 820 (20.8) 127 (22.7) 
    Hispanic, any race 772 (12.9) 220 (20.5) 695 (17.6) 111 (19.9) 

    Non-Hispanic, Other 253 (4.2) 63 (5.9) 179 (4.5) 33 (5.9) 
    Unknown 86 (1.4) 20 (1.9) 74 (1.9) 9 (1.6) 
US Census region, No. (%)     

    Northeast 885 (14.8) 158 (14.7) 686 (17.4) 159 (28.4) 
    South 2371 (39.8) 395 (36.8) 1544 (39.1) 196 (35.1) 
    Midwest 1374 (23.0) 248 (23.1) 978 (24.8) 104 (18.6) 

    West 1332 (22.3) 271 (25.3) 743 (18.8) 100 (17.9) 
Resident of long-term care 
facility, No. / Total (%) 

321/5778 (5.6) 25/1039 (2.4) 120/3795 
(3.2) 

30/534 (5.6) 

≥1 prior hospitalization in past 
year, No. / Total (%) 

3031/5537 (54.7) 282/956 
(29.5) 

1015/3682 
(27.6) 

226/535 (42.2) 

Current tobacco use, No. / 
Total (%) 

1016/5302 (19.2) 103/887 
(11.6) 

366/3451 
(10.6) 

59/470 (12.6) 

Number of chronic medical 
conditions‡, median (IQR) 

2 (1-3) 1 (1-3) 1 (0-3) 2 (1-3) 

Categories of medical 
conditions‡ 

    

    Chronic cardiovascular 
disease 

4158 (69.7) 589 (54.9) 2141 (54.2) 359 (64.2) 

    Chronic pulmonary disease 1973 (33.1) 231 (21.5) 827 (20.9) 151 (27.0) 
    Diabetes mellitus 1962 (32.9) 316 (29.5) 1135 (28.7) 164 (29.3) 

    Immunocompromising 
condition* 

1458 (24.5) 172 (16.0) 659 (16.7) 138 (24.7) 

Obesity, No. / Total (%) 2391/5900 (40.5) 616/1056 
(58.3) 

2099/3909 
(53.7) 

260/556 (46.8) 

Vaccination status     
    Unvaccinated 2054 (34.5) 953 (88.9) 2871 (72.7) 268 (47.9) 

    2 doses (<150 days) 2029 (34.0) 119 (11.1) 352 (8.9) 34 (6.1) 
    2 doses (≥150 days) 1411 (23.7) 0 (0) 667 (16.9) 177 (31.7) 
    3 doses 468 (7.8) 0 (0) 61 (1.5) 80 (14.3) 

If vaccinated, vaccine product 
received, No. / Total (%) 

    

    BNT162b2 (Pfizer-BioNTech) 2269/3908 (58.1) 81/119 (68.1) 708/1080 203/291 (69.8) 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 7, 2022. ; https://doi.org/10.1101/2022.02.06.22270558doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.06.22270558


 

29 
 

(65.6) 
    mRNA-1273 (Moderna) 1615/3908 (41.3) 37/119 (31.1) 368/1080 

(34.1) 
84/291 (28.9) 

    Mixed products 24/3908 (0.6) 1/119 (0.8) 4/1080 (0.4) 4/291 (1.4) 

Days since dose 3 if 3 doses 
received, median (IQR) 

41 (23-64) --- 38 (23-65) 69.5 (41.5-97) 

 
Definitions: IQR = interquartile range; US = United States 
 
*Immunocompromising conditions were obtained using structured medical chart review and defined as 
1 or more of the following: active solid organ cancer (active cancer defined as treatment for the cancer 
or newly diagnosed cancer in the past 6 months), active hematologic cancer, HIV infection without AIDS, 
AIDS, congenital immunodeficiency syndrome, previous splenectomy, previous solid organ transplant, 
immunosuppressive medication, systemic lupus erythematosus, rheumatoid arthritis, psoriasis, 
scleroderma, or inflammatory bowel disease, including Crohn’s disease or ulcerative colitis. 
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Table 2. In-hospital clinical outcomes among adults hospitalized with COVID-19 by variant group (Alpha, Delta, Omicron).  

