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Abstract 

Background. Data on social contact patterns are widely used to parameterise age-mixing 

matrices in mathematical models of infectious diseases designed to help understand 

transmission patterns or estimate intervention impacts. Despite this, little attention is given to 

how social contact data are collected and analysed, or how the types of contact most relevant 

for transmission may vary between different infections. In particular, the majority of studies 

focus on close contacts only – people spoken to face-to-face. This may be appropriate for 

infections spread primarily by droplet transmission, but it neglects the larger numbers of 

‘shared air’ casual contacts who may be at risk from airborne transmission of pathogens such 

as Mycobacterium tuberculosis, measles, and SARS-CoV-2.  

Methods. We conducted social contact surveys in communities in two provinces of South 

Africa in 2019 (KwaZulu-Natal and Western Cape). In line with most studies, we collected 

data on people spoken to (close contacts). We also collected data on places visited and people 

present, allowing casual contact patterns to be estimated. Using these data, we estimated age 

mixing patterns relevant for i) droplet and ii) non-saturating airborne transmission. We also 

estimated a third category of pattern relevant for the transmission of iii) Mycobacterium 

tuberculosis (Mtb), an airborne infection where saturation of household contacts plays an 

important role in transmission dynamics. 

Results. Estimated contact patterns by age did not vary greatly between the three 

transmission routes/infections, in either setting. In both communities, relative to other adult 

age groups, overall contact intensities were lower in 50+ year olds when considering contact 

relevant for non-saturating airborne transmission or the transmission of Mycobacterium 

tuberculosis than when considering contact relevant for droplet transmission. 

Conclusions. Our findings provide some reassurance that the widespread use of close contact 

data to parameterise age-mixing matrices for transmission models of airborne infections may 

not be resulting in major inaccuracies. The contribution of older age groups to transmission 

may be over-estimated, however. There is a need for future social contact surveys to collect 

data on casual contacts, to investigate whether our findings can be generalised to a wider 

range of settings, and to improve model predictions for infections with substantial airborne 

transmission. 

Keywords: Social contact, age-mixing, airborne, mathematical modelling, tuberculosis  
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Introduction 

Mathematical models of infectious disease transmission are widely used to help inform 

infectious disease policy, estimate the potential impact of interventions, and to provide 

insight into disease dynamics and natural history. Many models incorporate patterns of 

mixing between different sections of the population, most commonly between different age 

groups. Simulated mixing patterns can have a large effect on model dynamics(1), and it is 

therefore important that realistic mixing patterns are simulated. Mixing patterns are 

frequently informed by social contact data: empirical data collected from respondents on the 

people that they had contact with over a set period of time(2). 

The majority of social contact data collection has focused on ‘close’ contacts, with most 

studies using a definition of contacts that required a two way face-to-face conversation of at 

least three words, close proximity (e.g. within 2m), and/or physical contact(2). It is plausible 

that these types of contact approximate reasonably well the types of contact that are relevant 

for the transmission of infections that are transmitted primarily through direct contact and 

droplets. For obligate, preferential, or opportunistic airborne infections such as measles, Mtb, 

and SAR-CoV-2, however, it is likely that this definition excludes many potentially effective 

contacts. This is because transmission of airborne infections can occur between anybody 

‘sharing air’ in inadequately ventilated indoor spaces, regardless of whether conversation 

occurs, and over distances of more than 2m(3). For airborne infections, estimates of ‘casual 

contact’ time may therefore be more appropriate, calculated as the time spent in indoor 

locations multiplied by the number of other people present. 

Tuberculosis also differs from the majority of respiratory infections in the long durations of 

time for which people are potentially infectious – with an estimated 9-36 months between 

disease development and diagnosis/notification across 11 high burden countries(4). This 
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means that transmission to repeated contacts can partially saturate (even allowing for 

reinfection), making the relationship between contact time and infection risk non-linear(5). 

This effect is most pronounced for contact between household members(5). Household 

membership and repeated contacts are rarely explicitly simulated in mathematical models, 

and therefore the effects of contact saturation need to be incorporated into the mixing 

matrices used to parameterise the models. 

In this paper, we describe methods for estimating age mixing patterns relevant for non-

saturating airborne transmission and Mtb, using a novel weighted approach to incorporate the 

effects of household contact saturation into our estimates for Mtb. We generate estimates of 

age mixing using data on close and casual contacts from two communities in South Africa, 

and compare the estimated mixing patterns with those typically used in mathematical 

modelling studies – generated using close contact numbers, and more suitable for the droplet 

transmission.  

