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Summary  25 

Seasonal influenza viruses typically cause annual epidemics worldwide infecting 5-15% 26 
of the human population1. However, during the first two years of the COVID-19 27 
pandemic, seasonal influenza virus circulation was unprecedentedly low with very few 28 
reported infections2. The lack of immune stimulation to influenza viruses during this 29 
time, combined with waning antibody titres to previous influenza virus infections, could 30 
lead to increased susceptibility to influenza in the coming seasons and to larger and 31 
more severe epidemics when infection prevention measures against COVID-19 are 32 
relaxed3,4. Here, based on serum samples from 165 adults collected longitudinally before 33 
and during the pandemic, we show that the waning of antibody titres against seasonal 34 
influenza viruses during the first two years of the pandemic is likely to be negligible. 35 
Using historical influenza virus epidemiological data from 2003-2019, we also show that 36 
low country-level prevalence of each influenza subtype over one or more years has only 37 
small impacts on subsequent epidemic size. These results suggest that the risks posed by 38 
seasonal influenza viruses remained largely unchanged during the first two years of the 39 
COVID-19 pandemic and that the sizes of future seasonal influenza virus epidemics will 40 
likely be similar to those observed before the pandemic.   41 
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Main text  42 

The incidence of seasonal influenza has been unusually low since the start of the COVID-19 43 
pandemic in early 20205,6, with cases reported to WHO remaining >80% below historical 44 
averages as of January 20222,7. This dramatic reduction is likely due to non-pharmaceutical 45 
interventions aimed at reducing transmission and spread of SARS-CoV-28,9, which are also 46 
effective in limiting exposure to seasonal influenza viruses. The global lull in influenza virus 47 
circulation during the past two years and consequent lack of immune stimulation has led to 48 
widespread concerns of increased susceptibility to seasonal influenza viruses in the 49 
population due to waning immunity, potentially resulting in larger and more severe epidemics 50 
in upcoming seasons9–11. Previous studies of antibody titres to seasonal influenza viruses 51 
prior to the COVID-19 pandemic showed that antibody tires against influenza A viruses 52 
typically wane to half peak levels 3.5-10 years after infection12–14. However, evidence is 53 
lacking on how antibody immunity against seasonal influenza viruses has changed during the 54 
near-absence of seasonal influenza in the COVID-19 pandemic and the impact this could 55 
have on future influenza epidemic size.  56 

To investigate how the lack of influenza virus circulation since the start of the COVID-19 57 
pandemic has impacted antibody levels against seasonal influenza viruses, we measured 58 
antibody titres, based on haemagglutination inhibition (HI), to representative strains of 59 
seasonal A/H3N2, A/H1N1pdm09, B/Yamagata, and B/Victoria viruses in longitudinal serum 60 
samples collected every summer between 2017 and 2021 from 100 healthy male adults 61 
participating in the Amsterdam Cohort Studies on HIV infection and AIDS (ACS)15 (Fig. 1a, 62 
Extended Data Fig. 1a, Extended Data Fig. 2, see Methods). Results from virological and 63 
syndromic surveillance in the Netherlands showed that influenza A/H3N2, A/H1N1pdm09 64 
and B/Yamagata viruses caused epidemics in the three influenza seasons prior to the onset of 65 
the COVID-19 pandemic (Fig. 1b) and that the epidemic activity during this period was 66 
consistent with patterns from 2010-2019 (Extended Data Fig. 3). 67 

For all seasonal influenza virus types and subtypes, cohort mean HI titres increased after the 68 
2017/2018 influenza epidemic but returned to pre-2017/2018 levels by summer 2019 (Fig. 1a 69 
and Extended Data Fig. 2). From 2019 until 2021, mean HI titres remained largely unchanged 70 
for all influenza virus (sub)types, including during the COVID-19 pandemic period when 71 
there was negligible influenza virus circulation (Fig. 1a and Extended Data Fig. 2). 72 
Differentiating the year-on-year individual HI titre distributions by titre rises that are 73 
indicative of recent influenza virus infection (≥4-fold increase, ≥2 log2 units), showed that 74 
influenza A and B virus infections were most common in individuals with low antibody titres 75 
in the year prior to infection (Fig. 1c and Extended Data Fig. 2). Overall, the HI titre 76 
distributions of the cohort remained largely unchanged over the study period, including 77 
during the COVID-19 pandemic.  78 
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 79 

