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Abstract 10 

The effectiveness of artemisinin-based combination therapies (ACTs) to treat Plasmodium 11 

falciparum malaria is threatened by resistance. The complex interplay between sources of 12 

selective pressure – treatment properties, biological factors, transmission intensity, and access 13 

to treatment – obscures understanding how, when, and why resistance establishes and 14 

spreads across different locations. We developed a disease modelling approach with emulator-15 

based global sensitivity analysis to systematically quantify which of these factors drive 16 

establishment and spread of drug resistance. Drug resistance was more likely to evolve in low 17 

transmission settings due to the lower levels of (i) immunity and (ii) within-host competition 18 

between genotypes. Spread of parasites resistant to artemisinin partner drugs depended on 19 

the period of low drug concentration (known as the selection window). Spread of partial 20 

artemisinin resistance was slowed with prolonged parasite exposure to artemisinin derivatives 21 

and accelerated when the parasite was also resistant to the partner drug. Thus, to slow the 22 

spread of partial artemisinin resistance, molecular surveillance should be supported to detect 23 

resistance to partner drugs and to change ACTs accordingly. Furthermore, implementing more 24 

sustainable artemisinin-based therapies will require extending parasite exposure to artemisinin 25 

derivatives, and mitigating the selection windows of partner drugs, which could be achieved by 26 

including an additional long-acting drug.  27 
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Impact Statement: 28 

Detailed models of malaria and treatment dynamics were combined with emulator-based 29 

global sensitivity analysis to elucidate how the interplay of drug properties, infection biology, 30 

and epidemiological dynamics drives evolution of resistance to artemisinin-based combination 31 

therapies. The results identify mitigation strategies.  32 
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Introduction: 33 

Malaria remains a global health priority [1]. The World Health Organization (WHO) 34 

recommends several artemisinin-based combination therapies (ACTs) to treat uncomplicated 35 

Plasmodium falciparum malaria [2]. ACTs combine a short-acting artemisinin derivative to 36 

rapidly reduce parasitaemia during the first three days of treatment and a long-acting partner 37 

drug to eliminate remaining parasites [2]. These drug combinations are intended to delay the 38 

evolution of drug resistance, which has frequently occurred under monotherapy treatment [3-39 

6]. However, parasites partially resistant to artemisinin have emerged in the Greater Mekong 40 

Subregion (GMS) and, more recently, in Rwanda, Uganda, Guyana, and Papua New Guinea 41 

despite the use of ACTs [2, 7-11]. Partial artemisinin resistance leads to slower parasite 42 

clearance following treatment with ACTs, but not necessarily to treatment failure [2]. However, 43 

high rates of treatment failure have been observed in the GMS due to parasites being less 44 

sensitive to artemisinin derivatives and their partner drugs [2]. To prevent the evolution of drug-45 

resistant parasites and to preserve the efficacy of ACTs or triple combination therapies (TACT, 46 

including a second long-acting drug) now being tested [12], it is essential to understand which 47 

factors drive this process.  48 

The evolution of drug resistance follows a three-step process of mutation, establishment, and 49 

spread. First, mutations conferring drug resistance emerge in the population at a rate that 50 

depends on multiple factors, such as organism mutation and migration rates [13, 14]. Second, 51 

establishment is a highly stochastic step as the parasite with the drug-resistant mutation needs 52 

to infect other hosts [13-16]. The resistant strain establishes in the population once its 53 

frequency is high enough to minimise its risk of stochastic extinction [13-16]. Several forces 54 

influence the establishment of mutations. In settings with higher heterogeneity of parasite 55 

reproductive success, establishment of mutations is less likely because the effects of 56 

stochasticity are more substantial [13, 15-17]. This heterogeneity depends on the level of 57 

transmission and health system strength [13, 15-18]. In addition, the more selection favours 58 

the resistant strain, the more likely it is to establish [13, 15-17]. The strength of selection 59 

depends on many factors, such as the parasite and human biology, the transmission setting, 60 

drug properties, and health system strength [5, 19-24]. Third, resistance spreads through a 61 

region after a resistant mutation has become established. The mutation spreads at a rate that 62 

depends on the strength of selection [13, 16]. 63 

It is not fully understood how factors intrinsic to the transmission setting, health system, human 64 

and parasite biology, and drug properties interact to influence the establishment and spread 65 

of drug-resistant parasites. Mathematical models of infectious disease have not previously 66 

been used to systematically assess the joint influence of multiple factors on the establishment 67 

and spread of drug resistance, e.g. [23, 25-37]. Simple models, based on the Ross and 68 

MacDonald model [38, 39], have considered specific components of the epidemiology of 69 

resistance and, therefore,  are not sophisticated enough to answer questions on how factors 70 

have jointly impacted establishment and spread of drug resistance [26, 30-33, 36, 37]. Most 71 

models have investigated specific transmission scenarios and questions, such as how within-72 

host competition between parasites influences development of drug resistance [25, 28, 35], 73 

and did not systematically assess the impact of assumptions used on their results. 74 

Consequently, previous studies have not systematically compared the influence of multiple 75 

drivers, nor assessed how their influence varies under different transmission settings or health 76 

system strengths.  77 
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In addition, most models have made simplifications concerning drug action and consequences 78 

of partial resistance. They have not explicitly modelled the pharmacokinetics and 79 

pharmacodynamics of the drugs and have assumed that resistant parasites are fully resistant 80 

to the drugs. Parasites partially resistant to artemisinin exhibit an extended ring-stage during 81 

which they are not sensitive to artemisinin, however, parasites remain sensitive to artemisinin 82 

during other stages [40-44]. In addition, parasites resistant to partner drugs have an increased 83 

minimum inhibitory concentration (MIC), meaning that they are not sensitive to low drug 84 

concentrations but remain susceptible to high concentrations of partner drugs [45-47]. 85 

Consequently, many models have ignored the residual effect of drugs on resistant parasites 86 

and have not investigated the influence of the degree of resistance and drug proprieties on the 87 

establishment and spread of drug resistance. Models that have explicitly considered drug 88 

action have focused on specific questions such as how half-life impacts the spread of 89 

resistance or how resistance to the partner drug influences evolution of artemisinin resistance 90 

[48, 49]. However, they did not investigate how the impact of drug proprieties and the degree 91 

of resistance interact with other biological, transmission, and health system factors.  92 

In this study, we developed a disease model with an emulator-based approach to quantify the 93 

influence of factors intrinsic to the biology of the parasite and human, the transmission setting, 94 

the health system strength, and the drug properties on the establishment and spread of drug-95 

resistant parasites. Our approach is based on a detailed individual-based malaria model, 96 

OpenMalaria (https://github.com/SwissTPH/openmalaria/wiki), that includes a mechanistic 97 

within-host model (based on [50]). We first adapted our model, OpenMalaria, to explicitly 98 

include mechanistic drug action models at the individual level (as a one, two, or three-99 

compartment pharmacokinetic model with a pharmacodynamics component of parasite killing 100 

[51-54]) and to track multiple parasite genotypes to which we could assign fitness costs and 101 

drug susceptibility (i.e. pharmacodynamic) properties. We then built an emulator-based 102 

workflow to quantify, through a series of global sensitivity analyses, the influence of multiple 103 

factors on the establishment and spread of parasites having different degrees of resistance to 104 

artemisinin derivatives and/or their partner drugs when used in monotherapy and combination 105 

(as ACTs). Emulators are predictive models that can approximate the relationship between 106 

input and output parameters of complex models and can run much faster than complex models 107 

to perform global sensitivity analyses more efficiently [55]. OpenMalaria is a mechanistic 108 

model, so the observed dynamics at the population level (for example, the spread of resistant 109 

genotypes) emerges from the relationship between the different model components and their 110 

input parameters. These dynamics can only be understood and tested through extensive 111 

analyses as undertaken here. Identifying which factors (e.g. drug properties and/or setting 112 

characteristics) favour the evolution of resistance, enables us to identify drug properties or 113 

strategies to slow or mitigate resistance and guides the development and implementation of 114 

more sustainable therapies.  115 



  

5 
 

Results 116 

Development of drug resistance 117 

We investigated the establishment and spread of drug-resistant genotypes by varying the 118 

degrees of resistance for three different treatment profiles. The first treatment profile 119 

considered was a monotherapy using a short-acting drug referred to in this study as drug A. 120 

Drug A has a short half-life and a high killing efficacy, simulating artemisinin derivatives (Figure 121 

1A and 1B). Patients received a daily dose of drug A for six days (see Methods). To mimic the 122 

mechanism of resistance to artemisinin derivatives, we assumed that genotypes resistant to 123 

drug A had lower maximum killing rates (Emax) than sensitive ones (Figure 1B) (see Methods). 124 

We defined the degree of resistance to drug A as the relative decrease of the Emax of the 125 

resistant genotype compared with the sensitive one. The second treatment profile was also a 126 

monotherapy but with a long-acting drug referred to in this study as drug B. Drug B has a 127 

longer half-life and a lower Emax than drug A, typical of partner drugs used for ACTs (such as 128 

mefloquine, piperaquine, and lumefantrine) (Figure 1A and 1B). Patients received a daily dose 129 

of drug B for three days (see Methods). We assumed that genotypes resistant to drug B had 130 

higher half-maximal effective concentrations (EC50) than sensitive ones (Figure 1B) (see 131 

Methods). We defined the degree of resistance to drug B as the relative increase of the EC50 132 

of the resistant genotype compared with the sensitive genotype. The last treatment profile was 133 

a daily dose of a combination of drugs A and B for three days, simulating ACTs. In this last 134 

case, only the resistant genotype had some degree of resistance to drug A, but both the 135 

sensitive and resistant genotypes could have the same degree of resistance to drug B. 136 