Methods 

Social contact data were collected in two study communities in South Africa: one in 

KwaZulu-Natal Province, and one in Western Cape Province. Both communities have high 

rates of unemployment, and high prevalences of HIV and incidences of tuberculosis 

compared to the provinces as a whole. The study community in KwaZulu-Natal consisted of 

a population of 46,000, living in the predominantly rural and peri-urban areas in the 

catchment areas of two primary care clinics, and within a demographic surveillance area 

(DSA). The study community in Cape Town was a peri-urban community of 27,000 people, 

and was an established research site with biennial censuses. 
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Data collection 

The KwaZulu-Natal data were collected between March and December 2019. 3093 adults 

(aged 18+ years) were sampled at random, stratified by residential area (~350 households per 

area) and with probability proportional to the number of eligible people in each area, based 

on the most recent DSA census conducted prior to area entry. Up to three attempts were made 

to contact sampled individuals. 

The Western Cape data were collected in May to October 2019. In total, 1530 adults (aged 

15+ years) were selected using age- and sex-stratified random sampling, based on a census 

conducted in the study population in February and March 2019. Up to five attempts were 

made to contact selected individuals. Each attempt was made on different days of the week 

(including at weekends), at different times of day to maximise the chance of making contact. 

For both surveys, interviews were conducted face-to-face at the respondents’ homes, using 

interview administered questionnaires on tablet computers. Interviews were conducted in 

isiZulu in KwaZulu Natal, and in English or isiXhosa in Western Cape. Respondents were 

asked about their movements on a randomly assigned day in the preceding week in KwaZulu-

Natal, and on the day before the interview in Western Cape. To allow casual contact time 

(defined as time spent ‘sharing air’ indoors or on transport) to be estimated, respondents were 

asked to list the places they had visited (including their own home) and transport they had 

used. For each location, questions asked included: 

• What type of location was it? 

• How long did you spend there? 

• How many people were there, halfway through the time you were there? 

Respondents were also asked about their close contacts, defined as people that the respondent 

had a face-to-face conversation with. Respondents were first asked to make a list of all their 
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contacts, with help from the interviewer. Respondents were then asked questions about a 

random 10 contacts, or all of their contacts if they reported fewer than 10. Questions 

included: 

• Is this contact a member of your household? 

• How old do you think they are? 

• How much time did you spend with them in total? 

Respondents’ basic demographic information were also collected. For the KwaZulu-Natal 

community, data on household size and residency (urban, peri-urban, rural) were obtained 

from the most recent DSA census. All other data were collected directly from the 

respondents. 

Ethics 

Ethical approval for the data collection in KwaZulu-Natal was granted by the Biomedical 

Research Ethics Committee (BREC) of the University of KwaZulu-Natal (BE662/17) and the 

London School of Hygiene & Tropical Medicine Observational / Interventions Research 

Ethics Committee (14640). Ethical approval for the data collection in Western Cape was 

granted by the Human Research Ethics Committee at the University of Cape Town 

(HREC/REF: 008/2018) and the London School of Hygiene & Tropical Medicine 

Observational / Interventions Research Ethics Committee (14520). Informed consent was 

obtained from all participants. 

Data analysis 

Close contact numbers and times were estimated using data on people with whom the 

respondents reported having a face-to-face conversation. 95% plausible intervals for the age 

mixing matrices were generated using bootstrapping. Household and non-household age-
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mixing matrices were generated from sampled contacts who were and were not reported to be 

members of the respondents’ own households respectively. 

Casual contact time in a location was estimated as the duration of time the respondent 

reported spending there, multiplied by the reported number of people present. Central 

estimates for casual contact time age-mixing matrices were generated using the method 

outlined in McCreesh et al(6). In brief, as data were collected on numbers of total people and 

children present in indoor locations only, and not the ages of adults, the age distribution of 

adult casual contacts needed to be estimated. We therefore assumed that the age distribution 

of adult contacts in each location type matched the age distribution of respondents who 

reported visiting location of that time, weighted by the duration of time they reported 

spending in that location time, and weighted to the sampled population age and sex 

distribution. Household and non-household contact matrices were generated using data on 

contact time in respondents’ own homes and all other locations respectively. Plausible ranges 

were generated using bootstrapping. 