Outcome Alpha Group (n=1060)  Delta Group (n=3788)  Omicron Group (n=565) 

Vaccinated Unvaccinated P*  Vaccinated Unvaccinated P*  Vaccinated Unvaccinated P* 

Death, no. (%) 5/116 (4.3) 76/944 (8.1) 0.15  138/1045 

(13.2) 

323/2743 

(11.8) 

0.23  15/293 

(5.1) 

25/272 (9.2) 0.059 

Invasive mechanical 

ventilation, no. (%) 

7/116 (6.0) 201/944 

(21.3) 

<0.001  152/1045 

(14.5) 

681/2743 

(24.8) 

<0.001  35/293 

(11.9) 

49/272 (18.0) 0.043 

Composite of death or 

invasive mechanical 

ventilation, no. (%) 

10/116 

(8.6) 

218/944 

(23.1) 

<0.001  210/1045 

(20.1) 

748/2743 

(27.3) 

<0.001  42/293 

(14.3) 

54/272 (19.9) 0.08 

Admitted to intensive 

care unit, No. (%) 

24/116 

(20.7) 

353/944 

(37.4) 

<0.001  321/1045 

(30.7) 

1179/2742 

(43.0) 

<0.001  66/293 

(22.5) 

89/271 (32.8) 0.006 

Non-invasive 

ventilation, no. (%) 

15/116 

(12.9) 

167/944 

(17.7) 

0.20  151/1045 

(14.4) 

470/2743 

(17.1) 

0.046  39/293 

(13.3) 

43/272 (15.8) 0.40 

High-flow oxygen 

therapy, no. (%) 

15/116 

(12.9) 

324/944 

(34.3) 

<0.001  289/1045 

(27.7) 

1148/2743 

(41.9) 

<0.001  59/293 

(20.1) 

84/272 (30.9) 0.003 

Vasopressors, no. (%) 5/116 (4.3) 191/944 

(20.2) 

<0.001  155/1045 

(14.8) 

647/2743 

(23.6) 

<0.001  36/293 

(12.3) 

46/272 (16.9) 0.12 

New renal replacement 

therapy, no. (%) 

6/116 (5.1) 43/944 (4.6) 0.91  49/1045 

(4.7) 

159/2743 

(5.8) 

0.18  14/293 

(4.8) 

12/272 (4.4) 0.84 

Hospital length among 

survivors, median (IQR) 

5 (3-8) 5 (3-9) 0.56  5 (3-9) 6 (3-10) <0.001  5 (3-9) 6 (3-11) 0.050 

Venous 

thromboembolic event, 

No. (%) 

7/116 (6.0) 55/944 (5.8) 0.93  46/1045 

(4.4) 

250/2743 

(9.1) 

<0.001  15/293 

(5.1) 

22/272 (8.1) 0.15 

Stroke, No. (%) 0/116 (0) 18/944 (1.9) 0.13  9/1045 

(0.9) 

44/2743 (1.6) 0.08  3/293 (1.0) 4/272 (1.5) 0.63 

Myocardial infarction, 

No. (%) 

1/116 (0.9) 19/944 (2.0) 0.39  29/1045 

(2.8) 

58/2743 (2.1) 0.23  5/293 (1.7) 5/272 (1.8) 0.91 

* P-values obtained using chi-square testing, not adjusting for other factors. 
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Figure 1. Sequenced SARS-CoV-2 variants by week among patients with COVID-19 enrolled in this study and hospitalized between March 11, 

2021 and January 14, 2022 in 21 hospitals in the United States. Vertical dashed lines at July 4, 2021 and December 25, 2021 represent the start 

of the Delta period and Omicron period, respectively. This figure includes all cases enrolled in the program with a sequencing result, without 

restriction to cases included in the vaccine effectiveness analyses. SARS-CoV-2 variant lineages were identified for 3017 cases, including alpha 

(299), beta (8), delta (2209), gamma (52), omicron (286), and lineage not designated as variant of concern (163). 
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Figure 2. Vaccine effectiveness of COVID-19 mRNA vaccines to prevent COVID-19 hospitalizations by 

variant group, including Alpha, Delta, and Omicron.   