Our analysis had two steps. First, we quantified the impact of factors listed in Table 1 on the 137 

spread of drug-resistant parasites through global sensitivity analyses using an emulator trained 138 

on our model simulations (Figure 1C, purple area, see Methods). For each simulation, we 139 

tracked a drug-sensitive genotype and a drug-resistant genotype, and we estimated the rate 140 

of spread using the selection coefficient, which measures the rate at which the logit of the 141 

resistant genotype frequency increases each parasite generation (see Methods, note that a 142 

selection coefficient below zero implies that resistance does not spread in the population) [16]. 143 

Then, we assessed the probability of establishment for a sub-set of resistant genotypes with 144 

known and positive selection coefficients to observe the relationship between selection 145 

coefficient and the probability of establishment (Figure 1C, orange area, see Methods). We 146 

could then extrapolate the probability of establishing any mutations with a known selection 147 

coefficient, which made the process more efficient since estimating the probability of 148 

establishment requires running many more stochastic realisations than estimating the 149 

selection coefficient due to the stochasticity of this step.  150 
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Figure 1 151 

Overview of treatment profiles and the workflow. 152 

(A) Curves represent examples of the modelled within-host concentration (mg/l) of drugs A (short-acting 153 
like artemisinin derivatives) and B (long-acting like partner drugs of artemisinin) used in monotherapy. 154 
Patients received a daily dose of drug A for six days (see Methods). Patients received a daily dose of 155 
drug B for three days (see Methods). Drugs A and B used in combination (like ATCs) had the same 156 
respective profile as in monotherapy, but patients received a daily dosage of each drug over three days, 157 
as recommended by WHO for ACTs [56]. (B) Curves illustrate examples of the modelled relationship 158 
between the concentration (log(mg/l)) and the killing effect (per day) of drugs A and B on the resistant 159 
(brown) and sensitive genotypes (blue). For the use of drugs in combination, the resistant genotype was 160 
resistant to drug A, and both sensitive and resistant genotypes could have some degree of resistance 161 
to drug B. (C) The orange area highlights steps that evaluate how the probability of establishment of 162 
mutations with a specific selection coefficient varies under different settings. The purple area highlights 163 
the steps for assessing the influence of factors on the rate of spread (selection coefficient) of a resistant 164 
genotype through global sensitivity analysis. The brown curve represents an example of the relative 165 
frequency of the resistant genotype in infected humans. HGP: Heteroskedastic Gaussian Process.  166 
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Table 1 167 

Potential drivers of the spread of drug resistance. 168 

List of factors and their parameter ranges investigated in the global sensitivity analyses of the spread of 169 
parasites resistant to each treatment profile. The parameter ranges were defined based on the literature 170 
as described in the Methods. Parameter ranges of drug A captured the parameter values of typical 171 
artemisinin derivatives (see Methods). The parameter ranges of drug B captured the parameter values 172 
of partner drugs of artemisinin derivatives such as mefloquine, piperaquine, and lumefantrine (see 173 
Methods). Note that the ratio Cmax/EC50 is not a direct input of the model, but we varied this ratio by 174 
varying the EC50 of the sensitive genotype and the drug dosage (which impacted the maximum drug 175 
concentration (Cmax)) (see Methods). A Latin Hypercube Sampling (LHS) algorithm was used to sample 176 
from the ranges [57].  177 

Component Determinant Definition 
Parameter range 

Drug A Drug B 

Drug  
properties 

Half-life Time for the drug concentration to fall by 50% (days) (0.035, 0.175) (6, 22) 

Emax Maximum killing rate the drug can achieve (per day) (27.5, 31.0) (3.45, 5.00) 

Cmax/EC50  

The ratio between the maximum drug concentration 
(Cmax) and the half-maximal effective concentrations 
(EC50) of the sensitive genotype. This calculated ratio 
captures the drug killing effect by capturing how high is 
the Cmax compared to the EC50.  

(55.0-312.0) (5.1-21.7) 

Parasite 
biology 

Degree of resistance 

For drug A: relative decrease of the Emax of the resistant 
genotype compared with the sensitive one 
For drug B: relative increase of the EC50 of the resistant 
genotype compared with the sensitive one (see Methods) 

(1, 50) (1, 20) 

Fitness cost Relative reduction of the resistant genotype multiplication 
rate within the human host compared to the sensitive one (1.0, 1.1) 

Transmission 
level 

Entomological 
inoculation rate 

Mean number of infective mosquito bites received by an 
individual during a year (inoculations per person per year) (5, 500) 

Health 
system 

Level of access to 
treatment 

The probability of symptomatic cases to receive treatment 
within two weeks from the onset of symptom onset (%) (10, 80) 

Diagnostic detection 
limit 

Parasite density for which the probability of having a 
positive diagnostic test is 50% (parasites/μl) (2, 50) 
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Key drivers of the spread of drug-resistant parasites 178 

Under monotherapy, access to treatment and degree of resistance of a monotherapy were the 179 

main drivers of the spread of resistance (Figure 2A). For drugs A and B used as monotherapy, 180 

the selection coefficient increased with increasing access to treatment (the probability of 181 

symptomatic cases to receive treatment within two weeks from the onset of symptoms) (Figure 182 

S1). In addition, higher degrees of resistance of the resistant genotype to drug A (relative 183 

decrease in the resistant genotype Emax compared with the sensitive one) and B (relative 184 

increase in the resistant genotype EC50 compared with the sensitive one) promoted the spread 185 

of parasites resistant to drugs A and B, respectively (Figure S1). 186 

When drugs A and B were used in combination, we assumed the resistant genotype had some 187 

degree of resistance to drug A, but both the sensitive and resistant genotypes could have some 188 

degree of resistance to drug B. In this case, the most important driver of spread was the degree 189 

of resistance of both genotypes to drug B (Figure 2A). The median selection coefficient was 190 

below zero when both genotypes were susceptible to drug B (the minimum degree of 191 

resistance to drug B) (Figure 2B), indicating that using an efficient partner drug can limit the 192 

spread of artemisinin resistance. The spread of parasites resistant to drug A was accelerated 193 

when parasites were also resistant to the partner drug, highlighting that resistance to the 194 

partner drug can facilitate the spread of artemisinin resistance. We further illustrated with 195 

concrete examples (Supplementary file 1: section 1.2) how the spread of partial resistance to 196 

drug A accelerates with higher degrees of resistance to drug B. These results further confirmed 197 

that resistance to partner drugs facilitates the spread of resistance to artemisinin, highlighting 198 

the importance of combining artemisinin derivatives with an efficient partner drug.  199 
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Figure 2 200 

Influence of drug properties, fitness costs, resistance levels, transmission levels, and health 201 
system factors on predicted selection coefficients for three treatment profiles. 202 

(A) The first-order indices from our variance decomposition analysis indicate the level of importance of 203 
drug properties, fitness costs, resistance levels, transmission levels, access to treatment, and diagnostic 204 
limits in determining the spread of drug resistance. Indices are shown for each treatment profile in a 205 
non-seasonal setting with a population fully adherent to treatment. Selection coefficients are considered 206 
for drug A and drug B when each drug is used as monotherapy and for drug A when both drugs are 207 
used in combination. Definitions and ranges of parameters investigated are listed in Table 1. (B) 208 
Influence of factors on the selection coefficient of genotypes resistant to drug A in a population that used 209 
drugs A and B in combination. Curves and shaded areas represent the median and interquartile range 210 
of selection coefficients estimated during the global sensitivity analyses over the following parameter 211 
ranges: access to treatment (10-80%); the degree of resistance of the resistant genotype to drug A 212 

(1-50-fold reduction in Emax); and the degree of resistance of both sensitive and resistant genotypes 213 

to drug B (1-20-fold increase in EC50). A selection coefficient below zero implies that resistance does 214 
not spread in the population but is being lost due to its fitness costs. The transmission setting was non-215 
seasonal and, all treated individuals were fully adherent to treatment.   216 
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Variation in the influence of factors across settings and degrees of resistance 217 

We compared the effects of drug properties and fitness cost on the selection coefficients for a 218 

fixed set of degrees of resistance, transmission levels, seasonality patterns, treatment levels, 219 

and levels of adherence to treatment (percentage of treatment doses adhered by patients) 220 

(see the legend of Figure 3 for the values of each fixed factor). Across settings with a low 221 

access to treatment, we found that fitness cost had the largest influence on the selection 222 

coefficient (Figure S2-5). The fitness cost of a resistant genotype was defined as the relative 223 

decrease in the resistant genotype multiplication rate within an untreated human host 224 

compared with the sensitive genotype. Consequently, high fitness costs prevented the spread 225 

of resistance (Figure S2). At a high level of access to treatment, drug properties played a 226 

critical role in the spread of drug resistance, and their influence varied for each treatment profile 227 

as described below (Figure 3, Figure S3-5). 228 

For drug A used as monotherapy, the half-life had the biggest influence on the rate of spread 229 

(Figure 3, Figure S3). A long half-life reduced the spread of resistant parasites by extending 230 

the period during which the drug killed partially resistant parasites (Figure 3). Furthermore, the 231 

spread of the resistant genotype was faster in populations with low adherence to treatment 232 

