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ABSTRACT

Background: SARS-CoV-2  emerged  in  the  UK  in  January  2020.  The  UK  government
introduced control measures including national ‘lockdowns’ and local ‘tiers’ in England to
control virus transmission. As the outbreak continued, new variants were detected through
two national monitoring programmes that conducted genomic sequencing. This study aimed
to determine the effects of weather, demographic features, and national and local COVID-19
restrictions on positive PCR tests at a sub-regional scale. 

Methods: We examined the spatial and temporal patterns of COVID-19 in the Teesside sub-
region of the UK, from January to December 2020, capturing the first two waves of the
epidemic.  We  used  a  combination  of  disease  mapping  and  mixed-effect  modelling  to
analyse  the total  positive tests,  and those of  the eight  most  common virus  lineages,  in
response to potential  infection risk  factors:  socio-economic deprivation,  population size,
temperature, rainfall, government interventions, and a government restaurant subsidy (“Eat
Out to Help Out”).

Results: Total  positive tests of SARS-CoV-2 were decreased by temperature and the first
national lockdown (the only one to include school closures), while deprivation, population,
the  second  national  lockdown,  and  the  local  tiered  interventions  were  associated  with
increased  cases.  The  restaurant  subsidy  and  rainfall  had  no  apparent  effect.  The
relationships between positive tests and covariates varied greatly between lineages, likely
due to the strong heterogeneity in their spatial and temporal distributions. Cases during the
second wave appeared to be higher in areas that recorded fewer first-wave cases, however,
an additional model showed the number of first-wave cases was not predictive of second-
wave cases.

Discussion: National and local government interventions appeared to be ineffective at the
sub-regional level if they did not include school closures. Examination of viral lineages at the
sub-regional scale was less useful in terms of investigating covariate associations but may be
more useful for tracking spread within communities. Our study highlights the importance of
understanding the effects of government interventions in local and regional contexts, and
the importance of applying local restrictions appropriately within such settings. 

Keywords: COVID-19,  variant,  autoregressive  model,  non-pharmaceutical  interventions,  local
restrictions
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Introduction

It  is  widely  understood  that  many  factors  can  affect  COVID-19  transmission  via  social  and/or
epidemiological  mechanisms,  including  weather,  lineage  of  SARS-CoV-2 (the virus  causing  COVID-19),
mask wearing,  and government control  measures (non-pharmaceutical  interventions)  that  limit  social
contact (Bo et al., 2021; Volz et al., 2021; Ganslmeier et al., 2021; Ge et al., 2022). The risk of contracting
COVID-19 can also  be affected  by demographic  factors  such as socio-economic  deprivation  and race
(Whittle & Diaz-Artiles, 2020; Brainard et al., 2022; Holt et al., 2022). However, these relationships are
complex and there is considerable variation in the observed impact of these factors between different
countries, at national vs. regional scales, and during different waves of the pandemic (Gao et al., 2021; Bo
et al.,  2021; Hunter et al.,  2021; Ganslmeier et al.,  2021; Brainard et al.,  2022; Ge et al.,  2022). It is
imperative  that  these  relationships  are  better  understood  to  improve  future  pandemic/epidemic
responses, especially in countries like the United Kingdom, which experienced high case numbers and
excess deaths relative to its neighbours (Islam et al., 2021; Hunter et al., 2021). While there is evidence
that strict national restrictions reduced cases and mortality on a national-scale in the UK (Hunter et al.,
2021; Sharma et al., 2021), there has been very little evaluation at local or regional scales or in socio-
economically deprived populations. 

Government interventions (national lockdowns) introduced during the first wave of the pandemic in
the UK were successful in reducing cases, which was also seen in other countries, with school closures
and measures that reduce social gatherings proving the most effective (Brauner et al., 2021; Hunter et al.,
2021; Mendez-Brito et al., 2021; Ge et al., 2022). However, the picture is less clear for later waves of the
pandemic, as the effectiveness of control measures changed and as countries diverged in terms of both
the implementation of interventions and patterns of cases (Pozo-Martin et al., 2021; Mendez-Brito et al.,
2021; Ge et al., 2022). The UK government introduced a heterogenous “tier” system of restrictions in
England during the second wave,  which were applied on local  scales and were intended to be more
responsive and appropriate to the local disease context  (UK Government, 2020c). While analysis of the
tier system across the entirety of England has revealed the more stringent tiers to be more effective than
the less stringent ones (Davies et al., 2021; Laydon et al., 2021), there has been very little consideration
of these tiers,  or comparison with the national-level  restrictions,  within their  specific geographic and
community contexts. 