Fig. 1. Waning antibody titres to seasonal influenza virus before and during the 80 
COVID-19 pandemic. a, Individual antibody titres against seasonal influenza viruses based 81 
on haemagglutination inhibition (HI) assay from 2017-2021 among 70 healthy male adult 82 
participants of the Amsterdam Cohort Studies on HIV infection and AIDS (ACS) cohort for 83 
each influenza virus (sub)type (see Methods). Mean antibody tires changes across all 84 
individuals are drawn in bold lines with error bars indicating the mean standard error (n=70). 85 
b, Seasonal influenza virus epidemic activity 2017-2021 in the Netherlands based on 86 
virological and syndromic surveillance data. c, HI titre distributions in the ACS cohort 87 
following each winter epidemic period coloured by influenza virus (sub)type. HI titre 88 
distributions of individuals who experienced a ≥2 log2 units increase in HI titre (≥4-fold 89 
increase in HI titre), indicating likely infection in the previous winter epidemic period, are 90 
shown in grey bars. d, HI antibody titre waning rates by influenza virus (sub)type in adults 91 
estimated from HI titres from 70 ACS and 65 RECoVERED participants. Error bars 92 
correspond to the 50% and 95% credible interval from the Markov Chain Monte Carlo 93 
algorithm used to explore the distribution of model parameters. Waning rate of -1.0 94 
corresponds to one two-fold decrease in antibody titre in one year. 95 

Antibody waning during pandemic 96 

Using a mathematical model on the HI titres of ACS participants who were likely not 97 
infected during the entire 2017-2021 period, i.e. no ≥2 log2 unit increases in HI titre, we 98 
estimated that antibody titres against A/H3N2 viruses waned at -0.20 log2 units per year, 95% 99 
credible interval (CI) (-0.24, -0.16); A/H1N1pdm09 viruses at -0.10, 95%CI (-0.12, -0.07); 100 
B/Victoria viruses at -0.13, 95%CI (-0.16, -0.10); and B/Yamagata viruses at -0.14, 95%CI (-101 
0.17, -0.11) (Fig. 1d, Extended Data Fig. 2, and Extended Data Tables 1 and 2), in agreement 102 
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with waning rates previously reported for adults12,14. This indicates that substantial waning of 103 
immune protection against seasonal influenza viruses occurs at timescales that are 104 
substantially longer than the lull in seasonal influenza virus circulation during the first two 105 
years of the COVID-19 pandemic. We also calculated waning rates using HI titres from the 106 
same ACS individuals but only for the period after the start of the COVID-19 pandemic, i.e. 107 
2020-2021 (Fig. 1d, Extended Data Fig. 2, and Extended Data Tables 1 and 2). There was 108 
also no significant waning of HI titres against any of the viruses during this period.  109 

To extend our observations beyond the ACS cohort, we also measured antibody titres to the 110 
same representative viruses in serum samples collected in mid-2020 and mid-2021 from a 111 
longitudinal cohort of adult COVID-19 patients who were confirmed not to be vaccinated 112 
against seasonal influenza viruses in 2020 (Extended Data Fig. 1b) (Viro-immunological, 113 
clinical and psychosocial correlates of disease severity and long-term outcomes of infection 114 
in SARS-CoV-2 – a prospective cohort study, referred to as RECoVERED16). In this cohort, 115 
we estimated waning rates towards A/H3N2, A/H1N1pdm09, B/Yamagata, and B/Victori to 116 
be -0.15, 95%CI (-0.31, 0.01), -0.08, 95%CI (-0.19, 0.03), -0.08, 95%CI (-0.20, 0.04) and -117 
0.10, 95%CI (-0.22, 0.02) log2 units per year respectively, in good agreement with those 118 
derived from the ACS cohort (Fig. 1d, Extended Data Fig. 2, and Extended Data Table 1). 119 
Combining data from both cohorts for the 2020-2021 period, the estimated waning rate 120 
remained similar to previous estimates for A/H3N2, A/H1N1 and B/Yamagata, and 121 
negligible for B/Victoria (Extended Data Table 1). Measurement error was found to be 122 
consistent in both datasets at 0.38, 95%CI (0.36, 0.40) and 0.33, 95%CI (0.31, 0.36) log2 123 
units for the full ACS and RECoVERED cohorts respectively (Extended Data Table 1), 124 
corresponding to a one-sided probability of a 2-fold error of approximately 6 −10%. Taken 125 
together, these results suggest that there have only been negligible changes in antibody titres 126 
to seasonal influenza viruses among adults since the start of the COVID-19 pandemic.  127 

The lack of HI antibody titre waning suggests that immunity to seasonal influenza viruses in 128 
adults is unlikely to have declined substantially during the first two years of the pandemic. 129 
However, previous work showed that waning in children might be different from adults and 130 
could have an impact on susceptibility to infection14. While not possible to investigate 131 
waning in children in our cohorts, historical lulls in circulation of particular influenza virus 132 
(sub)types and their impact on subsequent epidemics have the potential to offer insights into 133 
how changes in population immunity, or lack thereof, could impact seasonal influenza 134 
epidemics in the post-COVID-19 pandemic period. 135 

Past lulls in influenza virus circulation  136 

Prior to the COVID-19 pandemic, seasonal influenza virus circulation was highly 137 
heterogeneous with influenza epidemics typically being dominated by one or two of the four 138 
seasonal influenza viruses. This heterogeneity led to frequent periods of 1-3 years where 139 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.05.22270494doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.05.22270494


 6 

some of the seasonal influenza virus subtypes barely circulated in many countries. These 140 
periods are potentially analogous to the first two years of the COVID-19 pandemic as the 141 
near-absent circulation of some influenza virus (sub)types might render populations more 142 
susceptible, hence leading to larger epidemics.  143 