The age mixing matrices were adjusted to be symmetrical, using the study community age 

structures. Data on adult contact numbers and time with children were used to estimate child 

contact numbers and time with adults. To allow comparison between the two study 

communities, the lowest respondent age group was set at 15-19 years for both surveys. As 

15-17 year olds were not interviewed in KwaZulu-Natal, we assumed that contact patterns in 

18-19 years olds were representative of contact patterns in all 15-19 year olds. 

Further details of the analysis methods are given in the appendix. 
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Generating age-mixing matrices for droplet and non-saturating airborne transmission, and 

Mycobacteria tuberculosis 

Figure 1 summarises the data used to generate the age mixing matrices for droplet and non-

saturating airborne transmission, and Mtb. 

 

Figure 1. Summary of data used to estimate age-mixing matrices. Diagram showing how 

age-mixing matrices relevant for the transmission of droplet infections, airborne infections, 

and Mycobacterium tuberculosis were estimated using empirical data on close contact 

numbers, close contact time, and casual contact time. 

 

Age-mixing matrices relevant for droplet transmission were set equal to age-mixing matrices 

calculated using close contact numbers. 

Age-mixing matrices relevant for non-saturating airborne transmission were set equal to the 

unweighted sum of the household close contact time matrices and the non-household casual 
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contact time matrices. Close contact time was used for household estimates as 1) it was 

considered plausible that the majority of contact between household members is likely to 

meet the definition of ‘close contact’, and 2) it allowed the age structures of households to be 

more accurately reflected in the age-mixing matrices. 

Age-mixing matrices relevant for Mtb were set equal to the sum of the household close 

contact number matrices and the non-household casual contact time matrices, weighted to 

reflect empirical estimates of the proportion of tuberculosis that results from household 

transmission. For each pair of bootstrapped household and non-household matrices, a 

proportion of ‘contact’ that should occur in households was sampled from a uniform 

distribution between 8-16% (with 12% used for the central estimate)(5). A weighted average 

was then generated, given the desired proportion of overall ‘contact’ by adults occurring in 

households. 

To allow direct comparisons to be made between the different age mixing matrices, the 

matrices for non-saturating airborne transmission and Mtb were adjusted to give the same 

mean contact intensity between adults as the matrices for droplet transmission. 

Further details of the analysis methods are given in the appendix. 

Results 

Recruitment 

Of the 3093 people sampled in KwaZulu-Natal, 1723 (56%) were successfully contacted, 299 

(10%) were dead or reported to have out-migrated, and 1071 (35%) could not be contacted. 

Of those successfully contacted, 1704 (99%) completed an interview. 

Of the 1530 people sampled in Western Cape, 1214 (93%) were successfully contacted, 117 

(8%) had moved or died, 193 (13%) had had incorrect information listed in the census, and 6 
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were uncontactable. Of the 1214 people contacted, 77 (6%) refused to be interviewed and 14 

were ineligible (due to disability or lack of English and isiXhosa). Of 1123 people 

interviewed, technical issues meant that data from 8 interviews were lost, leaving 1115 (92%) 

completed interviews. 

Table 1 shows the characteristics of the respondents and the target population. For both 

populations, the recruited sample was a reasonable match to the target population in terms of 

sex, age, and residence type (urban, peri-urban, or rural). Unemployment was high in both 

populations, with only 23% of respondents in KwaZulu-Natal and 55% in Western Cape 

reporting full-time, part-time, or casual employment. Household sizes were large in 

KwaZulu-Natal, with 48% living in a household of eight or more, and smaller in Western 

Cape, with 79% living in a household of four or fewer. 

Contact numbers and time 

Figure 2 and Appendix tables S1-S6 show household and non-household close contact 

numbers and time and casual contact time in KwaZulu-Natal and Western Cape, by sex, age, 

and household size. Overall close contact numbers and time, and casual contact time, were 

significantly higher for women than for men in both communities, however the differences 

were generally not large. There was a tendency for casual contact time to decrease slightly 

with age in both communities, and close contact numbers and time were substantially higher 

in 15-19 year olds than in older age groups in Western Cape. Close contact numbers and 

time, and casual contact time, increased with increasing household size in both settings, 

driven by increases in contact with household members. Differences by household size were 

larger in Western Cape than in KwaZulu-Natal, most likely reflecting the fact that household 

sizes were self-reported in Western Cape, but obtained through linking to community census 

data in KwaZulu-Natal. Contact between household members made up a higher proportion of 

total contact in KwaZulu-Natal than in Western Cape, for all types of contact. 
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Figure 2. Household and non-household close contact numbers, close contact time, and 

casual contact time in KwaZulu-Natal and Western Cape, by sex, age and household 

size. Error bars show 95% confidence intervals for total contact numbers or time. 