The  relationship  between  socio-economic  deprivation  and  COVID-19  mortality  has  been  well-
documented, with a majority of studies demonstrating increased mortality in areas of high deprivation,
including in the UK (Brainard et al., 2022; McGowan & Bambra, 2022). This is due to a combination of
underlying factors that can be summarised as unequal exposure due to employment and living conditions
and unequal vulnerability due to pre-existing health conditions  (McGowan & Bambra, 2022). However,
the relationship between deprivation and COVID-19 infection is more complicated and less clear; the UK
context  is typical  of the broader picture with some studies finding an increase in infections linked to
higher deprivation while others find the opposite or no relationship (Niedzwiedz et al., 2020; Brainard et
al., 2022; McGowan & Bambra, 2022). 

The relationship between COVID-19 infection and weather is also complex. Higher temperatures have
been associated with a reduction in cases in many countries including the UK (Ganslmeier et al., 2021;
Alaniz et al., 2023; Nottmeyer et al., 2023), though a minority of studies have reported a positive effect
(Tan & Schultz, 2022). Increased rainfall effects are more uncertain due to less research focus, with a
meta-analysis  finding  evidence  of  increased  infections  (Tan  &  Schultz,  2022),  while  other  research
detected no relationship  (Ganslmeier et al., 2021). The impacts of weather on COVID-19 infections are
complicated by the interaction between several mechanisms. Weather can affect transmission directly,
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e.g. increased temperatures reduce the viability of the virus particles (Ganslmeier et al., 2021), and also
indirectly  via  social  behaviours,  e.g.  colder  temperatures  or  higher  rainfall  could  discourage  outdoor
socialising and reduce transmission, or encourage indoor socialising and increase transmission. Several
studies have also shown that the presence and strength of these indirect effects is mediated by other
factors, such as how closely the timing of weather patterns and events coincides with mealtimes and the
presence/absence  of  government  control  measures  (Ganslmeier  et  al.,  2021;  Fetzer,  2022).  This  is
particularly relevant in England, where the government introduced a subsidy that encouraged people to
eat in restaurants during August 2020 (Fetzer, 2022).

Previous  research  has  demonstrated  that  transmissibility  of  COVID-19  varies  greatly  between
different lineages of the  SARS-CoV-2 virus, which can explain how some lineages become dominant at
certain points in time (Volz et al., 2021; Panovska-Griffiths et al., 2022). For example, lineage B.1.1.7 (the
Alpha  variant)  has  been  estimated  to  be  between  20-100%  more  transmissible  than  the  wild  type
(estimates  vary  by study),  which likely explains  how this  lineage became dominant  across  the UK in
autumn/winter 2020 (Volz et al., 2021; Hinch et al., 2022; Panovska-Griffiths et al., 2022). However, there
are  also  examples  of  lineages  that  became  dominant  despite  no,  or  only  a  small,  increase  in
transmissibility,  like  that  of  lineage  B.1.177  during  autumn  2020  in  the  UK  (Hodcroft  et  al.,  2021;
Vöhringer et al., 2021; Hinch et al., 2022). Establishment of a lineage is subject to epidemiological factors
as well as transmissibility, such as the number of introductions (Grubaugh et al., 2020), which could be
facilitated by a relaxation of travel restrictions  (Hodcroft et al.,  2021). It  seems likely that other non-
pharmaceutical interventions and other environmental factors could also affect the number of cases of
different COVID-19 lineages, regardless of whether they demonstrate increased transmissibility. While
some research has investigated the impact of interventions and vaccinations on the spread of specific
lineages (Hinch et al., 2022; Panovska-Griffiths et al., 2022), there has been very little comparison across
many lineages, and no investigations that also incorporate other factors like weather and socio-economic
deprivation.

Our aim was to investigate  how a range of  variables  that  can influence COVID-19 cases affected
positive tests in the Teesside sub-region of North East England during 2020. We wanted to understand
how the national and local government interventions introduced over the course of this year affected the
population  of  this  sub-region,  which  has  high  levels  of  deprivation  and  is  reasonably  geographically
isolated. Examining cases in his context also allows us make policy recommendations aiming to improve
outcomes in future epidemics, for this and other vulnerable populations in the UK. We used Generalised
Linear Mixed Effect Models (GLMMs) to investigate how local and national government interventions,
weather, levels of socio-economic deprivation, and the government restaurant subsidy impacted: 1) the
total number of COVID-19 cases; and 2) the number of cases of each of the most common lineages in
Teesside. We also used Bayesian spatial models to determine patterns of disease risk across Teesside
during 2020. 