To investigate the impact of this heterogeneity, we computed the proportion of isolates 144 
corresponding to each influenza (sub)type in 718 season-country pairs from 2002/2003 to 145 
2019/2020, for 47 countries in temperate zones (Fig. 2a), based on influenza virus virological 146 
surveillance data deposited in the WHO FluNet database7. Low or near-absent circulation of 147 
an influenza virus (sub)type within a single season (i.e. a (sub)type accounting for <10% of 148 
all influenza virus isolates in a country’s season) occurred regularly during this period 149 
accounting for 29%, 27%, and 38% of all country-season pairs for A/H3N2, A/H1N1pdm09 150 
and influenza B viruses respectively (Fig. 2b).  151 

 152 

Fig. 2. The effects of previous years’ influenza virus circulation on epidemic size and 153 
composition. a, Geographic distribution of countries included in the dataset for epidemic 154 
composition by subtype, coloured by number of seasons. b, Proportion of viral isolates in 155 
each epidemic by virus (sub)type, across all countries and seasons (0 indicates complete 156 
absence, 1 indicates complete dominance). c, Geographic distribution of countries included in 157 
the dataset for epidemic size by (sub)type. d, Relative epidemic sizes by virus (sub)type, 158 
across all countries and seasons (the lower the number, the smaller the epidemic). e, 159 

0.0 0.5 1.0 1.5 2.0 0 0.5 1 1.5 2
Previous two seasons

relative size sum
Previous season

relative size

R
el

at
ive

 s
ize

0
0.5

1
1.5

2
0

0.5
1

1.5
2
0

0.5
1

1.5
2

B

A/H1N1pdm09

A/H3N2

Effect on relative size

−0.2 0.2 0.4 0.6 0.8 1.0

2010−2011

2011−2012

2012−2013

2013−2014

2014−2015

2015−2016

2016−2017

2017−2018

2018−2019

2019−2020

Years
since previous

dominance
(per year)

Previous
season size

(per mean
season effect)

Sum two previous
seasons size

(per mean
season effect)

With
season
effects

Without
season
effects

A/H3N2
A/H1N1pdm09
B

Proportion of isolates

Fr
eq

ue
nc

y

0 1 0 1 0 1
0

50

100

150

200

250
A/H3N2 A/H1N1

pdm09 B

Relative size

Fr
eq

ue
nc

y

0 1 2 0 1 2 0 1 2
0

20
40
60
80

100
120

A/H3N2 A/H1N1
pdm09 B

0.0

0.5

1.0

1.5

1 2 3 1 2 3 1 2 3

A/H3N2 A/H1N1pdm09 B

Years since previous dominance

R
el

at
ive

 s
ize

2011−2012
2012−2013
2013−2014

2014−2015
2015−2016
2016−2017

2017−2018
2018−2019
2019−2020

8 9 101112131415161718

8 18

Number of seasons

Years since previous dominance

Pr
ob

ab
ilit

y 
of

 d
om

in
an

ce

1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A/H3N2
A/H1N1
pdm09
B

2010−2011
2011−2012

2012−2013
2013−2014

2014−2015
2015−2016

2016−2017
2017−2018

2018−2019
2019−2020

a b g h

c d

e f

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.05.22270494doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.05.22270494


 7 

Epidemic dominance as a function of years since previous dominance, by (sub)type. Error 160 
bars correspond to 95% confidence interval from an exact two-tailed binomial test for 161 
proportions. f, Relative size of a (sub)type-specific epidemic as a function of number of years 162 
since previous dominance of that (sub)type in that country, coloured by season. Each point 163 
corresponds to a country. g, Relative size of a subtype’s epidemic as a function of its size in 164 
the previous season and the sum of the two previous seasons’ sizes. Each point corresponds 165 
to a country-season, coloured by the season. h, Posterior distributions of parameter estimates 166 
in a Bayesian hierarchical model for epidemic size, with one year since previous dominance 167 
(circles), previous epidemic size (diamonds), or sum of previous two epidemics’ size 168 
(squares) as predictors, either with or without season effects. Estimates above the dotted line 169 
represent the season effects. Points, thick and thin lines correspond to the posterior mean, 170 
50% CI, and 95% CIs, respectively.  171 

While virological surveillance data yield insights into the frequency of circulation of 172 
influenza viruses, it can be biased for estimating epidemic size due to year-on-year changes 173 
in virus sampling rates. To complement the virologically confirmed dataset used above, we 174 
estimated type and subtype-specific epidemic size based on influenza-like illness (ILI) data 175 
from the WHO FluID17 database for 20 countries in Europe and the Middle East in the period 176 
from 2010 to 2020 (Fig. 2c). To compute epidemic sizes for each influenza (sub)type in each 177 
season, we multiplied a country’s ILI burden by the proportion of isolates attributed to each 178 
type and subtype in each season. We then divided this number by the total ILI burden across 179 
all ten seasons and multiplied this number by the total number of seasons to calculate relative 180 
epidemic sizes. In these estimates, a relative size of one corresponds to the mean number of 181 
influenza virus infections in a single season for a given country, irrespective of type and 182 
subtype. Epidemic sizes lower than 0.1, indicating very small or absent epidemics, were 183 
observed for 28%, 23%, and 37% of country-seasons for A/H3N2, A/H1N1pdm09 and 184 
influenza B viruses, respectively (Fig. 2d).  185 