Age mixing 

Figure 3 and 4 show estimated age mixing matrices for droplet transmission, non-saturating 

airborne transmission, and Mtb transmission, for KwaZulu-Natal and Western Cape 

respectively. 

Estimated contact patterns by age did not vary greatly between the three transmission 

routes/infections, in either setting. Age mixing patterns were less assortative, however, in the 

non-saturating airborne and Mtb matrices compared to the droplet matrices, in both settings. 

The exception to this was contact between 15-19 year olds in KwaZulu-Natal, which was 

more intense in the non-saturating airborne and Mtb matrices than the droplet matrices. 
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In both communities, relative to other adult age groups, overall contact intensities were lower 

in 50+ year olds when considering contact relevant for non-saturating airborne transmission 

or the transmission of Mycobacterium tuberculosis than when considering contact relevant 

for droplet transmission. 
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Figure 3. Age mixing matrices relevant for droplet transmission, non-saturating 

airborne transmission, and Mycobacterium tuberculosis transmission, for KwaZulu-

Natal. Graphs a, c, and f show absolute contact intensities between respondents and contacts 

in each age group. Graphs b, d, and g show intensities of contact between each member of 

each age group. Graphs e and h show intensities for airborne infections and Mtb compared to 

intensities for droplet infections respectively. Numbers shown in graph a are the mean 

number of contacts respondents in each age group have with contacts in each age group per 

day. Numbers shown in graph b are the rate of contact between each individual in the 

population per day, expressed as rates ×105. ‘Numbers’ and ‘rates’ in graphs c, d, f, and g are 

standardised so that the mean overall contact intensity by reported by adult respondents is the 

same as the mean number of overall close contacts reported by adult respondents (graph a). 

Contact numbers between child ‘respondents’ and contacts in each age group were estimated 

from data on contact between adult respondents and child contacts. Ranges shown are 

bootstrapped 95% plausible ranges. 
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Figure 4. Age mixing matrices relevant for droplet transmission, non-saturating 

airborne transmission, and Mycobacterium tuberculosis transmission, for Western Cape. 

Graphs a, c, and f show absolute contact intensities between respondents and contacts in each 

age group. Graphs b, d, and g show intensities of contact between each member of each age 

group. Graphs e and h show intensities for airborne infections and Mtb compared to 
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intensities for droplet infections respectively. Numbers shown in graph a are the mean 

number of contacts respondents in each age group have with contacts in each age group per 

day. Numbers shown in graph b are the rate of contact between each individual in the 

population per day, expressed as rates ×105. ‘Numbers’ and ‘rates’ in graphs c, d, f, and g are 

standardised so that the mean overall contact intensity by reported by adult respondents is the 

same as the mean number of overall close contacts reported by adult respondents (graph a). 

Contact numbers between child ‘respondents’ and contacts in each age group were estimated 

from data on contact between adult respondents and child contacts. Ranges shown are 

bootstrapped 95% plausible ranges. 

 

Discussion 

The majority of data used to generate age-mixing matrices used in transmission models is 

close contact data – data on contacts involving a face-to-face conversation. For infections 

where airborne transmission is common, close contact data is likely to miss many potential 

effective contacts. Using data from two provinces in South Africa, we created improved 

estimates of age-mixing patterns for airborne infections, using a wider ‘casual contact’ 

definition that incorporated anybody ‘sharing space’ indoors. We also demonstrated a novel 

method for generating age-mixing matrices relevant for the transmission of Mtb, an airborne 

infection where long disease durations and the saturation of household contacts play an 

important role in transmission dynamics. Finally, we estimated age-mixing patterns from 

close contact data using the most commonly used method, which we have labelled as relevant 

for droplet transmission. In our settings, contact patterns did not vary greatly between 

contacts relevant for droplet infections and those relevant for non-saturating airborne 

transmission or Mtb. Using close contact data in models of the transmission of Mtb or other 
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airborne infections in our study communities, however, may mean that the importance of 

adults aged 50+ to transmission is overestimated. 