Methods

Location and timeframe
The wider Teesside area is a sub-region of the North East region of England,  centred around the

mouth of the river Tees.  While Teesside has reasonably  good local  and national  transport links,  it  is
relatively isolated geographically as it borders the North Sea to the north east, The North York Moors
national  park to the south east,  and extensive  farmland to the west.  Teesside has a distinct  cultural
identity due to its industrial  history, which has also left its population with a greater burden of diseases
and socio-economic  deprivation that  stigmatises  and further  culturally  isolates  the area  (Bush et  al.,
2001). Teesside contains a mixture of urban, suburban, and rural environments and is formed from a
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collection  of  separate  communities  including  Middlesbrough,  Redcar,  Thornaby-on-Tees,  Billingham,
Hartlepool,  and  Stockton-on-Tees,  each  with  their  own identities,  facilities,  schools,  etc.  All  of  these
characteristics make Teesside an interesting case study that deserves research focus. 

We chose to examine positive tests within Teesside during only 2020 for several reasons. Firstly, the
local tiered restrictions were abandoned when the country entered a new national lockdown in early
January 2021,  and were not reinstated  (UK Government,  2021),  which means there were no further
locally applied restrictions that could be examined. Secondly, the UK’s vaccination programmed begun in
December 2020, which means that analysing data that included cases into 2021 would have required
additional data to properly adjust for this confounder. Inclusion of vaccination uptake information would
have been needed, rather than numbers/proportion of eligible people in the population, as uptake is
lower  amongst  deprived  people  (Mounier-Jack  et  al.,  2023),  but  this  would  have  been  difficult  to
ascertain at the necessary spatial and temporal scales. And finally, including data collected over a longer
time period would open up the analysis to other potential sources of confounding that cannot easily be
controlled for, such as ‘pandemic fatigue’. 

Data collation
The UK government introduced two ‘pillars’  of COVID-19 testing,  which utilised polymerase chain

reaction (PCR) to identify positive cases. Pillar 1 testing was of staff and patients in hospitals and care
homes, mainly focussing on symptomatic individuals, but also included asymptomatic staff (e.g. contacts
of confirmed cases).  Pillar  2 was community testing of symptomatic individuals,  which also began to
include asymptomatic testing of  suspected cases and high-risk situations  (e.g.  confirming lateral  flow
results, elective care settings, care homes, and contacts of confirmed cases) from autumn 2020  (Dept.
Health & Social Care, 2020; UK Health Security Agency, 2023). Genomic sequencing was conducted on a
random sample of the PCR samples that tested positive for SARS-CoV-2, which permitted characterisation
of genetic lineages in individual  cases,  and the information was stored in the Covid-19 Genomics UK
(COG-UK) dataset  (COVID-19 Genomics UK (COG-UK) Consortium, 2020; Smallman-Raynor et al., 2022).
We collated records of PCR tests positive for SARS-CoV-2 in the Teesside area during 2020, from the COG-
UK genomic dataset, which provided the dates, postcodes, and viral lineages of all sequenced positive
tests from January 2020 to January 2021. We summarised the number of cases for all lineages, and each
lineage separately,  by  week of  year  and individual  postcode  districts  (TS1 to TS29,  see Figure 1).  In
addition, we also summarised the total number of cases of each lineage recorded by each pillar during
the period when sampling was run contemporaneously for both pillars (from week of year 19 to 53),
creating a dataset of total cases of each lineage summed across time for each pillar (each lineage had one
value  per  pillar).  We ran a  Spearman’s  correlation  on this  dataset,  to  check  for  a  sampling  bias  for
different lineages between the two pillars, as only pillar 1 tested the most severely ill patients, and illness
severity can vary between lineages (Sievers et al., 2022; Goethem et al., 2022). 