To investigate the effect of periods of low influenza virus circulation on epidemic (sub)type 186 
composition, we calculated the probability of an influenza virus (sub)type’s dominance as a 187 
function of years since previous dominance, where we defined dominance as a (sub)type 188 
accounting for >30% of a season’s isolates (Fig. 2e). The probability of a (sub)type’s 189 
dominance increased with greater number of years since previous dominance. However, this 190 
analysis also implies that there were periods of up to three years where an influenza (sub)type 191 
did not dominate in the past, indicating that periods of low to absent circulation of particular 192 
seasonal influenza viruses were also common before the COVID-19 pandemic. Mean 193 
epidemic sizes for each influenza virus (sub)type increased with time since dominance (Fig. 194 
2f). However, these increases were strongly related to probability of (sub)type dominance 195 
(Fig. 2e) and epidemic sizes varied substantially since last dominance, suggesting that the 196 
overall influence of time since dominance on epidemic size is relatively small. 197 

Epidemic sizes of each (sub)type have a negative relationship with incidence of that specific 198 
(sub)type in the preceding year with large successive epidemics being rare (Fig. 2g left 199 
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column). However, this negative relationship largely disappears when taking into account the 200 
cumulative incidence of each (sub)type two years into the past (Fig. 2g, right column), with 201 
epidemics of high and low incidence both being likely to occur if preceded by years of low-202 
to-mid incidence. 203 

For each number of years since dominance, there is a striking degree of clustering of 204 
epidemic size across countries by season (Fig. 2f). For example, in the 2013/2014 and 205 
2016/2017 seasons, where A/H3N2 dominated in most countries two years prior, the relative 206 
incidence in 2016/2017 appeared consistently higher than in 2013/2014. Notably, in 10 of the 207 
20 countries included in our dataset, the first A/H3N2-dominant season (2011/2012) after the 208 
2009 A/H1N1pdm09 pandemic did not belong to the three largest A/H3N2 epidemics in the 209 
influenza seasons from 2010-2011 until 2019-2020, despite three years of near absent 210 
circulation.  211 

Season effects dominate epidemic size 212 

Given the degree of clustering of epidemic size by season, we hypothesized that the size of 213 
influenza virus (sub)type-specific epidemics could be explained by a combination of season-214 
specific effects and effects related to the presence or absence of that virus (sub)type in the 215 
years preceding an epidemic. Season-specific effects, shared between countries in a single 216 
season, may include a variety of viral, host, environmental, or epidemiological variables, 217 
such as antigenic novelty, climate, heterosubtypic competition, or the flux of viral seeding18–218 
21. 219 

To investigate this hypothesis, we constructed a Bayesian hierarchical model that uses these 220 
effects as predictors of the (sub)type-specific size of seasonal influenza epidemics. 221 
Specifically, we considered models that individually include the number of years since 222 
previous dominance of that (sub)type, the size of that (sub)type’s epidemic in the previous 223 
year, or the sum of that (sub)type’s incidence in the previous two years as predictors. In these 224 
models, the season effects correspond to the predicted ‘base size’ of a (sub)type’s epidemic, 225 
given that the previous dominance was in the previous year, given that there was no 226 
circulation in the previous year, or given that there was no circulation in the previous two 227 
years, respectively. These season effects are modulated by the effects of prior circulation to 228 
yield an epidemic’s predicted size. Years since dominance, size in the previous year and the 229 
sum of previous two seasons’ sizes individually had non-trivial effects on epidemic size (Fig. 230 
2h). However, between-season differences with regard to season effects were consistently of 231 
substantially greater magnitude than any of the predictors related to prior incidence across all 232 
model formulations, suggesting that season-specific factors unrelated to the absence or 233 
presence of viral circulation in the previous year(s) dominate epidemic size. Previous 234 
epidemic size appeared to have a moderate effect on epidemic size. This effect substantially 235 
decreased when looking at the sum of the two previous epidemic sizes (Fig. 2h). 236 
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Because epidemic sizes clustered strongly by season, which might obscure the effect of prior 237 
incidence in a model with season effects, we also considered models without season effects. 238 
Here, estimates on the impact of absence or presence of circulation in prior years on size 239 
were higher, but the differences between seasons with regard to season effects (‘base sizes’) 240 
remained far greater (Fig. 2h). For example, even when using parameters estimated from a 241 
model without season effects, the model predicts that the size of an A/H3N2 epidemic with 242 
the mean estimated season effect and previous dominance three years prior is smaller than an 243 
epidemic with the largest estimated season effect and A/H3N2 domination in the previous 244 
season. Models that included season effects exhibited much better predictive performance 245 
than models without season effects (Extended Data Fig. 4a). Additionally, models that 246 
included prior incidence of the opposite subtype had substantial effects of opposite sign, 247 
implying that the estimated effects of prior incidence might reflect a combination of prior 248 
incidence and effects of heterosubtypic competition (Extended Data Fig. 4b). These results 249 
suggest that inherent season-specific effects have more substantial effects on epidemic size 250 
than (sub)type-specific patterns of prior circulation.  251 