(Figure 3–Figure S6) because with fewer treatment doses, the parasite was exposed to the 233 

drug for a shorter time, leading to higher parasite survival. Overall, these results highlight that 234 

the time during which the parasite is exposed to artemisinin is a critical driver of the spread of 235 

partial artemisinin resistance. 236 

For parasites resistant to drug B when used as monotherapy, the drug half-life also had an 237 

important influence on the selection coefficient (Figure 3, Figure S4). However, long half-lives 238 

were associated with large selection coefficients (Figure 3). Drugs with a long half-life have an 239 

extended period of low drug concentration in treated patients during which only resistant 240 

parasites can infect the host. This period of low drug concentration is called the selection 241 

window [49, 58]. These results confirm that the selection window plays a crucial role in the 242 

spread of resistance to long-acting drugs.  243 

In addition, for parasites resistant to drug B as monotherapy, the drug killing rate captured by 244 

the ratio Cmax/EC50 had an important influence on the rate of spread in settings with low level 245 

of treatment adherence or a high degree of resistance (Figure 3, Figure S4). When we 246 

modelled a low level of treatment adherence or a high level of resistance, this ratio was 247 

reduced due to lower Cmax or higher EC50, respectively. Lower Cmax/EC50 ratios cause 248 

lower drug killing rates, and when this ratio was too low the spread of drug resistance was 249 

favoured. These results highlight the importance of treatment adherence to assure that the 250 

drug concentration is high enough to eliminate partially resistant genotypes and limit their 251 

spread. 252 

When the genotype was resistant to drug A in a population that used drugs A and B in 253 

combination, factors related to drug B had the most influence on the selection coefficient 254 

(Figure 3, Figure S5). When the ratio Cmax/EC50 or the half-life of drug B was large, the killing 255 

effect of drug B on parasites resistant to drug A was higher, reducing their spread (Figure 3). 256 

In addition, the rate of spread rose when the level of adherence to treatment was low (Figure 257 

S6). These results highlight that the spread of partial resistance to artemisinin strongly depends 258 

on the capacity of the partner drug to kill them. 259 
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The influence of the transmission intensity (represented by EIR) and its seasonality on the 260 

selection coefficient varied by treatment profiles. When the parasite was resistant to drug A 261 

when used as monotherapy or in combination with drug B, selection coefficients were higher 262 

in settings with lower EIR (Figure S6). Two factors account for this trend. First, the selection of 263 

parasites resistant to drug A depends on the proportion of infections that are treated and can 264 

thus select for resistance. This proportion is higher at lower EIR due to the lower level of 265 

immunity (Figure S7) which makes infections more likely to be symptomatic and hence receive 266 

treatment. Second, there is a high multiplicity of infection in high transmission settings. The 267 

multiplicity of infection enhanced within-host competition between genotypes, which inhibit the 268 

multiplication of resistant parasites within hosts due to their fitness cost, and thus limit their 269 

spread. Similarly, the spread of resistant parasites was higher in the seasonal settings than in 270 

non-seasonal settings (Figure S6) due to the reduction of immunity levels and a decline in 271 

within-host competition between genotypes during the low transmission season of the 272 

seasonal settings. Overall, these results indicate that the spread of partial artemisinin 273 

resistance is faster in seasonal settings with low transmission levels. 274 

However, for parasites resistant to drug B used in monotherapy, selection coefficients were 275 

higher in settings with a large EIR (Figure S6). This relationship arises because resistant 276 

parasites are more likely to emerge from the liver in high transmission settings during selection 277 

window (which select for resistant parasites). This is because the proportion of people treated 278 

(and thus with residual drug concentrations) is lower at lower EIR due to lower infection rates 279 

(Figure S7). Note that this trend was only valid for settings with high access to treatment. In 280 

settings with low access to treatment, we observe similar trends than for parasites resistant to 281 

drug A (Figure S8) since here, the impact of the selection window was more negligible. These 282 

results highlight that the selection window of the long-acting drug can change the interplay 283 

between the transmission setting and the spread of drug resistance.  284 
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Figure 3 285 

Magnitude and direction of effect of drug properties and fitness cost on predicted selection 286 
coefficients for low and high levels of transmission, degrees of drug resistance, treatment 287 
adherence, in seasonal or perennial settings with monotherapy or combination treatment. 288 

The curves represent median selection coefficients over the parameter ranges estimated in each setting 289 
that had high access to treatment (80%) and an entomological inoculation rate (EIR) of 5 (solid curves) 290 
or 500 (dashed curves) inoculations per person per year. Settings were varied in their seasonality 291 
pattern of transmission and level of adherence to treatment (67% (low) or 100% (high) of treatment 292 
doses adhered to by the population). For each treatment profile, results are shown for parasites with 293 
two different degrees of resistance; degree of resistance of 7 (low) and 18 (high) to drug A (Emax shift), 294 
2.5 (low) and 10 (high) to drug B (EC50 shift), for the combination of drugs A and B, 7 (low) and 18 295 
(high) to drug A and 10 to drug B. Parameter ranges are as follows: fitness cost (1.0-1.1, light green 296 

curves); drug A half-life (0.035-0.175 days, pink curves); drug B half-life (6-22 days, purple curves); 297 

Cmax/EC50 ratio for drug A (55.0-312.0, blue curves); Cmax/EC50 ratio for drug B (dark green curves) 298 
at a high level of adherence to treatment (5.4-21.7) and at a low level of adherence (4.0-16.2).   299 
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Probability of establishment of drug resistance and its key drivers 300 

In each non-seasonal setting, we selected 10 different resistant genotypes having a known 301 

selection coefficient and quantified their probability of establishment (see Methods). By doing 302 

so, we evaluated the relationship between the selection coefficient and probability of 303 

establishment and assessed how this relationship varies across settings due to variation in the 304 

heterogeneity of parasite reproductive success. 305 

As expected, the establishment of a mutation was more probable when its selection coefficient 306 

was high (Figure 4). For each treatment profile, the probability of establishment of mutations 307 

with similar selection coefficients was higher at low EIR than at high EIR (Figure 4), especially 308 

for mutations with a high selection coefficient. These results highlight that the heterogeneity in 309 

parasite reproductive success increases with the transmission level, causing more uncertainty 310 

in the establishment of mutations. Two factors increase the heterogeneity of parasite 311 

reproductive success in settings with a high EIR. First, in these settings, there is considerable 312 

variation in the number of independent infections carried by hosts, which are competing for 313 

reproductive success. This variation leads to more heterogeneity of parasite reproductive 314 

success and thus to less certainty that a parasite with an emerging mutation will replicate. 315 

Second, settings with a high EIR have a large variation in the level of individual immunity. Host 316 

immunity influences parasite reproductive success by reducing parasite growth within the 317 

human host. Therefore, in high transmission settings, the greater variation of immunity leads 318 

to higher heterogeneity of parasite reproductive success and a lower probability that an 319 

emerging mutation successfully replicate.   320 



  

14 
 

Figure 4  321 

Predicted probability of establishment of mutations conferring drug resistance across 322 
transmission settings.  323 

Solid curves and dashed curves represent the relationship between the selection coefficient and the 324 
estimated probability of establishment of resistant parasites across settings that differ in transmission 325 
intensities (5 and 500 inoculations per person per year, respectively). The range of selection coefficients 326 
include higher values at a low EIR. For each setting, the level of access to treatment was specified as 327 
80%, the population was assumed to be fully adherent to treatment (100%), and transmission was non-328 
seasonal.   329 



  

15 
 

Discussion  330 

Understanding which disease, transmission, epidemiological, health system, and drug factors 331 

systemically drive the evolution of drug resistance is challenging. A full understanding requires 332 

vast observational data or clinical trials on a scale that is not possible or mathematical models 333 

that are sufficiently detailed to capture all these factors while remaining computationally 334 

feasible to simultaneously assess the impact of these factors. In response to this need, we 335 

updated a detailed individual-based model of malaria dynamics to include a full 336 

pharmacological (i.e. PK/PD) description of antimalarial treatments. We introduced a global 337 

sensitivity analysis approach based on emulators for computationally intensive models to 338 

systematically assess which factors jointly drive the evolution of drug-resistant parasites. As 339 

discussed below, our approach allowed us to understand the guiding principles of the evolution 340 

of drug resistance against ACTs and to explain the difference in trends observed in the Greater 341 

Mekong Subregion (GMS) and in malaria endemic Africa. Improving our understanding of the 342 

factors that lead to drug resistance establishment and spread allows us to identify strategies 343 

to mitigate these dynamics and guides initial considerations for developing more sustainable 344 

malaria treatment. 345 

Our results support the belief that evolution of resistance to ACTs begins with the 346 

establishment and spread of parasites resistant to the partner drug and, once the protective 347 

effect of the partner drug is reduced, drug selection falls on the artemisinin component, and 348 

parasites then start to acquire resistance to artemisinin derivatives (e.g. [48, 59]). The fact that 349 

resistance to the partner drug appears before resistance to artemisinin derivatives was 350 

supported by two points elucidated in our study. First, resistance to the partner drug strongly 351 

depends on the period of low concentration of this drug during which only resistant parasites 352 

can multiply within the host (known as the selection window). As artemisinin derivatives are 353 

short-acting, they cannot prevent patients from being reinfected by parasites resistant to the 354 

partner drug during this selection window. Second, resistance to the partner drug was the most 355 

critical factor that enhanced establishment and spread of partial artemisinin resistance. Without 356 

resistance to the partner drug, parasites partially resistant to artemisinin could only spread at 357 

a low rate as the partner drug could still eliminate them, thereby removing their selective 358 

advantage. Our results are in line with recent molecular data which show that parasites 359 

resistant to partner drugs (piperaquine and mefloquine) were already present in the GMS 360 

before partial artemisinin resistance emerged and that the spread of resistance to artemisinin 361 

accelerated when it became linked to resistance to the partner drugs [60-62]. Thus, the 362 

presence of partner drug resistance has probably facilitated the spread of resistance to 363 

artemisinin in the GMS. In contrast, in Africa, to date, only a low degree of resistance to the 364 

most commonly used partner drugs (lumefantrine and amodiaquine) are present [2, 63], which 365 

has likely limited establishment of resistance to artemisinin derivatives. We additionally note 366 

that the evolution of drug resistance in the GMS may have been favoured by the low 367 

transmission intensity (annual EIR range approximate from less than 1 to 25 inoculations per 368 

person per year [64-66]) compare to Africa where the transmission intensity is overall higher 369 