We used recent demographic data on socio-economic deprivation (Index of Multiple Deprivation IMD
(UK Government, 2019)) to calculate the proportion of the population in each postcode district that was
in the most deprived category (10th decile),  relative to England as a whole (Figure 1 and Table S1 in
Supplementary Material). Mean weekly temperature and rainfall values were summarised from raw daily
data  (calculated  from  daily  means  and  daily  totals  respectively)  obtained  from  weather  stations  in
Teesside  International  Airport  (temperature)  and  Hartlepool  (rainfall)  (we  assumed  weather  to  be
homogenous across the area at this temporal scale). We collated the start and end dates of the national
government interventions (lockdowns) and the local tier system of interventions (where higher tiers had
greater restrictions) as applied to Teesside in 2020. The tier system was applied at the local government
level, but during 2020 the same tier restrictions were applied to all local authority areas in Teesside. We
also collated the start/end dates of the government restaurant subsidy (“Eat Out to Help Out Scheme”)
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that was introduced to support hospitality businesses, which provided customers with a 50% discount at
participating restaurants. The interventions and subsidy dates were converted to week of year format,
where  values  counted  the  number  of  weeks  since  the  measure  was  introduced  (weeks  before
introduction and after stoppage were given a value of zero). The national lockdowns in England were
defined  by:  stay-at-home  orders,  closure  of  all  non-essential  businesses,  prohibition  of  all  social
gatherings and events  (UK Government, 2020a; d), and the first lockdown also included school closures
(UK Government, 2020b) (Table 1). The local tier 2 and 3 restrictions in England (Local Covid Alert Levels
‘High’ and ‘Very High’) allowed for some non-essential businesses to remain open and permitted outdoor
socialising in small groups  (UK Government, 2020c) (see Table 1 for details). The end date of the first
lockdown is complicated, as different restrictions were lifted at different times (Table 2). We used the
earliest end date applicable to Teesside to define the final week of the first lockdown (week 23).
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Figure 1 - Labelled map of the 29 Teesside postcode districts ("TS" prefixes have been omitted for
clarity  and  colours  are  purely  to  aid  discrimination  between polygons),  and  maps  of  the  total
resident population and proportion of the population within the 10th decile of the Index of Multiple
Deprivation (when assessed at the scale of England as a whole) for each Teesside postcode district
(Source: Office for National Statistics licensed under the Open Government Licence v.3.0). The north
east  boundary  meets  the  North  Sea,  to  the  south  east  is  a  national  park,  and to  the  west  is
farmland.

Table 1 - Summary of the control measures included in each national and local restriction category
in England. Business closures during tier 3 varied across England, those shown below were applied
to Teesside during 2020. 

Included measures 1st Lockdown 2nd Lockdown Tier 1 Tier 2 Tier 3 Tier 4

Stay at home orders X X X

School closures X

Face masks indoors in public spaces X X X X X

Business/venue closures:

Pubs, bars, and restaurants X X X X

Retail X X X

Personal care X X X

Leisure and entertainment X X X X

Gyms X X X

Places of worship X X

Prohibition of social gatherings:

Indoors up to 6 people X X X X X

Indoors more than 6 people X X X X X X

Outdoors up to 6 people X X X

Table  2 -  First  and last  dates  of  government  control  measures  applied  in  Teesside,  restaurant
subsidy, and school and university terms in Teesside during 2020. 

Event First date Last date First week Last week

National lockdown: 23/03/2020 08/06 - 03/07/2020 13 23-27

Business closures (hospitality, 
entertainment etc.) 21/03/2020 03/07/2020 12 27

Other non-essential businesses 23/03/2020 15/06/2020 13 25
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Teesside school closures 23/03/2020 07-14/06/2020 13 23-24

Restrictions on social gathering 23/03/2020 01/06/2020 13 23

Restaurant subsidy 04/08/2020 26/08/2020 32 35

Local Tier 2 (Teesside) 14/10/2020 04/11/2020 42 44

National lockdown 05/11/2020 01/12/2020 45 48

Local Tier 3 (Teesside) 02/12/2020 30/12/2020 49 53

Local Tier 4 (Teesside) 31/12/2020 -- 53 --

Teesside school autumn term dates 01/09/2020 23/10/2020 36 43

02/11/2020 18/12/2020 45 51

Teesside University term dates 21/09/2020 18/12/2020 39 51

Disease mapping
To help us define and visualise the spatial heterogeneity of COVID-19 in Teesside, we used Bayesian