Taken together, the lack of changes observed in the pattern of measured antibody titres 252 
against seasonal influenza viruses and nearly two decades of epidemiological data suggest 253 
that the near-absence of seasonal influenza virus circulation during the first two years of the 254 
COVID-19 pandemic is unlikely to result in substantially larger influenza epidemics in the 255 
years to come. The size of future influenza epidemics is likely to fall within the size 256 
distribution of epidemics in the years before the COVID-19 pandemic. 257 
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 311 

Methods  312 

Viruses 313 

Based on phylogenetics data, four seasonal influenza viruses, A/Netherlands/04189/2017 314 
(H3N2), A/Netherlands/10218/2018 (H1N1), B/Netherlands/04136/2017 (Yamagata), and 315 
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B/Netherlands/00302/2018 (Victoria), were selected as representatives of the four main 316 
types/subtypes of seasonal influenza viruses that circulated prior to the SARS-CoV-2 317 
pandemic. To select these strains, we downloaded high-quality (<5% ambiguous nucleotides, 318 
>95% full length) seasonal influenza virus haemagglutinin sequences (A/H3N2, 319 
N=1,396; A/H1N1pdm09, N=1,283; B/Yamagata, N=1,129; and B/Victoria, N=1,408) 320 
collected between 2016 and October 2021 from GISAID (www.gisaid.org) and reconstructed 321 
maximum-likelihood phylogenetic trees for each influenza virus subtype using the general 322 
time reversible substitution model with IQ-TREE22. These trees were used to assess the 323 
representativeness of viruses from the Netherlands in the early portion of the study period and 324 
the selected viruses were all representative of viruses that caused epidemics in the 325 
Netherlands during the 2017/18 winter. All four viruses were propagated on Madin-Darby 326 
Canine Kidney (MDCK) cells in infection medium, which consisted of MEM-Eagle Medium 327 
/EBSS (Lonza, Geleen, The Netherlands) supplemented with MEM Non-Essential Amino 328 
Acids (Gibco, ThermoFischer Scientific, Amsterdam, The Netherlands), penicillin (100 329 
U/mL), streptomycin (100 g/mL), L-Glutamine (Lonza), HEPES (Lonza), and TPCKtrypsin 330 
(Sigma-Aldrich/Merck, Darmstadt, Germany). They were harvested after 72 hours of 331 
incubation at either 37°C (H3N2 and H1N1) or 33°C (Yamagata and Victoria) and checked 332 
by Sanger sequencing.  333 

Longitudinal serum samples 334 

A total of 630 serum samples from 165 healthy adults were collected in the Netherlands, 335 
longitudinally before and during the pandemic in two separate cohorts: 1. Amsterdam Cohort 336 
Studies on HIV infection and AIDS15 (ACS) (100 participants and a total of 500 samples) and 337 
2. the Viro-immunological, clinical and psychosocial correlates of disease severity and long-338 
term outcomes of infection in SARS-CoV-2 – a prospective cohort study16 (RECoVERED) 339 
(65 participants and a total of 130 samples).  340 

The initial aim of the Amsterdam Cohort Studies was to investigate the prevalence, 341 
incidence, and risk factors of HIV-1 infection. The study population consists of men who 342 
have sex with men and live mainly around the city of Amsterdam, the Netherlands. Enrolled 343 
men were both HIV-1 seronegative and HIV-1 seropositive. Participants from the ACS 344 
cohort included in our study were all HIV-1 seronegative men ranging from 22 to 70 years 345 
old at the time of first collected sample. Briefly, five samples were collected per participant, 346 
i.e. 1. mid-2017, 2. mid-2018, 3. mid-2019, 4. mid-2020, 5. mid-2021. Using only samples 347 
collected in the summer period potentially helps to overcome issues that could arise from the 348 
transient antibody boosts due to both infection and vaccination23. The Amsterdam Cohort 349 
Studies on HIV infection and AIDS was approved by the Medical Ethics Committee of the 350 
Amsterdam University Medical Centre of the University of Amsterdam, the Netherlands 351 
(MEC 07/182). Participation in ACS is voluntary and without incentive. Written informed 352 
consent of each participant was obtained at enrolment.  353 
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Data derived from the ACS samples was complemented by the data acquired from 354 
participants in the SARS-CoV-2 cohort RECoVERED. The aim of the RECoVERED cohort 355 
study is to describe the immunological, clinical and psychosocial sequelae of a SARS-CoV-2 356 
infection. Individuals aged 16 to 85 years with laboratory-confirmed SARS-CoV-2 infection 357 
were enrolled on May 2020 till the end of June 2021 in the municipal region of Amsterdam, 358 
the Netherlands. The RECoVERED study was approved by the medical ethical review board 359 
of the Amsterdam University Medical Centre (NL73759.018.20). All participants provided 360 
written informed consent. From RECoVERED, we selected a total of 65 individuals, both 361 
male and female adults ranging from 20 to 77 years old at the time of the first collected 362 
sample, all of which had a confirmed SARS-CoV-2 infection but were otherwise healthy and 363 
unvaccinated for influenza in 2020. For these 65 individuals, samples were collected in the 364 
summer period of 2020 and 2021 only (two total for each participant). Samples from the 365 
RECoVERED cohort add diversity in age and gender to the ACS samples set but lacked pre-366 
pandemic samples. 367 