 
 

Definitions: VE = vaccine effectiveness 

 

‡ Immunocompromising conditions were obtained using structured medical chart review and defined as 

1 or more of the following: active solid organ cancer (active cancer defined as treatment for the cancer 

or newly diagnosed cancer in the past 6 months), active hematologic cancer, HIV infection without AIDS, 

AIDS, congenital immunodeficiency syndrome, previous splenectomy, previous solid organ transplant, 
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immunosuppressive medication, systemic lupus erythematosus, rheumatoid arthritis, psoriasis, 

scleroderma, or inflammatory bowel disease, including Crohn’s disease or ulcerative colitis. 

 

§ Chronic medical conditions were obtained using structured medical chart review and defined as 

conditions within 1 or more of the following categories: cardiovascular disease, neurologic disease, 

pulmonary disease, gastrointestinal disease, endocrine disease, renal disease, hematologic disease, 

malignancy, immunosuppression not captured in other categories, autoimmune condition, or other 

condition (sarcoidosis, amyloidosis, or unintentional weight loss ≥10 pounds (4.5 kg) in the last 90 

days). 
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Figure 3. COVID-19 disease severity during index hospitalization among adults hospitalized with COVID-

19, by SARS-CoV-2 variant for (A) unvaccinated patients, and (B) vaccinated patients. Disease severity 

was classified based on the highest severity level reached on the World Health Organization Clinical 

Progression Scale, which ranged from hospitalized without oxygen therapy (lowest level) to death 

(highest level). Among unvaccinated patients, severity was higher for Delta than Alpha (aPOR: 1.28, 95% 

CI: 1.11 to 1.46), lower for Omicron than Delta (aPOR: 0.61, 95% CI: 0.49 to 0.77). For each variant, 

severity was lower for vaccinated patients (2 or 3 doses of an mRNA vaccine) than unvaccinated 

patients, including for Alpha (aPOR: 0.33, 95% CI: 0.23 to 0.49), Delta (aPOR: 0.44, 95% CI: 0.37 to 0.51), 

and Omicron (aPOR: 0.61, 95% CI: 0.44 to 0.85). Data represented in the figures are shown in the 

accompanying table.  

 

       

A) Unvaccinated COVID-19 cases 
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B) Vaccinated COVID-19 cases 
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 Figure 3 accompanying data table 

 

Severity 

Category, no. 

(%) 

Alpha Delta  Omicron  

Unvaccinated  

(n=944) 

Vaccinated 

(n=116) 

Unvaccinated 

(n=2743) 

Vaccinated 

(n=1045) 

Unvaccinated  

(n=272) 

Vaccinated 

(n=293) 

In-hospital 

death 

76 (8.1) 5 (4.3) 323 (11.8) 138 (13.2) 25 (9.2) 15 (5.1) 

Hospitalized 

with IMV plus 

other organ 

support 

119 (12.6) 4 (3.4) 360 (13.1) 54 (5.2) 24 (8.8) 22 (7.5) 

Hospitalized 

with IMV 

23 (2.4) 1 (0.9) 65 (2.4) 18 (1.7) 5 (1.8) 5 (1.7) 

Hospitalized 

with NIV or 

HFNC 

193 (20.4) 20 (17.2) 624 (22.7) 161 (15.4) 57 (21.0) 45 (15.4) 

Hospitalized 

with low flow 

O2 

382 (40.5) 51 (44.0) 1017 (37.1) 409 (39.1) 102 (37.5) 129 (44.0) 

Hospitalized 

without O2 

151 (16.0) 35 (30.2) 354 (12.9) 265 (25.4) 59 (21.7) 77 (26.3) 

 

Definitions: HFNC = high-flow nasal cannula; IMV = invasive mechanical ventilation; O2 = oxygen; NIV = 

non-invasive ventilation 
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Figure 4. Vaccine effectiveness of two or three doses of COVID-19 mRNA vaccines among adults hospitalized with COVID-19 to prevent disease 

progression to invasive mechanical ventilation or death, by SARS-CoV-2 variant. 

 

 
Definitions: IMV = invasive mechanical ventilation; VE = vaccine effectiveness 
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