spatial  models  (Riebler et al.,  2016) to assess the area-specific relative risk of a positive test  in each
postcode  district  across  the  study  period.  We  separately  modelled  all  disease  cases  (regardless  of
lineage), and cases of each of the most common lineages in Teesside that had sufficient data. We used
the most recent version of the Besag, York, Mollie “BYM” model (Besag et al., 1991), the “BYM2” (Riebler
et al., 2016), which is a conditional autoregressive model that adjusts for spatial dependency between
adjacent spatial units, as numbers of cases in one district are likely to be partially dependent on those
arising in neighbouring districts, with which there may be contact leading to enhanced transmission. We
included the expected number of cases for each postcode district (calculated using district population
sizes, total population across all districts, and total cases in all districts) in our models as an offset, which
converts the output to the risk of a positive test in each district relative to the overall  risk across all
districts  (Blangiardo  &  Cameletti,  2015).  These  models  were  fitted  using  Integrated  Nested  Laplace
Approximation via the “INLA” package  (version 22.05.07)  (Rue et al.,  2009) in R version 4.2.2  (R Core
Team, 2022). As the response variables in these models are aggregated counts or rates, we fit the models
with  negative  binomial  error  distributions  (using  log  link  functions)  and  penalised  complexity  priors,
which reduce the chance of overfitting (Riebler et al., 2016).  We used the default penalised complexity
priors  for  the BYM2 model  (Riebler  et  al.,  2016) throughout,  as  a  sensitivity  analysis  using different
hyperparameter  values  showed no  improvement  to  model  fit.  Model  validation,  via  PIT  (probability
integral  transforms)  and  plotting  observed  values  against  a  sample  generated  from  the  posterior
distribution,  demonstrated a poor fit  to the data for three of our lineages (B.1.1.309,  B.1.1.315,  and
B.1.1.37),  which  have  been  dropped  from  the  results  section  of  the  paper  (see  section  3.1  in  the
supplementary material for model validation and hyperparameter sensitivity analyses). The shapefiles for
the Teesside postcode districts  that  were used in this  analysis  (and figures)  were downloaded from:
https://www.opendoorlogistics.com/data/.

Mixed-effect modelling
We used generalised linear mixed-effect models (GLMMs) to investigate the role of socio-economic

deprivation (proportion of the population in the 10th Decile of IMD), weather (mean weekly temperature
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and  rainfall),  UK  government  interventions  (national  lockdowns  and  local  tiers),  and  government
restaurant subsidy on the frequency of positive PCR tests recorded each week of 2020 in each postcode
district.  These models  were non-Bayesian and were fitted using maximum likelihood  estimation.  We
separately modelled all disease cases (regardless of lineage), cases of each of the most common lineages
in Teesside that had sufficient data, and the total cases of the most common second wave lineages. We
included an autoregressive term of order 1 (AR1) for week of year for each postcode district to account
for temporal auto-correlation (non-independence) of cases over time within each separate district. We
included a random intercept for postcode district to account for repeated measures of postcodes across
time and for unmeasured geographical variation that might have influenced the recording of cases. We
controlled for population size by including district total population (rescaled to measure population in
thousands rather than single people) as a fixed effect. The second-wave lineages model also included the
total  cases of the most common first  wave lineages  for each postcode district  as  an additional  fixed
effect, which allowed us to investigate the potential for increased immunity between successive waves of
the epidemic due to previous infections. We fitted an additional model to the all-case data, including the
same fixed effects and the random intercept for postcode, but this model did not include an AR1 term
and instead used a random gradient for week for each postcode district (allowing the effect of week on
cases to vary by postcode), which allowed us to map and compare the rate of change in cases reported
each week across the different postcodes. 

To account for variation in symptom onset and testing delay after infection, we applied a two-week
time lag to all temporal variables (temperature, rainfall, and the government interventions and subsidy).
Because we aggregated case numbers and summarised temporal variables by week, a one-week delay
could have artificially assumed a greater separation between cases and temporal events than actually
happened.  Additionally,  the  sensitivity  analyses  in  Hunter  et  al.  (2021) demonstrated  that  non-
pharmaceutical interventions in the UK did not show an impact on numbers of cases until after 14 days. 

As our response variable (positive tests)  is  a count,  we fit  our models  with Poisson and negative
binomial distributions (using log link functions) before validating them with the “DHARMa” R package
(Hartig,  2022),  which  uses  a  simulation  approach  to  create  interpretable  scaled  residuals.  We  used
DHARMa’s test and plotting functions to assess deviations from the expected distribution,  dispersion,
heteroskedasticity,  temporal  autocorrelation,  and  zero-inflation,  alongside  plots  of  observed  values
against those fitted from the models, which demonstrated that Poisson was a better fit for the data in all
models, except for the all-cases model fit with a random gradient (for full details and output see section
3.2 of the supplementary material). Because it would be reasonable to assume that the number of cases
over time would follow a non-linear trajectory, we also fit several alternative model specifications that
included week of year as a fixed effect with either a smooth or restricted cubic spline instead of an AR1
term, however, these models were a poorer fit for all datasets than the AR1 models (see section 3.2 of
the supplementary material). All regression models were fit using the package “glmmTMB” (Brooks et al.,
2017) in R version 4.2.2.