(annual EIR range from less than 1 to more than 500 inoculations per person per year [67, 370 

68]). Similar to previous studies [4, 25, 28, 34, 69], establishment of drug resistance in our 371 

model was more likely in low transmission settings due to the reduced level of within-host 372 

competition between genotypes, as well as population immunity.  373 

Our results suggest that a key strategy to mitigate the evolution of partial artemisinin resistance 374 

is to ensure that the partner drug efficiently kills the partially resistant parasite. Therefore, to 375 
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delay the establishment of artemisinin resistance in Africa and to mitigate the spread of partial 376 

artemisinin resistance in regions where it is already established, we should ensure that limited 377 

or no genotypes are resistant to the partner drug for first-line ACT. One approach to ensure 378 

this is to implement robust molecular surveillance of resistance markers and to specify more 379 

sustainable treatment policies, such as changing first-line ACTs upon detection of resistance 380 

or when the frequency of resistant parasites reach a threshold as recommended by the WHO 381 

[2]. Furthermore, consistent with our results, adherence should continue to be promoted, as 382 

lower treatment compliance can lead to treatment failure even in the absence of resistance to 383 

the partner drug [2, 70, 71]. 384 

Our results suggest that future antimalarial therapies should shorten the selection windows of 385 

long-acting partner drugs. We show that resistance to long-acting drugs (drug B) is the first 386 

step in the evolution of resistance to ACTs, and it depends mainly on the length of the selection 387 

window. We confirm that the selection window strongly depends on the drug half-life, also 388 

consistent with previous studies [4, 23, 27, 28, 49, 58]. Consequently, reducing the half-life of 389 

the partner drug in an ACT regimen could reduce the spread of resistance. However, unless 390 

selection windows are substantially minimised or completely eliminated, the evolution of 391 

resistance would not totally be prevented [58]. Thus, a more sustainable option for ACTs would 392 

be to use triple artemisinin-based combination therapies (TACTs). TACTs involve combining 393 

an artemisinin derivative with two long-acting drugs [72].  394 

If or when TACTs are to be widely used, our results emphasize that the two long-acting drugs 395 

should have matching half-lives to ensure that parasites are not exposed to residual drug 396 

concentrations of only one of the two partner drugs (noting that this is simple in principle, but 397 

more difficult in practice [73]). In addition, the parasite population should be devoid of parasites 398 

resistant to either of the two long-acting drugs. If resistance to one partner drug already exists 399 

in the population, the second partner drug would not be protected, and mutations conferring 400 

resistance to this second drug would be selected. Thus, ideally, we should avoid combining 401 

previously used long-acting drugs (because resistance to these drugs may already be 402 

present), and rather favour two partner drugs not routinely in use, and preferably having a new 403 

mechanism of action. Therefore, selecting drugs to combine for TACTs requires balancing the 404 

need to mitigate resistance against the development time of new partner drugs. Note that the 405 

development of new partner drugs for TACTs may be challenging because combining three 406 

drugs is likely to increase the risk of toxicity and the treatment price, and future antimalarial 407 

medicines must remain tolerated by patients and affordable [72]. 408 

Another approach to delay the evolution of partial artemisinin resistance could focus on 409 

extending the period of action of artemisinin derivatives. In our monotherapy analysis on the 410 

spread of a genotype partially resistant to artemisinin, we found that the spread of partially 411 

resistant genotypes decreased when the drug was present in patients for a longer time, such 412 

as if it had a long half-life and there was proper treatment adherence. This result arises 413 

because partially resistant parasites are still affected by the drug [40, 42-44]. Thus, increasing 414 

their exposure to the drug leads to higher killing and reduced spread. Increasing the exposure 415 

to artemisinin derivatives can be achieved by using the artemisinin derivative having the 416 

longest half-life and, as highlighted in other studies [74-76], can be done by increasing the 417 

number of doses and days that patients receive treatment. However, it is worth noting that 418 

extending the dosage regimen will be efficient only with adequate adherence to treatment, 419 

which may be challenging to achieve in practice. Also, as artemisinin derivatives are co-420 

administrated with at least one long-acting drug, increasing the number of doses of this 421 
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combination therapy would require reducing the concentration of the partner drug to prevent 422 

the partner drug from reaching toxic concentrations.  423 

The evolution of drug resistance is a three-step process consisting of mutation, establishment, 424 

and spread. Mutation rates in malaria can easily be measured, and spread, quantified by the 425 

selection coefficient, is also easy to measure. However, the probability of establishment and 426 

its relation to the selection coefficient constituted a significant knowledge gap. Standard 427 

population genetic models assume that the number of secondary infections follows a Poisson 428 

distribution [15, 77]. Under this assumption, for selection coefficients lower than 0.2 (according 429 

to an informal literature review in [16], most selection coefficient estimates for malaria drug 430 

resistance mutations from the field fall between 0.02 to 0.12), the probability of establishment 431 

is approximately equal to twice the selection coefficient [15, 77]. However, the number of 432 

secondary malaria infections more likely follows a negative binomial distribution due to the high 433 

heterogeneity of transmission, which may substantially reduce the probability of establishment 434 

(Box 2 of [15]). In this modelling study, we were uniquely able to quantify the link between 435 

selection coefficients and the probability of establishment of mutations. On average, we 436 

predicted that, for selection coefficients lower than 0.2, the probability of establishment was 437 

equal to 0.87-times the selection coefficient. Therefore, our findings suggest that the variation 438 

in the number of secondary infections of P. falciparum must be much greater than the Poisson 439 

distribution assumed by standard population genetics models, and this higher variation 440 

reduces the probability of establishment of emerging mutations. 441 

As with all modelling studies, our approach has several limitations, primarily arising from 442 

constraints imposed by the model. First, our drug action model does not capture stage-specific 443 

killing effects, so we could not model parasites partially resistant to artemisinin being 444 

insensitive to the drug only during extended ring-stage [40, 42-44], although previous analyses 445 

suggested this would be captured by our variation in the maximum killing rate [78]. 446 

Nevertheless, if we modelled a reduction of the drug effect restricted to the ring-stage, we 447 

expect to obtain similar results. That is, a long half-life and high treatment adherence would 448 

increase the likelihood that the drug is present within patients during any stage other than the 449 

ring-stage, and thus the drug would kill more resistant parasites.  450 

Second, our model did not capture the impact of artemisinin resistance on gametocytes. 451 

Previous studies have highlighted that artemisinin kills gametocytes, and patients infected with 452 

parasites partially resistant to artemisinin exhibit higher gametocyte densities than patients 453 

infected with sensitive parasites [79, 80]. We did not model the impact of artemisinin and 454 

resistance on gametocytes. This effect is likely to accelerate the spread of partial resistance. 455 

However, the relationship between the different factors reported in this study should be 456 

unchanged. 457 

Third, our model, OpenMalaria, does not capture the recombination of P. falciparum parasites 458 

in mosquitoes. Currently, OpenMalaria does not support chromosomal recombination as it 459 

does not track the different genotypes in mosquitoes, and the genotype of new infections is 460 

based on the genotype frequency in humans. Previous models have shown that if multiple 461 

mutations are needed to confer drug resistance, recombination could slow the evolution of 462 

drug resistance by separating these mutations, especially in settings with a high rate of 463 

infection [69, 81]. We ignored the effect of recombination by assuming that only one mutation 464 

differs between the resistant and sensitive genotypes, which is valid for resistance to certain 465 

drugs, such as artemisinin [2, 3]. However, for other drugs, such as sulfadoxine-466 
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pyrimethamine, drug resistance is due to the accumulation of multiple mutations in two genes 467 

[82]. 468 

Lastly, to investigate the establishment of drug-resistant parasites, we modelled the 469 

emergence of mutations through importation. Consequently, our estimations represent the 470 

establishment of mutations imported into a population or mutations emerging in mosquitoes 471 

(assuming that the mosquito has only transmitted the mutated genotype and not the wild type 472 

genotype to the individual). A mutation emerging during the blood-stage within the human host 473 

may have a lower probability of establishment because sensitive parasites would be present 474 

in the host, leading to competition between them. It is still unclear whether mutations conferring 475 

drug resistance arise during the blood-stage (due to the high parasite numbers) or during the 476 

sexual stage in mosquitoes (because recombination generates many genetic variations). 477 

Nevertheless, the probabilities of establishment estimated in this study are consistent with the 478 

probabilities of establishment predicted by a previous study [15].  479 

In summary, our results confirm that mutations conferring malaria drug resistance are more 480 

likely to establish in low transmission settings. Our results demonstrate that the establishment 481 

and spread of resistance to artemisinin derivatives have likely been facilitated by pre-existing 482 

resistance to partner drugs. Thus, it is essential to prioritise monitoring and to limit the spread 483 

of resistance to partner drugs in current or future ACT regimens. If resistance to the partner 484 

drug is confirmed, response strategies should prioritise monitoring molecular markers and 485 

treatment failure and switching to an ACT with an effective partner drug should be considered. 486 

In addition, our results show that drug properties play an essential role in the evolution of 487 

parasite drug resistance. Thus, the ongoing development of new antimalarial combinations 488 

should limit selection windows of partner drugs by matching half-lives, hopefully leading to 489 

longer lasting combination treatments against malaria. In the medium-term, for existing ACTs, 490 

it would be advantageous to increase the time of parasite exposure to the short-acting 491 

artemisinin derivate and/or to include a second long-acting partner drug with a matching half-492 

life to the other long-acting partner drug (triple ACTs [72]) and for which limited or no parasite 493 

resistance exists in the target population. 494 

Methods 495 

Simulation model and the parameterisation of treatment profiles and resistant 496 

genotypes 497 

 Overview of our OpenMalaria model 498 

Our individual-based model, OpenMalaria, simulates the dynamics of P. falciparum in humans 499 

and links it to a periodically forced deterministic model of P. falciparum in mosquitoes [83-85]. 500 