Haemagglutination Inhibition (HAI) assay 368 

All serum samples were receptor destroying enzyme (RDE)-treated, as described elsewhere24. 369 
Briefly, 100mL of serum samples from ACS individuals 1-30 were combined with 200mL of 370 
RDE; for serum samples from ACS individuals 31-100 and all 65 RECoVERED subjects, 371 
100mL of serum were combined with 300mL of RDE. This difference in protocol was per the 372 
instructions of the providers of the respective batches of RDE. Because of this protocol 373 
difference, the results of ACS participants 1-30 and 31-100 are shown separately. All samples 374 
were then incubated at 37°C for 18 to 20 hours. The RDE reaction was then halted by heating 375 
the treated samples at 56°C for 30 to 60 minutes. 376 

The haemagglutination inhibition activity of all serum samples was tested in an 377 
haemagglutination inhibition assay as described elsewhere24,25 using two replicates per 378 
sample for A/H1N1, B/Yamagata, and B/Victoria, and one single measurement for A/H3N2. 379 
Briefly, the haemagglutination titre of each of the four viruses was determined by doing a 380 
two-fold serial dilution of 50mL of each virus stock and adding 50mL of PBS and 25mL of 381 
1% turkey red blood cells (tRBCs) to each well, followed by one hour incubation at 4°C and 382 
the reading of the haemagglutination patterns. The virus stocks were then diluted to a 383 
concentration of 4 haemagglutination units (HAU). The diluted viruses were then incubated 384 
with 50mL of two-fold serially diluted serum, in a total volume of 75mL for 30 minutes at 385 
37°C. The initial dilution used for the serial dilution of the serum was 1:20 of the RDE 386 
treated serum. After the incubation step, 25mL of 1% turkey red blood cells were added to 387 
the serum-virus mix and incubated at 4°C for one hour. The haemagglutination inhibition 388 
patterns were then read out and used for the calculation of antibody titres. Due to the known 389 
inefficient agglutination of tRBCs by recent A/H3N2 viruses, we used glycan remodelled 390 
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turkey red blood cells expressing appropriate receptors for recent A/H3N2 viruses26 for the 391 
implementation of the assay for the A/H3N2 virus stock.  392 

Data pre-processing 393 

Two approaches were used in selecting data from which to determine antibody waning rates. 394 
Firstly, we used samples from the RECoVERED cohort for the years 2020 and 2021, where 395 
all participants are confirmed to have not received an influenza vaccination between the two 396 
sample collections and no natural influenza infection can be safely assumed given the near 397 
absence of influenza in the Netherlands during this period. Second, we used the ACS data for 398 
the 5 years from 2017 to 2021. Individuals who experienced a 4 or greater fold increase in 399 
titre between consecutive visits for a particular strain had their data for the strain removed in 400 
order to remove the obscuring effects of vaccination and infection. The advantage of the 401 
former approach is the certainty regarding infection and vaccination status, the latter, 402 
however, allows a longer period of time over which to observe potentially subtle antibody 403 
waning dynamics. 404 

Antibody waning model 405 

True antibody titre log2 HI, 𝑇" !, as opposed to that measured by haemagglutination inhibition 406 
assay, Ti, is a continuous variable which we assume, for every individual, i, decays with time, 407 
t, as 408 

𝑇" != ci-at      (1) 409 

Where ci are individual specific initial titres and a is the shared waning rate. 410 

If serum dilutions could be performed in arbitrarily small increments, we assume the point at 411 
which haemagglutination would be observed to cease, Tobs, to be distributed normally about 412 
the true value: 413 

Tobs ~ N (𝑇" , ϵ)      (2) 414 

where ϵ shall be referred to as the “measurement error”. Instead, with discrete dilutions in 415 
increments of 1, the probability of measuring T ∈ {0, 1, 2...8} is the probability that Tobs falls 416 
between T and T − 1. Thus, the measurement probability is given by:  417 

P(T | 𝑇" , ϵ) = $
𝛷(1, 𝑇", 𝜖)

𝛷(T, 𝑇", 𝜖) 	− 	𝛷(	𝑇" − 	1, 𝑇", 𝜖)
1	 − 	𝛷(8, 𝑇" , 𝜖)