We chose  to  retain  all  variables  in  the  models  regardless  of  AIC  or  significance  as  they  are  all
biologically/epidemiologically meaningful. Predictor variables were only removed if they were found to
be collinear via variance inflation factor (VIF) (calculated using the “performance” R package (Lüdecke et
al., 2021)), whereupon we followed the procedure defined by Zuur et al.  (2010) of removing variables
sequentially until none of the recalculated VIF values are above 3. We also confirmed variable removal via
redundancy analysis and variable clustering (conducted using the “Hmisc” R package (Harrell & Dupont,
2021)) (see section 3.2 of supplementary materials for further details, redundancy analysis outputs, and
variable clustering plots). 

Full details of all the model specifications (disease mapping and GLMMs) can be seen in the analysis
scripts (https://doi.org/10.25405/data.ncl.23815077) and section 2 of the supplementary material.
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Results

Data and trends
The Teesside postal area had a population of 599,600 people across the 29 postcode districts, with

considerable variation in the proportion of the total population in the 10 th IMD decile (Figure 1, Table S1).
The populations of urban postcode districts of central  Middlesbrough (TS1, TS4 and TS3) all  had high
proportions of their  populations in the 10th decile for IMD, whereas many of the suburban and rural
postcode districts had little to none of their population in this decile. There were 2,328 positive COVID-19
tests for all lineages of which 1,073 were pillar 1 and 1,255 were pillar 2. Temperature was highest in
summer while rainfall was generally lowest in spring and summer, but there were also periods of heavy
rain in early and late summer (Figure 2a).

The overall temporal trend in positive tests was bimodal with a first wave in spring (cases peaked in
week 14,  early  April  2020)  followed by a decline  through the summer after  introduction of  the first
lockdown, before the onset of the second wave of the epidemic in the early autumn (week 36) (Figure
2b). There was a large spike in cases around week 40 that were mainly detected via pillar 2 community
testing (Figure 2c),  which coincided with the start of school  and university autumn terms in Teesside
(Table 2). There was a strong positive correlation between the total number of cases of each lineage that
were recorded by the two different pillars (rho=0.65, S=14017,  df=60,  P<0.001),  suggesting that  both
pillars were reflecting similar patterns of infection across Teesside. 

Out of 86 distinct lineages recorded in Teesside during 2020, only 8 were recorded more than 60
times: B.1.1.1, B.1.1.119, B.1.1.309, B.1.1.315, B.1.1.37, B.1.1.7, B.1.177 and B.1.177.10 (Figure 2d). These
8  lineages  were  recorded  elsewhere  in  the  UK  before  being  recorded  in  Teesside.  There  were  two
dominant lineages in the first wave of the epidemic, B.1.1.1 and B.1.1.119, records for which declined to
minimal levels during the late spring and summer. Patterns for other lineages were more complex in the
second wave. B.1.177 and B.1.1.315 both increased in frequency during weeks 32 to 45 before declining
during the second lockdown. However, after the end of this lockdown, B.1.177 increased substantially
whilst  B.1.1.315  did  not.  The  more  transmissible  SARS-CoV-2  variant,  B.1.1.7  (Alpha  variant;  VoC
202012/1),  was  first  detected  in  the UK in  December  2020  (Public  Health  England,  2021) and cases
increased rapidly in Teesside after the end of the second national lockdown. 
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Figure 2 - Trends in weather and positive tests of COVID-19 over the course of 2020, in Teesside. (a)
Mean temperature  and rainfall  per week. (b) Total positive tests per week (across  all  lineages),
coloured  areas  represent  the  periods  of  different  interventions:  national  lockdown,  weak  local
restrictions  (Local  tier  2),  stricter  local  restrictions  (Local  tier  3),  and  the ‘Eat  out  to  help out’
government subsidy to promote eating within restaurants. (c) Positive tests detected via the two
testing regimes per  week.  (d)  Positives  tests  of  the eight  most  commonly  detected lineages in
Teesside per week. 

Disease mapping
The relative risk of a positive test for COVID-19 in each Teesside postcode varied greatly amongst the