The model structure and fitting are described in detail elsewhere [84, 85], including open-501 

access code (https://github.com/SwissTPH/openmalaria) and documentation 502 

(https://github.com/SwissTPH/openmalaria/wiki), and a recently published manuscript 503 

provides a new calibration [86]. Here, we have summarised the main components of 504 

OpenMalaria and its latest developments in version 40.1, which enabled us to model the 505 

establishment and spread of drug-resistant parasites. 506 

OpenMalaria is an ensemble of models in which mosquito and infection events, and parasite 507 

and human attributes are updated every five days. A demography model maintains a constant 508 
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human population size and age structure across the simulation. Multiple parasite genotypes 509 

and their initial frequency can be defined in more recent model versions. For each infection, a 510 

mechanistic model simulates the parasite dynamics within the host and incorporates innate, 511 

variant, and acquired immunity [50]. The within-host model allows for concurrent infection of 512 

multiple parasite genotypes within the same host and captures indirect competition between 513 

genotypes based on host immunity, which regulates the overall parasite load. The user can 514 

specify a reduction of the within-host multiplication factors of each genotype to model a fitness 515 

cost associated with the mutation. The host's parasite density determines the symptoms and 516 

mortality of patients and diagnostic test results. The occurrence and severity of patient 517 

symptoms depend on their pyrogenic threshold, which increases (until saturation) with recent 518 

parasite exposure and decays over time [87]. Severe episodes of malaria occur due to a high 519 

parasite density or due to co-morbidities [88]. Malaria mortality can be a consequence of a 520 

severe episode or an uncomplicated episode with co-morbidity [88, 89].  The model also takes 521 

into account neonatal deaths [88, 89]. Immunity to asexual parasites prevents severe cases 522 

by decreasing the parasite multiplication rate within the host. Individual immunity depends on 523 

the cumulative parasite and infection exposure frequency, as well as maternal immunity in their 524 

newborn children for several months [90].  525 

The case management component of OpenMalaria describes the use of treatment for 526 

uncomplicated and severe cases and depends on access to health services and whether 527 

patients have previously been treated for the same episode [91]. The disease model includes 528 

explicit pharmacokinetic-pharmacodynamic (PK/PD) models that capture the process whereby 529 

drugs reduce the parasite multiplication rate in treated hosts [51, 54]. Pharmacodynamic 530 

parameters are parameterised individually for each genotype to allow different degrees of drug 531 

susceptibility to be modelled.  532 

The entomological component of OpenMalaria simulates the mosquito vector feeding 533 

behaviours and tracks the infectious status of mosquitoes [83]. The periodicity of this model 534 

allows seasonal patterns of transmission to be captured. The probability that a feeding 535 

mosquito becomes infected depends on the parasite density within bitten individuals [92]. No 536 

recombination is modelled between the different genotypes in the mosquitoes. The number of 537 

newly infected hosts depends on the simulated entomological inoculation rate (EIR) of the 538 

vector model [83]. The genotype of new infections is based on the genotype frequencies in 539 

humans from the previous five time steps [92].  540 

  Parameterisation of the treatment profiles  541 

This study investigated factors influencing the establishment and spread of parasites resistant 542 

to three different treatment profiles.  543 

The first treatment profile modelled was a short-acting drug administered as monotherapy, 544 

referred to as drug A. Drug A has a short half-life and a high killing efficacy, simulating 545 

artemisinin derivatives (Figure 1A and 1B). We modelled the pharmacokinetics of drug A using 546 

a one-compartment model, which is considered sufficient when modelling short-acting 547 

antimalarials [52, 54]. We varied key PK/PD parameters (half-life, EC50, Emax) in the global 548 

sensitivity analysis to assess their influence on the rate of spread of resistance. The EC50 549 

ranged from 0.0016 to 0.009 mg/l to include the EC50 of artemether, artesunate, and 550 

dihydroartemisinin [52, 54]. The half-life parameter ranges represented the values for 551 

artemether, artesunate, and dihydroartemisinin used by [52, 54] (Table 1). Note that in [52], 552 

the Emax of all short-acting drugs was equal to 27.6 per day. However, we varied the killing 553 
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rate and included higher values to investigate its effects on the rate of spread (Table 1). To 554 

ensure that drug A killed the sensitive parasites efficiently for any combination of parameters, 555 

we extended the treatment course from a daily drug dose for three days to a daily drug dose 556 

for six days. Moreover, we parameterised the dosage and constant parameter values to that 557 

for dihydroartemisinin (Table S1), as it is the artemisinin derivate with the shortest elimination 558 

half-life and highest EC50 [52, 54]. By doing so, we also ensured that drug A had the typical 559 

profile of an artemisinin derivative. 560 

The second treatment profile modelled was a long-acting drug administered as monotherapy, 561 

referred to as drug B. Drug B had a long half-life and a lower Emax than drug A (Figure 1A 562 

and 1B), typical of partner drugs used for ACTs. We modelled the PK of drug B with a two-563 

compartment model, which is more typical of the clinical PK of partner drugs [51]. As for drug 564 

A, key PK/PD parameters (half-life, EC50, Emax, and dosage) were varied in the global 565 

sensitivity analysis. The EC50 ranged from 0.01 to 0.03 mg/l to include the EC50 of mefloquine, 566 

piperaquine and lumefantrine used by [52, 54]. The half-life range corresponded to the value 567 

reported for mefloquine, piperaquine, lumefantrine in [93-97] (Table 1). We increased the 568 

Emax range from 3.45 per day (as reported in [54]) to 5.00 per day to investigate the effect on 569 

the rate of spread  (Table 1). We also assessed the impact of Cmax on the rate of spread for 570 

drug B because the Cmax varies between ACTs partner drugs and has a strong influence on 571 

the post-treatment killing effect of drug B [73]. We varied drug dosage from 30 to 40 mg/kg to 572 

examine the influence of variation of Cmax on the spread rate for drug B. The lower limit of 30 573 

mg/kg was fixed to ensure that drug B killed the sensitive genotype efficiently for any parameter 574 

combination. The treatment course involved a daily drug dose for three consecutive days. To 575 

ensure that drug B had the profile of typical partner drugs, the values of the constant 576 

parameters were parameterised to the values of piperaquine reported in [54, 94] (Table S2).  577 

The last treatment profile was a combination of drugs A and B, simulating ACT. We tracked 578 

the concentration of each drug independently. We used the same models, parameter values 579 

and ranges for the two drugs as when both drugs were used as monotherapy. However, the 580 

treatment course involved a daily dose of both drugs for three days, as recommended by the 581 

WHO for most ACTs [56]. In OpenMalaria, the killing effects of the two drugs were calculated 582 

independently and acted simultaneously on the parasites. 583 

 Parameterisation of the drug-resistant genotypes 584 

For each simulation, we tracked two genotypes, one drug-resistant and one drug-sensitive. 585 

We investigated the spread of resistant parasites with different degrees of resistance (Table 586 

1). We modelled the phenotype of drug resistance and the degree of resistance differently for 587 

each drug profile.  588 

Previous studies have shown that parasites partially resistant to artemisinin exhibit an 589 

extended ring-stage during which they are not sensitive to artemisinin (even at high drug 590 

concentrations) but remain sensitive to the drug during other stages of the blood replication 591 

cycle [40-44]. OpenMalaria does not model the specific drug-killing effect for the different steps 592 

of the blood-stage. As in [98, 99], we assumed that parasites resistant to drug A had a reduced 593 

Emax compared with sensitive ones (Figure 1B). This assumption captured the fact that, 594 

overall, drug A killed fewer resistant parasites than sensitive ones at any drug concentration 595 

because they are not sensitive to artemisinin during the ring-stage and that this stage-specific 596 

effect is best incorporated into PK/PD modelling by variation in Emax [78].  597 
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Previous studies reported that parasites resistant to long-acting drugs typically have an 598 

increased EC50 [45-47]. Thus, as in other models, we defined parasites resistant to drug B to 599 

have a higher EC50 than the sensitive ones (Figure 1B) [52, 54]. With an increased EC50, the 600 

resistant parasites were less susceptible to the drug at low drug concentrations. Thus, these 601 

resistant genotypes were more likely to survive drug treatment and are more likely to 602 

successfully infect new hosts with higher residual drug concentrations [58].  603 

Considering drugs A and B in combination, the resistant genotype was resistant to drug A. But 604 

in the global sensitivity analysis, both the sensitive and resistant genotypes could have some 605 

degree of resistance to drug B. The decreased susceptibility to drug B was the same for both 606 

sensitive and resistant genotypes, meaning that we assumed the two genotypes differed only 607 

in one mutation, which conferred resistance to drug A. This assumption allowed us to ignore 608 

the effect of recombination in the mosquitoes. In effect, this assumed that the allele defining 609 

the level of resistance to drug B was fixed in the population. 610 

Approach to identify the key drivers of the spread of drug-resistant parasites 611 

Through global sensitivity analyses, we quantified how the factors in Table 1 influenced the 612 

spread of drug-resistant parasites for each treatment profile. First, we estimated the effect of 613 

each factor in a non-seasonal setting with a population fully adherent to treatment. Based on 614 

these results, we identified specific settings for further analysis. We performed additional 615 

constrained sensitivity analyses to investigate the impact of varying drug properties and fitness 616 

costs in a fixed set of settings (i.e. in low and high transmission settings, with low and high 617 

treatment levels of monotherapy or combination therapy) and with a fixed degree of resistance. 618 