  
𝑇	 < 	1

1	 ≤ 	𝑇	 < 	8
𝑇	 ≥ 	8

   (3) 418 

where Φ(x, μ, σ) is the cumulative distribution function of the normal distribution. 419 
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Our data for each individual, i, consists of a series of titre measurements, Ti,r = (𝑇#
!,%, 𝑇&

!,%, ...., 420 

𝑇'
!,%), at corresponding timepoints ti = (𝑡#! , 𝑡&! , …., 𝑡'! ), where r ∈ {1,2} indicates replicate 421 

measurements. To infer the probability of the unknown parameters ϵ and a given the data, it 422 
is necessary to augment the data by introducing individual intercepts. For one replicate from 423 
one individual, the likelihood of unknown parameters a, ϵ, and ci then becomes: 424 

                                              p(α, ϵ, ci|Ti,r) ∝ p(Ti,r|α, ϵ, ci)Π(α, ϵ, ci)                           (4) 425 

         ∝ p(Ti,r|𝑻5i (α, ϵ, ci))Π(α, ϵ, ci)     (5) 426 

where 𝑻5i(α, ϵ, ci) = ( 𝑇"#
!,%, 𝑇"&

!,%, ...., 𝑇"'
!,%) are the true values of titre, given the unknown 427 

parameters and Π is the prior joint distribution of the parameters. The total log likelihood is 428 
thus the sum over all individuals and replicates: 429 

L(α, ϵ, c|T)∝ ∑ ∑ 𝑙𝑜𝑔(𝑝(𝛼, 𝜖, 𝑐!|	𝑻𝒊,𝒓	))%!     (6) 430 

A Markov Chain Monte Carlo (MCMC) algorithm was used to explore the distribution of 431 
model parameters (waning and measurement) and augmented data (individual intercepts). In 432 
each iteration, model parameters were updated using a Metropolis-Hastings (MH) algorithm 433 
and 10% of participants were randomly selected for updating of their augmented data, also 434 
via MH. This model was run on 4 independent chains, each consisting of 20,000 iterations 435 
discarding the first 5,000 as burn in. Non-informative priors were used and convergence was 436 
assessed by inspection of the trace plots and Rhat from Stan v2.21.0. Analyses were 437 
conducted using R v4.0.3, with code available in the Github repository. 438 

Epidemic composition data 439 

We downloaded records of virological surveillance data from the WHO FluNet7 database for 440 
all countries in the temperate Northern and Southern Hemisphere from 2002 until 2020, or a 441 
shorter period for a limited subset of countries. For each country, we retained the longest 442 
sequence of consecutive seasons in which at least 20 specimens were influenza-positive. In 443 
each season, defined as the period from the period from week 40 until week 20 for the 444 
Northern Hemisphere and the entire year for the Southern Hemisphere, we computed the 445 
proportion of all positive tests that was attributable to each of A/H3N2, pandemic 446 
A/H1N1pdm09 (from the 2009 pandemic onwards), and influenza B viruses. We did not 447 
break down influenza B viruses by lineage because in many countries influenza B viruses 448 
were not further characterized. In many seasons, only a proportion of all influenza A virus 449 
positive tests were subtyped; in those cases, we approximated the total proportion of each 450 
subtype by assuming that the subtype of the non-subtyped influenza A virus specimens were 451 
distributed according to the relative proportions of subtyped influenza A viruses. This 452 
resulted in a dataset of 679 season-country records over a period of 18 seasons, for 46 453 
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countries. We assigned a binary variable to each subtype/type in each season for dominance; 454 
we defined dominance as a subtype/type accounting for at least 30% of all isolates in a 455 
country in a season. Hence, in principle, all three subtypes/types considered can be 456 
simultaneously dominant in a single season. To avoid including effects of the COVID-19 457 
pandemic on influenza dynamics, we truncated the 2019-2020 season at the 15th of February 458 
2020, and to avoid including the effect of the 2009 A/H1N1pdm09 pandemic, we truncated 459 
the 2008-2009 influenza season at the 1st of April 2009. 460 

Epidemic size data 461 

To estimate epidemic sizes for each subtype/type, we extracted weekly records of influenza-462 
like illness from the WHO FluID17 database. We limited this dataset to countries for which 463 
ILI records were available for all seasons from 2010-2011 until 2019-2020, and for which 464 
virological surveillance data was available, as described above. Additionally, we required ILI 465 
curves to follow the expected shape of an influenza epidemic curve, i.e. peaking in winter and 466 
only sporadic isolation outside this period, and without periods of missing data. This yielded 467 
a set of 22 countries, each with 10 seasons worth of ILI data. We approximated the epidemic 468 
size of each subtype in each country per season by multiplying total ILI incidence in that 469 
country’s season by the proportion of all isolates from that country in that season attributable 470 
to that subtype in the virological surveillance data. We computed the relative size of each 471 
subtype’s epidemic in each country by computing the proportion of all ILI in the period from 472 
the 2010-2011 until 2019-2020 seasons that was attributable to that subtype and multiplying 473 
this number by the total number of seasons. Because this metric averages across all ten 474 
seasons, it gives an estimate of the size of an epidemic in a country, relative to all other 475 
seasons in that country, for each subtype. We accounted for the COVID-19 pandemic as 476 
described above. 477 