lineages and between the two waves of the epidemic (Figure 3). The spatial pattern of risk of a positive
test for any lineage was highest in some of the central areas, particularly in central Middlesbrough (40-
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60% higher in TS4), while the lowest risks were in the more rural eastern and western districts (20-60%
lower).  The  spatial  pattern does  not  follow  a  clear  urban-rural  divide  however,  as  some urban  and
suburban areas had relative risks up to 20% lower than the overall risk across all districts (e.g., Thornaby
(TS17),  Redcar  (TS10),  and Eston (TS6)).  During the first  wave of  the pandemic  (lineages  B.1.1.1 and
B.1.1.119), risk was highest in the central areas of Teesside, particularly Middlesbrough (TS4, TS1, TS3,
and TS8) and Guisborough (TS14), while northern and western districts had a very low risk. One of the
second wave lineages (B.1.177) showed a more homogenous risk pattern, except for a raised risk in
central Middlesbrough (TS4), though there is a high degree of uncertainty around this value (see Figures
S1 and S2 in supplementary  material  for exceedance probabilities).  The remaining two second wave
lineages (B.1.1.7 and B.1.177.10) are those that occurred mainly towards the end of 2020; the spatial risk
pattern for these lineages is less uniform and more focussed in northern districts with the highest risks in
Hartlepool (TS24, TS25, and TS26), Trimdon (TS29), and Thornaby (TS17), with relative risk increase likely
exceeding 50% for Hartlepool (Figures S1, S2).

Figure 3 - Area-specific relative risk of a positive test for any SARS-CoV-2 lineage (“All cases”), and 5
of the most common lineages, in each Teesside postcode district during 2020 (from the spatial CAR
models). Maps for 3 of the lineages are not shown due to poor model fit (B.1.1.309, B.1.1.315, and
B.1.1.37). Values are a ratio: green colours indicate a risk of infection that is lower than the overall
risk for  the entire study area (< 1),  while purple colours  indicate  a higher risk (>1),  and colour
intensity indicates the strength of this effect. See Figures S1 and S2 in Supplementary Material for
corresponding exceedance probabilities. 

Mixed-effect modelling 
Most of the GLMMs had one fixed effect covariate that was identified as redundant and had a VIF

value over 3 (the all-cases, B.1.1.1, and B.1.1.119 models did not), so the models reported here are the
simplified ones where these fixed effects have been dropped (Figure 4). See Supplementary Materials for
model output from both the full and final (simplified) versions (the coefficients from the full models are
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accurate  in terms of  the magnitude and direction of any effects,  but  the errors are unreliable).  This
collinearity was between the temporal variables and was most often strongest for the weather variables,
though the collinearity was also very strong for the interventions or subsidy where lineages had a very
narrow temporal window (e.g. B.1.1.7). The model for lineage B.1.1.309 was refit without the postcode
random intercept as it had a variance that was almost 0 and the model showed temporal autocorrelation,
which was controlled upon refitting. 

There were significant  negative relationships  between total  positive tests  of  COVID-19 and mean
weekly  temperature  and  the  first  lockdown  (Figure  4,  Table  S3).  There  were  significant  positive
relationships  between  cases  and  total  population,  socio-economic  deprivation  (proportion  of  the
population in the most deprived IMD decile), local tier 2, the second national lockdown, and tier 3. Mean
weekly rainfall  and the restaurant subsidy had no significant effect.  The rate of  increase in  the total
number of cases over time relative to the mean, was slower in many of the areas that experienced higher
case numbers during the first wave, and faster in many areas that experienced more records during the
second wave (Figures 5, 3 and S4, Table S5, see Figure S3 for observed records per week per postcode). 

The relationships between cases and covariates for the two first wave lineages (B.1.1.1 and B.1.1.119)
were  similar,  with  a  significant  negative  relationship  for  temperature,  and  significant  positive
relationships  for  deprivation,  population,  and  the  first  lockdown  (Figure  4,  Table  S6).  Rainfall,  the
restaurant subsidy, tier 2, tier 3, and the second lockdown had no effect.

The patterns for the second wave lineages are less uniform, the only consistent relationship was a
significant positive association with population in all  models (Figure 4, Table S6). The only significant
association with deprivation was a positive one with cases of B.1.1.315. Temperature had a significant
negative  relationship  with  cases  of  B.1.1.7  and B.1.177.10,  and a  positive  relationship  with  cases  of
B.1.1.37. There were significant negative relationships between rainfall and cases of B.1.1.37 and B.1.1.7,
and  positive  relationships  with  cases  of  B.1.1.309,  B.1.1.315,  and  B.1.177.  Cases  were  significantly
decreased in relation to the restaurant subsidy for B.1.1.315 and B.1.177. There were significant positive
relationships between cases and tier 2 for B.1.1.315 and B.1.177, and cases and lockdown 2 for B.1.177.
Tier 3 was significantly negatively associated with cases of B.1.1.315, and positively associated with cases
of B.1.1.7, B.1.177, and B.1.177.10. 