In this secondary analysis, we also investigated the effect of drivers in seasonal transmission 619 

settings (Figure S10) and where populations adhere to either 100% or 67% of treatment doses. 620 

Due to the computational requirements for a large number of simulations of OpenMalaria, and 621 

the number of factors investigated, it was not feasible to simulate either a full-factorial set of 622 

simulations to perform a multi-way sensitivity analysis, or to perform a global sensitivity 623 

analysis. Therefore, we trained a Heteroskedastic Gaussian Process (HGP) [100] on a set of 624 

OpenMalaria simulations and performed global sensitivity analyses using this emulator (Figure 625 

1C), adapting a similar approach to [101] and [86]. Our approach involved: (i) randomly 626 

sampling combinations of parameters; (ii) simulating and estimating the rate of spread of the 627 

resistant genotype for each parameter combination in OpenMalaria; (iii) training an HGP to 628 

learn the relationship between the input (for the different drivers) and output (the rate of spread) 629 

with iterative improvements to fitting through adaptive sampling, and (iv) performing a global 630 

sensitivity analysis based on the Sobol variance decomposition [70]. Each step of the workflow 631 

is detailed below. 632 

 Randomly sample combinations of parameters 633 

We randomly sampled 250 different parameter combinations from the parameter space shown 634 

in Table 1 using a Latin Hypercube Sampling (LHS) algorithm [57]. The parameter ranges were 635 

defined as follows. We defined the ranges for the properties of drug A and drug B to include 636 

the typical parameter values of artemisinin derivatives and a long-acting partner drug, 637 

respectively [52, 54, 93-97]. The range of the degree of resistance captured the spread of drug-638 

resistant parasites, which vary from fully sensitive to having almost no drug sensitivity. The 639 

fitness costs were extracted from studies investigating the decline of chloroquine-resistant 640 

parasites after the drug pressure was removed [102, 103]. The variation in annual EIR captured 641 
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settings with low transmission to those with high transmission. The range of access to 642 

treatment captured settings with low to high 14-days effective coverage. The values of the 643 

diagnostic detection limit captured the sensitivity of typical diagnostics used for malaria (rapid 644 

diagnostic test, microscopy, and polymerase chain reaction (PCR)) [104, 105].  645 

 Simulate and estimate the rate of spread of the drug-resistant genotype 646 

We quantified the rate of spread through the selection coefficient, a measure widely used in 647 

population genetics to assess the strength of selection on a genotype [16]. The selection 648 

coefficient is the rate at which the logit of the resistant genotype frequency increases each 649 

parasite generation and should be linear throughout the spread [16]. Population genetics 650 

theory often assumes an infinite population size to remove stochastic fluctuation of the allele 651 

frequency, also called genetic drift [16]. However, in our model the parasite population size is 652 

finite, so stochastic fluctuations of the genotype frequency are present. Thus, we should avoid 653 

estimating the selection coefficient when there is a low frequency of the resistant genotype 654 

(from a small human population size, a low EIR, and a small initial frequency of the resistant 655 

genotype) because the resistant genotype may become extinct due to the stochastic 656 

fluctuation. In addition, the effects of genetic drift that occurs when a genotype is present at a 657 

low frequency may cause non-linearity during resistance spread which may obscure the 658 

estimation of the selection coefficient [16].  659 

Following the approach described in [16], we assumed an initial percentage of infected humans 660 

carrying the resistant genotype of 50%. A high initial percentage minimises the impact of 661 

random fluctuation on our estimation, and the subsequent risk of extinction, without affecting 662 

our estimate because the selection coefficient was not frequency-dependent (Figure S11). We 663 

simulated the spread of resistant parasites in a human population of 100,000 individuals with 664 

an age structure of a typical African country [106]. We ran each parameter combination on five 665 

stochastic realisations. The simulation started with a burn-in period of 100 years to reach the 666 

expected level of immunity in the population and an additional 30 years to reach EIR 667 

equilibrium (Figure S12). Both genotypes were sensitive to the drug during this period, so the 668 

percentage of infected humans carrying the resistant genotype remained stable. After the burn-669 

in period, we introduced the fitness cost and the drug for which the resistant genotype had 670 

reduced sensitivity. We then estimated the selection coefficient, s, as,  671 
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where p(t) is the relative frequency of the resistant genotype in inoculations, t is the number of 675 

parasite generations after introducing the new drug at t = 0. We assumed that a parasite 676 

generation is two months (60 days) as in [16]. We started the regression at one parasite 677 

generation after introducing the new drug (at 60 days). We stopped the regression 12 678 

generations later, at 720 days, because, as shown in [16], it was computationally convenient 679 

and returned stable selection coefficient estimates. The regression was stopped sooner if the 680 

relative frequency of inoculations carrying the resistant genotype was higher than 90% or lower 681 

than 30% to prevent tracking a small number of a single genotype for which genetic drift is 682 

strong. In seasonal settings, the rate of spread of the resistant genotype varied throughout the 683 

year. Consequently, we estimated the selection coefficient using a moving average of the 684 
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relative frequency of the resistant genotype in inoculations (Figure S13).  This method 685 

prevented biasing the selection coefficient according to the period included in the regression. 686 

Once the selection coefficient was estimated, it could be converted to the number of parasite 687 

generations needed for the relative frequency of the resistant genotype in inoculations to 688 

increase from p(1) to p(t),  689 
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We could then convert the number of parasite generations to time in years, a more relevant 691 

public health measure than the selection coefficient itself. 692 

 Train the emulator and improve its accuracy 693 

We randomly split our data into a training dataset containing 80% of simulations and a test 694 

dataset containing 20% of simulations. We trained the Heteroskedastic Gaussian Process 695 

(HGP) on the training dataset using the function mleHetGP from the R package ‘hetGP’ [100]. 696 

To assess the accuracy of the emulator, we predicted the selection coefficient for the test 697 

dataset with the emulator and compared these predictions with the expected selection 698 

coefficient estimated using OpenMalaria. We iteratively improved the accuracy of our emulator 699 

through adaptive sampling. Adaptive sampling involved resampling 100 parameter 700 

combinations in the parameter space where we were less confident (higher variation) in the 701 

HGP prediction and repeating the entire process until the emulator had a satisfactory level of 702 

accuracy. The satisfactory level of accuracy was defined based on the correlation coefficient 703 

and the root means squared error of the predicted selection coefficient and expected selection 704 

coefficient (Figure S14-20). 705 

 Global sensitivity analysis 706 

Using the emulator, we undertook global sensitivity analyses using Sobol's method [107]. This 707 

method attributed fractions of the selection coefficient variance to each input [107]. We 708 

performed the global sensitivity analysis using the function soboljansen from the R package 709 

‘sensitivity’ [108], and two random datasets with a sample size of 100,000, with 150,000 710 

bootstrap replicates. With this function, we estimated first-order and total Sobol' indices 711 

simultaneously. The first-order indices represent contributions of each parameter's main effect 712 

to the model output variance. The total effect represents the contribution of each parameter to 713 

the model output variance considering their interactions with other factors. We report only the 714 

first-order indices in the Results section because we did not observe many interactions 715 

between these factors. Some parameters supported the spread of resistance (increased the 716 

selection coefficient), whilst others hindered the spread (decreased the selection coefficient). 717 

To visualise the direction of the effect of each parameter, we calculated the 25th, 50th, and 718 

75th quantiles of the predicted selection coefficient over the corresponding parameter ranges.  719 

Establishment of drug resistance 720 

As explained in the Introduction, the establishment of resistant mutations is a stochastic 721 

process that depends on the selection coefficient of the mutation and the heterogeneity of 722 

parasites reproductive success in the setting, which in turn depends on the transmission level 723 

and the health system strength [13, 15-18]. Estimating the probability of establishment requires 724 

running many stochastic realisations due to the stochasticity of this step. To be more 725 
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computationally efficient, we assessed the probability of establishment of a subset of 10 726 

resistant genotypes with a known selection coefficient per setting and treatment profile. Based 727 

on the observed relationships between the selection coefficient and the probability of 728 

establishment for each treatment profile and setting, we could then extrapolate the probability 729 

of establishment of any mutations having a known selection coefficient. 730 

To estimate the probability of establishment, we modelled the emergence of resistant 731 

mutations in a fully susceptible population. We used the approach described in [16] in which 732 

resistant infections were imported into the population at a low rate. In OpenMalaria, imported 733 

infections have the same frequencies of genotypes as in initialisation, thus we cannot import 734 

only resistant infections. Therefore, to import resistant infections in a population infected only 735 

by sensitive parasites, we followed the step described below (Figure S21). We first defined a 736 

50% relative frequency of resistant parasites in infected humans. The simulation started with 737 

a burn-in phase of 100 years, during which both genotypes were sensitive to treatment. This 738 

meant that the relative frequency of the resistant parasites was stable (at 50%). In the second 739 

phase, we introduced a drug to which resistant parasites were hypersensitive (the drug EC50 740 

was 100-times lower in the resistant genotype than the sensitive one). The second phase ran 741 

for 100 years, and once complete, the parasite population was fully susceptible. In the third 742 

phase, we imported new infections at a rate low enough to ensure that the previously imported 743 

mutation either established or went extinct before a new resistant mutation was imported 744 

(Supplementary file 1: section 5.1). The third phase ran until one mutation established (over 745 