Very few data are available on casual contact patterns. Previous studies in the same 

community in Western Cape have found greater drops in casual contact time than in close 

contact numbers in older age groups(6), and decreases in indoor casual contact numbers with 

age(7). Another study in the same community found high levels of age-assortative mixing 

with respect to casual contact time in schools and workplaces(8). More data are needed on 

casual contact patterns, and age-mixing patterns in particular, in order to determine whether 

the findings of this study are generalisable to other settings, and to improve the predictions 

from mathematical models of the transmission of Mtb and other airborne infections. 

Our approaches to generating the separate droplet and airborne transmission matrices are 

necessarily simplifications, and many infections will not fit neatly into these two categories. 

There is considerable uncertainty about the role of different transmission routes to the spread 

of many infections, and both airborne and droplet transmission are thought to play a role in 

the transmission of some respiratory infections, including SARS-CoV-2(9). For these 

infections, an intermediate matrix may be preferable.  

There are two main differences between our droplet and airborne/Mtb age-mixing matrices. 

The first is the type of non-household contacts considered: close (face-to-face conversation) 

or casual (sharing space indoors) respectively. The second is that the airborne and (non-

household component of the) Mtb matrices are based on contact time, rather than unique 

contact numbers. The primary reason for using contact time for casual contacts is that 

respondents are unlikely to be able to estimate unique casual contact numbers for many 

locations they visit, necessitating the use of contact time, or assumptions about the rate of 

turnover of unique people in a location. For our droplet transmission matrices, we chose to 
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use unique contact numbers in a 24-hour period, as that is the most commonly used method, 

and therefore allows comparisons to be made with what is typically done. It should be noted, 

however, that both the choice of a 24-hour time period, and the lack of any weighting or 

restrictions by contact duration or other measures of closeness, are relatively arbitrary 

choices. 

Robust evidence as to the types of contact most relevant to transmission are limited for 

respiratory infections. A number of studies have compared the fit to data on varicella, 

parvovirus B19, or influenza A seroprevalence by age of models parametrised using contact 

patterns generated from close contact data in a range of different ways(10-12). Overall, these 

studies suggest that analysis methods that give greater weight to more intimate contacts may 

be preferable in some circumstances. This could be achieved by restricting what counts as a 

contact to those involving physical touch and/or a minimum contact duration, or by using 

contact time rather than contact numbers. It has been suggested that approaches based on 

contact numbers may be more suitable for more highly transmissible infections, where only a 

short duration of contact is needed for transmission, whereas approaches based on contact 

time may be more suitable for less transmissible infections, where repeated or longer contacts 

are needed(13). 

Fewer studies have considered expanding the pool of contacts beyond close contacts only, to 

also include casual contacts. One study however, that had paired individual-level contact data 

and pandemic influenza A serological data, found that models that included a variable for 

number of locations visited were strongly supported over those that only included variables 

for age and close contact numbers(14). This suggests that airborne transmission may play a 

role in the spread of influenza A, and/or that the standard close contact definition misses a 

significant proportion of contacts at risk of droplet transmission. 
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Other factors may also influence airborne and Mtb transmission risk, which are not accounted 

for in the analyses. Ventilation rates play a large role in determining airborne infection 

risk(15), and weighting by ventilation rates would improve our airborne and Mtb matrices. 

Unfortunately, few data on ventilation rates by location type are available, and they show 

large amounts of variation between locations, and between the same location on different 

days(16). Saturation of contacts may occur for infections other than Mtb, particularly highly 

transmissible pathogens such as measles virus. An approach based on casual contact numbers 

may be preferable for these infections, but would be highly dependent on assumptions made 

about how unique contact numbers are related to estimates of cross-sectional numbers of 

people present. 

There are a number of limitations when using casual contact data to estimate mixing patterns. 

Firstly, estimates of contact time in places where large numbers of people are present are 

likely to be less reliable. This is because people’s estimates of the number of people present 

are likely to be poor, and because the assumption that there is a risk of transmission between 

all people present in the space may not be true in larger spaces. In our main analysis, when 

estimating contact time, we cap the number of people at risk of transmission at 100. In our 

sensitivity analyses, we show that using a cap of 20 people, or not capping the numbers of 

people, has a moderate impact on casual contact time age mixing matrices (see Appendix). 