Statistical modelling 478 

To estimate the effect of presence or absence of influenza virus circulation in the previous 479 
year(s) on epidemic size, we performed Bayesian hierarchical linear regression. The first 480 
model has relative size as outcome and time since dominance as calculated using the 481 
virological surveillance data as predictor (N=188, 198, 180 for A/H3N2, A/H1N1pdm09 and 482 
B): 483 

𝑦! 	~	𝑁(a*[!] 	+ 	𝛽𝑥! , σ-)              (7) 484 

where 𝑦! 	is an epidemic’s relative size for a certain (sub)type in country-season pair i, as[i] is 485 
the season effect for that (sub)type corresponding to that season, 𝛽 is the coefficient for 486 
number of years since dominance of the (sub)type, and s- is the error standard deviation. xi 487 
represents the number of years since previous dominance of the (sub)type in country-season 488 
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pair i minus one, such that as[i] represents the predicted size if the previous dominance was in 489 
the previous year. Season effects are shared between countries in a single season. 490 

We assumed that the season effects a*, constrained to positive values, are distributed 491 
according to a common mean µ. and common standard deviation σ..  492 

      a*~	𝑁(µ.	, σ.)                          (8) 493 

We put weakly informative priors on the standard deviations, the mean season effect and the 494 
main effect. 495 

			𝛽	~	𝑁(0,1)                            (9) 496 

µ.	~	𝑁(0.5,1)                (10) 497 

     σ.	~	𝐻𝑎𝑙𝑓 − 𝑁𝑜𝑟𝑚𝑎𝑙(0,1)              (11) 498 

     σ-	~	𝐻𝑎𝑙𝑓 − 𝑁𝑜𝑟𝑚𝑎𝑙(0,1)               (12) 499 

We also ran a model with relative size as outcome and relative size in the previous year as the 500 
predictor (N=180 for each (sub)type) or the sum of the two previous years size (N=160 for 501 
each (sub)type). We use the same model specification and priors as for the size-years since 502 
dominance model, but we replace the predictor with the relative size in the previous season, 503 
or with the sum of relative size in the two previous seasons. For A/H3N2 and 504 
A/H1N1pdm09, we also ran these models with time since dominance, previous season 505 
epidemic size and sum of two previous seasons epidemics sizes of the other subtype as 506 
predictor (N=198, 188 for A/H3N2, A/H1N1pdm09 for time since dominance, N= 180, 160 507 
for each subtype for previous year, previous two years’ sum, respectively). For all these 508 
above models, we also ran the same models without season effects, i.e. with a single value for 509 
the intercept, for which the prior is equal to the prior of the mean season effect in the model 510 
with season effects. 511 

These models were each run for each subtype individually, for 3000 iterations, discarding the 512 
first 1000 as burn-in, with four independent chains. All models were fit using MCMC in Stan 513 
v2.21.0, with convergence assessed by inspection of Rhat (< 1.05), effective sample size (> 514 
200) and the trace plots. We compared models with and without season effects using leave-515 
one-out cross-validation27. 516 

Statistics 517 

No statistical method was used to predetermine sample size. Data were not randomized nor 518 
analysed in a double-blinded manner. The haemagglutination inhibition activity of all serum 519 
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samples was tested in an haemagglutination inhibition assay using two replicates per sample 520 
for A/H1N1, B/Yamagata, and B/Victoria, and one single measurement for A/H3N2. Specific 521 
details regarding amount of data are indicated in the figure captions. For parameter estimates 522 
95% credible intervals were considered as the significant bounds and were calculated from 523 
the 2.5th and 97.5th percentiles of the MCMC traces. For Fig. 2e, error bars correspond to 524 
95% confidence interval from an exact two-tailed binomial test for proportions. 525 

Reporting summary 526 

Further information on research design is available in the Nature Research Reporting 527 
Summary linked to this paper. 528 

Data availability  529 

Accession codes for GISAID data used in this paper are provided as supplementary 530 
information files. Raw de-identified hemagglutination inhibition data and raw surveillance 531 
data downloaded from WHO FluNet and FluID can be found in the project GiHub repository 532 
(https://github.com/AMC-LAEB/waning-immunity-to-flu). Biological materials are available 533 
for study via the Amsterdam Cohort Studies on HIV infection and AIDS (ACS) and the Viro-534 
immunological, clinical and psychosocial correlates of disease severity and long-term 535 
outcomes of infection in SARS-CoV-2 – a prospective cohort study (RECoVERED). 536 

Code availability 537 

Custom scripts used for data analysis and modelling are available at GitHub 538 
https://github.com/AMC-LAEB/waning-immunity-to-flu. 539 
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