50% of infected humans carried the resistant genotype).  746 

The probability of establishment, Pe, can be estimated based on the average number of 747 

mutations that are imported until one mutation establishes, Ne, as follows (the probability of a 748 

successful event can be estimated as one divided by the mean number of independent trials 749 

required to achieve the first success [109]), 750 
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We simulated 300 stochastic realisations, R, and estimated Pe, as, 752 
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where Nm,j is the number of imported mutations until one mutation established in run j. Re-754 

arranging the formula shows that Pe is equal to the number of mutations established in all 755 

stochastic realisations (this number is equal to R as only one mutation established per 756 

stochastic realisation) divided by the total number of mutations imported into all stochastic 757 

realisations (mutations that became extinct and established). Note that in each stochastic 758 

realisation, we estimated Nm, as, 759 

%/ = ')%0, 760 

where te is defined as the last time that the number of infections with a resistant genotype was 761 

equal to zero, i.e. the time (in years) until the arrival of the first mutation that successfully 762 

establishes. Ni is the number of imported resistant infections per year. Note that OpenMalaria 763 

specifies the number of imported infections, V, in numbers of imported infections per 1,000 764 

people per year, and half of the imported mutations were sensitive. Thus, the number of 765 

imported resistant infections that occurred until one established can be estimated as, 766 
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%/ = ') ( +1
2(*333)) = 5')+, 767 

where N is the human population size. We set the population size to 10,000 to be 768 

computationally feasible (as since we were not measuring the selection coefficient, there was 769 

no need to minimise the influence of stochastic processes). 770 
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1. Supplementary results 11 

1.1 Supplementary figures that illustrate the results 12 

Figure S1 13 

Influence of the access to treatment and degree of resistance on the selection coefficients of a 14 
genotype resistant to drug A or drug B used in monotherapy. 15 

Lines represent medians and shaded areas represent interquartile ranges of the selection coefficients 16 
estimated during the global sensitivity analysis over the parameter range for levels of access to 17 
treatment (10% to 80%), the degree of resistance to drug A (1- to 50-fold decrease in Emax), and the 18 
degree of resistance to drug B (1- and 20-fold increase in EC50).   19 
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Figure S2  20 

Magnitude and direction of effect of drug properties and fitness cost on predicted selection 21 
coefficients for low and high levels of transmission, degree of drug resistance, treatment 22 
adherence, in seasonal or perennial settings with monotherapy or combination treatment. 23 

The solid and dashed lines represent the median selection coefficients over the parameter ranges 24 
estimated in each setting that had low access to treatment (10%) and an entomological inoculation rate 25 
(EIR) of 5 (solid lines) or 500 (dashed lines) inoculations per person per year. Settings varied in their 26 
seasonality pattern and level of adherence to treatment (low=67% and high=100%). For each treatment 27 
profile, we show results for parasites with two different degrees of resistance; degree of resistance of 7 28 
(low) and 18 (high) to drug A (Emax shift), 2.5 (low) and 10 (high) to drug B (EC50 shift), and with 29 
combination of drugs A and B, 7 (low) and 18 (high) to drug A and 10 to drug B. The parameter ranges 30 
were the following: fitness cost (1, 1.1); drug A half-life (0.035, 0.175) days; drug B half-life (6, 22) days; 31 
Cmax/EC50 ratio of drug A (55, 312); Cmax/EC50 ratio of drug B at a high level of adherence to 32 
treatment (5.4, 21.7); and at a low level of adherence (4.0, 16.2).  33 
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Figure S3 34 

First-order indices describing level of importance of each factor from the constrained sensitivity 35 
analysis of the spread of a genotype resistant to drug A used in monotherapy.  36 

The first-order indices were assessed for parasites that had different degrees of resistance to drug A 37 
(low=7 and high=18 fold decrease in Emax) in settings that differ in their levels of access to treatment 38 
(high=10% and low=80%), levels of transmission (5, 10, and 500 inoculations per person per year), 39 
transmission patterns (no seasonality and seasonality), and levels of adherence to treatment (low=67%, 40 
and high=100%). The explored parameter ranges were the following: the fitness cost (1, 1.1); the half-41 
life of drug A (0.035, 0.175) days; the ratio Cmax/EC50 for drug A (55, 312); the Emax of drug A (27.5, 42 
31.0) per day; and the diagnostic detection limit (2, 50) parasites/microliter.   43 
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Figure S4 44 

First-order indices of each factor from the constrained sensitivity analysis of the spread of a 45 
genotype resistant to drug B used in monotherapy.  46 

The first-order indices were assessed for parasites that had different degrees of resistance to drug B 47 
(low=2.5 and high=10 fold increase in EC50) in settings that differ in their levels of access to treatment 48 
(low=10 %, and high=80%), levels of transmission (5, 10, and 500 inoculations per person per year), 49 
transmission patterns (no seasonality and seasonality), and levels of adherence to treatment (low=67%, 50 
and high=100%). The explored parameter ranges were the following: the fitness cost (1, 1.1); the half-51 
life of drug B (6, 22) days; the ratio Cmax/EC50 for drug B at a high level of adherence to treatment (5.4, 52 
21.7) and at a low level of adherence to treatment (4.0, 16.2); the Emax of drug B (3.45, 5.00) per day; 53 
and the diagnostic detection limit (2, 50) parasites/microliter.  54 
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Figure S5 55 

First-order indices of each factor from the constrained sensitivity analysis of the spread of a 56 
genotype resistant to drug A when drug A and drug B are used in combination. 57 

The first-order indices were assessed for parasites that had different degrees of resistance to drug A 58 
(low=7 and high=18 fold decrease in Emax) in settings that differ in their levels of access to treatment 59 
(low=10 %, and high=80%), levels of transmission (5, 10, and 500 inoculations per person per year), 60 
transmission patterns (no seasonality and seasonality), and levels of adherence to treatment (low=67%, 61 
and high=100%). The explored parameter ranges were the following: the fitness cost (1, 1.1); the half-62 
life of drug A (0.035, 0.175) days; the half-life of drug B (6, 22) days; the ratio Cmax/EC50 for drug A 63 
(55, 312); the ratio Cmax/EC50 for drug B at a high level of adherence to treatment (5.4, 21.7) and at a 64 
low level of adherence to treatment (4.0, 16.2); the Emax of drug A (27.5, 31.0) per day; the Emax of 65 
drug B (3.45, 5) per day; and the diagnostic detection limit (2, 50) parasites/microliter.   66 
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Figure S6 67 

Distribution of selection coefficient across settings with high access to treatment.  68 

The selection coefficients were estimated for each treatment profile during the constrained sensitivity 69 
analysis of the spread of a resistant genotype having a low degree of resistance (equal to 7 for drug A 70 
(Emax shift), and to 2.5 for drug B (EC50 shift)), in settings with a high access to treatment (80%). The 71 
distributions are stratified by (A) the intensity of transmission (B) the seasonality pattern, and (C) the 72 
level of adherence to treatment in the settings.   73 
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Figure S7 74 

Treatment usage.  75 

The figure highlights the relationship between the transmission intensity (EIR) and the percentage of 76 
people that received treatment during a month (orange dots) and the percentage of infected people that 77 
received treatment during a month (blue dots). In this illustration, the level of access to treatment was 78 
equal to 80%, and the transmission was perennial.  79 
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Figure S8 80 

Distribution of selection coefficient across settings with a low access to treatment.  81 

The selection coefficients were estimated for each treatment profile during the constrained sensitivity 82 
analysis of the spread of a resistant genotype having a low degree of resistance (equal to 7 for drug A 83 
(Emax shift) and to 2.5 for drug B (EC50 shift)), in settings with a low access to treatment (10%). The 84 
distributions are stratified by (A) the intensity of transmission, (B) the seasonality pattern, and (C) the 85 
level of adherence to treatment in the settings. 86 
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1.2 The benefit of combination therapy 

We illustrated the benefit of combination therapy by assessing how the degree of resistance 
to drug B influenced (i) the time taken for mutations conferring different degrees of resistance 
to drug A to spread from 1% to 25% of inoculations carrying the resistant genotype, T25, 
(Figure 5, first y-axis) and (ii) their probability of establishment (Figure 5, second y-axis). Both 
the T25 and the probabilities of establishment were estimated based on selection coefficients 
predicted using the fitted emulators. To illustrate the impact of the transmission intensity on 
the two measurements, we predicted their values in low and high transmission levels. Note 
that, as discussed in the Results section, the relation between the selection coefficient and 
the probability of establishment changes slightly with the transmission level (Figure 4 of main 
text). In our example, drug A had the drug profile of dihydroartemisinin and drug B of 
piperaquine. We set the level of access to treatment to 100%, assumed no fitness cost, the 
transmission was perennial, and the population adhered to treatment fully.  

In a low transmission setting, in a parasite population fully susceptible to drug B, parasites 
resistant to drug A had a low probability of establishment and required many years to spread 
from 1% to 25% of inoculations carrying the resistant genotype. For example, a mutation with 
a low (3.5-fold decrease in Emax) or high (13.5-fold decrease in Emax) degree of resistance 
to drug A had a probability of 1/1000 or 1/100, respectively, to establish in the population and 
required more than 39 years or over 18 years, respectively, to spread from 1% to 25% of 
inoculations carrying the resistant genotype (Figure 5). The probability of establishment and 
T25 decreased tremendously with increased degrees of resistance of both genotypes to drug 
B (Figure 5). When the parasite population had a high degree of resistance to drug B (degree 
of resistance of 13.5), the probability of establishment increased to more than 1/10 and the 
T25 was reduced to approximately three years, independent of the degree of resistance to 
drug A (Figure 5). These results confirm that resistance to partner drugs facilitates the 
establishment and spread of partial artemisinin resistance. 