Conducting similar sensitivity analyses may be necessary when using age mixing matrices 

calculated using casual contact time in mathematical models 

A second limitation is that the approach we use to determining the ages of adults present in 

locations other than respondents’ own homes is indirect, and relies on the assumption that the 

age distribution of adults present in a location type reflects the duration of time respondents 

of different ages reported spending in that location type. This may not always be a reasonable 

assumption, if different age groups tend to visit different locations of the same type (or at 
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different times), or substantial mixing occurs with people from outside the study setting. 

These issues are discussed further in McCreesh et al 2019(6).  

An additional limitation of our estimates for KwaZulu-Natal only is that we did not recruit 

15-17 years olds, and instead assumed in the analysis that contact by 18-19 year olds was 

representative of contact by all 15-19 year olds. This is unlikely to be true, with contacts by 

15-17 and 18-19 year olds differing greatly in Western Cape (see Appendix, Figure S7). For 

this reason, our estimates for 15-19 year olds should be treated with caution for KwaZulu-

Natal. 

To conclude, overall our estimated age-mixing matrices for droplet transmission, non-

saturating airborne transmission, and Mtb were not substantially different from each other for 

either setting. This provides some reassurance that the widespread use of close contact data to 

parameterise age-mixing matrices for transmission models of airborne infections may not be 

resulting in major inaccuracies. Some differences were observed however, particularly in the 

oldest age group, and our data were from two South African settings only. We recommend 

that future social contact surveys should collect data on casual contacts as well as close 

contacts, to determine whether the similarity between different types of contact pattern is true 

across other settings. We would also urge mathematical modellers to consider whether unique 

close contact numbers in a 24-hour period are the most appropriate contacts for the infection 

and scenario they are simulating, and to consider performing sensitivity analyses when there 

is uncertainty as to the most appropriate contact definition.
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Tables 

Table 1. Respondent characteristics. Target population refers to people in the populations aged 15+ years. *In KwaZulu-Natal, urban is 

defined as KwaMsane Municipality, peri-urban as other areas with a population density over 400/km2, and rural as areas with a population 

density under 400/km2 

  KwaZulu Natal  Western 

Cape 

 

  Sample Target 

population 

Sample Target 

population 

Sex Male 751 (44%) 41% 553 (50%) 52% 

 Female 953 (56%) 59% 562 (50%) 48% 

Age 15-17 0 9.1% 56 (5%) 4.5% 

 18-19 118 (6.9%) 5.6% 84 (7.5%) 4.5% 

 20-29 495 (29%) 26% 412 (37%) 33% 

 30-39 308 (18%) 21% 358 (32%) 37% 

 40-49 227 (13%) 13% 142 (13%) 15% 
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 50+ 556 (33%) 25% 63 (5.7%) 6.5% 

Residence* Rural 867 (51%) 59% 0 0% 

 Peri-Urban 716 (42%) 33% 1115 (100%) 100% 

 Urban 121 (7.1%) 8% 0 0% 

Monthly household 

income 

Less than R1000 

416 (24%)  111 (10%)  

 R1000 - R2500 785 (46%)  261 (23%)  

 R2500 - R5000 302 (18%)  374 (34%)  

 R5000 - R10000 125 (7.3%)  179 (16%)  

 More than R10000 65 (3.8%)  61 (5.5%)  

 Unknown/missing 11 (0.65%)  129 (12%)  

Employment Full-time 329 (19%)  403 (36%)  

 Part-time/Casual 68 (4%)  213 (19%)  

 None 1299 (76%)  492 (44%)  

 Missing 8 (0.5%)  7 (0.6%)  

Household size 1 115 (6.7%) 4.1% 203 (18%) 19% 
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 2-4 287 (17%) 26% 683 (61%) 66% 

 5-7 488 (29%) 33% 195 (17%) 13% 

 8-10 375 (22%) 20% 26 (2.3%) 1.6% 

 11+ 439 (26%) 17% 8 (0.72%) 0.4% 

Day reported Monday 239 (14%)  203 (18%)  

 Tuesday 242 (14%)  202 (18%)  

 Wednesday 239 (14%)  187 (17%)  

 Thursday 251 (15%)  138 (12%)  

 Friday 261 (15%)  80 (7.2%)  

 Saturday 245 (14%)  98 (8.8%)  

 Sunday 227 (13%)  207 (19%)  

Total  1704 33,288 1115 20,633 
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