In high transmission settings, higher degrees of resistance to drug B also accelerated the 
establishment and spread of parasites resistant to drug A (Figure 5). However, the probability 
of establishment and the rate of spread were consistently lower in high transmission settings 
compared with low transmission settings (Figure 5). In addition, for a specific T50, the 
probability of establishment was slightly lower than in the low transmission setting due to the 
slight change in the relation between selection coefficients and probabilities of establishment 
with the EIR (see Results). These results agree with our observations that higher levels of 
within-host competition and immunity minimise the establishment and spread of resistance to 
artemisinin in high transmission settings.  
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Figure S9 

Illustration of the benefit of combination therapy on the evolution of drug resistance as time to 
25% relative frequency of resistant genotypes. 

We estimated the probability of establishment and the time needed for parasites resistant to drug A to 
spread from 1% to 25% of inoculations carrying the resistant genotype, T25, for multiple degrees of 
resistance of the resistant genotype to drug A (Emax shift) and multiple degrees of resistance of both 
genotypes to drug B (EC50 shift). We assumed Drug A has a similar drug profile of dihydroartemisinin 
and drug B of piperaquine. We assumed a level of access to treatment of 100%. The population fully 
adhered to treatment. The resistant parasites had no fitness cost. The transmission intensity was equal 
to 5 (low transmission intensity) or 500 (high transmission intensity) inoculations per person per year 
(reflected low to very high transmission). The transmission was perennial.  
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2. Details on the parameterisation of OpenMalaria 

Table S1 

Pharmacokinetics (PK) and pharmacodynamics (PD) parameter values for drug A that were kept 
constant throughout the sensitivity analyses.  

Component Parameter Value Reference 

PK 
Volume distribution (l/kg) 1.49 [1] 

Treatment dosage (mg/kg) 4.00 [1, 2] 

PD Slope of the effect curve 4.00 [1, 2] 

  



  

13 
 

Table S2 

Pharmacokinetics (PK) and pharmacodynamics (PD) parameter values for drug B that were kept 
constant throughout the sensitivity analyses. 

Component Parameter Value Reference 

PK 

Absorption rate (per day) 11.16 [3] 

Rate at which the drugs move from the central 
compartment to the peripheral compartment (per day) 8.46 [3] 

Rate at which the drugs move from the peripheral 
compartment to the central compartment (per day) 3.30 [3] 

Volume distribution (l/kg) 173.00 [3] 

PD Slope of the effect curve 6.00 [2, 3] 
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Figure S10 

The seasonal transmission of malaria. 

Example of the EIR (inoculations per person per year) across a year in the seasonal setting of malaria 
transmission, based on field studies conducted in Tanzania. Here the total EIR is 360 inoculations per 
person per year.  
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3. Estimation of the selection coefficient 

Figure S11 

Proof that the selection coefficient is not frequency-dependent in OpenMalaria. 

The figure illustrates the logit of the relative frequency of the resistant genotype over time when the 
initial relative frequency of infected humans carrying the resistant genotype was 5%. The selection 
coefficient slope of the logistic regression) was less stable after six years because the percentage of 
inoculations carrying the sensitive genotype was lower than 0.5%. Thus, the influence of stochastic 
processes was strong.   
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Figure S12 

Illustration of typical simulations run in OpenMalaria to estimate the rate of spread of a drug-
resistant genotype.  

The brown line represents the relative frequency of the resistant genotypes in inoculations. The solid 
line illustrates a simulation in which the resistant genotype spreads in the population (selection 
coefficient above 0). The dotted line illustrates a simulation in which the resistant genotype did not 
spread in the population (selection coefficient below 0). Phase 1 represents the burn-in phase. The 
vertical dotted black line highlights when we introduced the fitness cost and the drug for which the 
resistant genotype had reduced sensitivity. Phase 2 is the phase during which the rate of spread of the 
resistant genotype was assessed.   
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Figure S13 

Illustration of the estimation of the selection coefficient in seasonal settings. 

The black dots represent the logit of the relative frequency of the resistant genotype. The blue dots 
represent the logit of the moving average of relative frequency of the resistant genotype. The moving 
average of a measurement at a time t included all the measurements from six months before time t and 
six months after the time t. Using this method, the selection coefficient (slope of the logistic regression) 
was constant over time.   
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4. Fit of the emulators  

Figure S14 

Accuracy of the emulators used for the global sensitivity analyses of each treatment profile. 

For each treatment profile, the comparison between the selection coefficients of the test dataset 
estimated using OpenMalaria (i.e., the observed ‘true’ selection coefficient) and the corresponding 
prediction from the emulator during the final round of adaptive sampling. ‘Cor’ is the Spearman 
correlation coefficient, ‘RMSE’ is the root means squared error, and the blue lines are the linear 
regression fits.  
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Figure S15 

Accuracy of the emulators used for each constrained sensitivity analysis of the spread of a 
genotype resistant to drug A used in monotherapy in each setting with low access to treatment 
(10%).  

The comparison between the selection coefficients for the test dataset between the observed ‘truth’ 
from OpenMalaria, and the prediction from the emulators during the final round of adaptive sampling. 
The EIR is in inoculations per person per year (5, 10, and 500). The degree of resistance is the relative 
decrease in the Emax of the resistant genotype compared with the sensitive one. ‘Cor’ is the Spearman 
correlation coefficient, ‘RMSE’ is the root means squared error, and the blue lines are the linear 
regression fits.  
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Figure S16 

Accuracy of the emulators used for each constrained sensitivity analysis of the spread of a 
genotype resistant to drug A used in monotherapy in each setting with high access to treatment 
(80%).  

The comparison between the selection coefficients for the test dataset between the observed ‘truth’ 
from OpenMalaria, and the prediction from the emulators during the final round of adaptive sampling. 
The EIR is in inoculations per person per year (5, 10, or 500). The degree of resistance is the relative 
decrease in the Emax of the resistant genotype compared with the sensitive one. ‘Cor’ is the Spearman 
correlation coefficient, ‘RMSE’ is the root means squared error, and the blue lines are the linear 
regression fits.    
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Figure S17 

Accuracy of the emulators used for each constrained sensitivity analysis of the spread of a 
genotype resistant to drug B used in monotherapy in each setting with low access to treatment 
(10%).  

The comparison between the selection coefficients for the test dataset between the observed ‘truth’ 
from OpenMalaria, and the prediction from the emulators during the final round of adaptive sampling. 
The EIR is in inoculations per person per year (5, 10, or 500). The degree of resistance is the relative 
increase in the EC50 of the resistant genotype compared with the sensitive one. ‘Cor’ is the Spearman 
correlation coefficient, ‘RMSE’ is the root means squared error, and the blue lines are the linear 
regression fits.    
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Figure S18 

Accuracy of the emulators used for each constrained sensitivity analysis of the spread of a 
genotype resistant to drug B used in monotherapy in each setting with high access to treatment 
(80%).  

The comparison between the selection coefficients for the test dataset between the observed ‘truth’ 
from OpenMalaria, and the prediction from the emulators during the final round of adaptive sampling. 
The EIR is in inoculations per person per year (5, 10, or 500). The degree of resistance is the relative 
increase in the EC50 of the resistant genotype compared with the sensitive one. ‘Cor’ is the Spearman 
correlation coefficient, ‘RMSE’ is the root means squared error, and the blue lines are the linear 
regression fits.   
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Figure S19 

Accuracy of the emulators used for each constrained sensitivity analysis of the spread of a 
genotype resistant to drug A, when used in combination with drug B, in each setting with low 
access to treatment (10%). 

The comparison between the selection coefficients for the test dataset between the observed ‘truth’ 
from OpenMalaria, and the prediction from the emulators during the final round of adaptive sampling. 
The EIR is in inoculations per person per year (5, 10, or 500). The degree of resistance to drug A is the 
relative decrease in the Emax of the resistant genotype compared with the sensitive one. ‘Cor’ is the 
Spearman correlation coefficient, ‘RMSE’ is the root means squared error, and the blue lines are the 
linear regression fits.   
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Figure S20 

Accuracy of the emulators used for each constrained sensitivity analysis of the spread of a 
genotype resistant to drug A, when used in combination with drug B, in each setting with high 
access to treatment (80%).  

The comparison between the selection coefficients for the test dataset between the observed ‘truth’ 
from OpenMalaria, and the prediction from the emulators during the final round of adaptive sampling. 
The EIR is in inoculations per person per year (5, 10, or 500). The degree of resistance to drug A is the 
relative decrease in the Emax of the resistant genotype compared with the sensitive one. ‘Cor’ is the 
Spearman correlation coefficient, ‘RMSE’ is the root means squared error, and the blue lines are the 
linear regression fits.   
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5.  Probability of establishment 

Figure S21 

Illustration of typical simulations run in OpenMalaria to estimate the probability of establishment 
of a drug-resistant genotype.  

The brown curve represents the relative frequency of the resistant genotypes in inoculations. Phase 1 
represents the burn-in phase. In the second phase, we introduced a drug to which resistant parasites 
were hypersensitive. In the last phase, we imported mutation conferring drug resistance at a low rate 
until one mutation established.   
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5.1 Calculation of the importation rate for each setting 

The importation rate, I, (imported infections per 1,000 individuals per year), was calculated to 
mimic a mutation rate of 5×10-5 mutations per infection per year in each setting as in [4]. This 
low mutation rate ensured that the newly emerged genotype either established or became 
extinct before a new mutation was imported. The importation rate was calculated as: 

𝐼 =
1
𝑁
2000𝑁𝑖𝑢𝑔, 

where N is the human population size, Ni is the number of infections (i.e., the number of 
infected people), u is the mutation rate per infection (i.e., per transmission), and g is the 
number of malaria generations per year. Thus, Niug represents the number of de novo 
resistant mutations transmitted per year. This number was divided by the human population 
size and multiplied by 1,000 to obtain the number of imported infections per 1,000 persons 
per year. This is multiplied by two, as half of the imported infections were sensitive.  
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