Finally, the second-wave lineages model showed no relationship between the total number of cases
of the two first wave lineages (B.1.1.1 and B.1.1.119) and the total number of cases of the six second
wave lineages (B.1.1.309, B.1.1.315, B.1.1.37, B.1.1.7, B.1.177, and B.1.177.10) (see Table S8 for model
output). 
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Figure  4 -  Fixed effects  estimates  and 95% confidence  intervals  from  the  final  versions  of  the
GLMMs with an AR1 term for week for each postcode examining all cases and the 8 most common
lineages in Teesside (see Tables S3 and S6 for values). All models include a random intercept for
postcode,  except  where the model  fitted better without  it  (B.1.1.309). Black diamonds indicate
variables that were dropped from the models due to VIF values > 3 (see Table S7 for summary
values from the full models), remaining absent values represent non-overlap between some of the
lineages and temporal variables (see Figure 2). Display order of fixed effects is as follows: spatial
variables, continuous temporal  variables, transient temporal  variables (in chronological  order of
imposition).  Estimates are on the original model scale (log). Asterisks indicate significance level:
‘***’ indicates p ≤ 0.001, ‘**’ indicates p ≤ 0.01, and ‘*’ indicates p ≤ 0.05. Note that each panel has
a different y axis scale.
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Figure 5 - Random gradient estimates from the all-cases GLMM that included a random gradient for
week for each postcode district, showing (a) the estimates on a map, and (b) the estimates with
their 95% confidence intervals. Values represent the rate of change in the number of cases over
time relative to the mean, where blue values are higher than the mean and a faster rate of increase
(a steeper and more curved gradient), and red values are lower and a slower rate of increase (a
shallower and less curved gradient) (see Figure S4 for predicted rate of change curves for  each
postcode district from the same model). Estimates are on the original model scale (log) (see Table
S5 for full random effect summary values). 

Discussion

Our analyses indicate there was considerable spatial and temporal variation in occurrence of SARS-
CoV-2 in Teesside during 2020 and that the patterns were related to demographic features, weather, and
government interventions.  These results  must  be interpreted with caution due to several  limitations.
Firstly, positive test ascertainment differed between the two epidemic waves during 2020. Community
testing (pillar 2) was introduced later on in the first wave and did not become widespread until later in
the year, which means that testing during the first wave will be biased towards severely ill individuals and
healthcare workers. While the positive correlation between the number of pillar 1 vs pillar 2 tests for
each lineage suggests that this bias did not affect the detection of different lineages, it is possible that it
could  have contributed  to  differences  in the covariate  associations  that  we found between  the  two
waves. It is also possible that the timing of and access to tests could have differed between the two
pillars, however, we believe the availability and promotion of local testing facilities and free at-home
postal test kits, and the fact that both pillars included asymptomatic and symptomatic individuals, should
minimise any related bias. Secondly, the resolution of the data aggregation may have been too coarse to
detect  some relationships.  Aggregation was  essential  to  ensure anonymity  of  records.  However,  the
spatial resolution of postcode districts and the temporal resolution of one week, may have been too
coarse  to  capture  the  spatial  and temporal  variation  in  the  underlying  epidemiological  processes  of
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transmission or other social and environmental drivers. Thirdly, collinearity between temporal variables
was present in most of the separate lineage GLMM models. While we were able to assess and correct for
this using a systematic approach, our results must be viewed in the context of the variables that were
dropped. It is possible that some of the effects we see in our simplified models are actually being driven
by  those  variables  that  were  not  included.  And  finally,  many  covariates  associated  with  disease
transmission, including proximity to infectious individuals and social contacts, could not be measured. We
also did not have access to mobility data of a sufficient spatial resolution to incorporate into our models
(due  to  cost).  The  covariates  used  in  our  models  were  therefore  surrogates  for  the  underlying
mechanisms associated with disease transmission and spread. However, this is less of an issue in the
context of our study, as we are more interested in highlighting the overall impact on cases in Teesside in
relation  to  the local  and  national  restriction  policies  (and other  covariates),  rather  than the specific
mechanisms that may be driving these relationships. 

The spatial variation in total positive SARS-CoV-2 tests across the Teesside area was influenced by
demographic factors, as we found the number of positive tests was increased in postcode districts with a
higher population and those with higher levels of socio-economic deprivation. These are logical outcomes
as transmission is more likely to occur in more densely-populated areas and amongst people who have
higher exposure due to employment and living conditions (Niedzwiedz et al., 2020; Whittle & Diaz-Artiles,
2020;  McGowan & Bambra,  2022).  Our  model  output  maps,  when  viewed  in  combination  with  the
demographic information and regional knowledge, did not demonstrate a clear pattern of risk of, or rate
of  increase  in,  positive  tests  in  relation  to  how  urban  or  rural  the  postcode  districts  are.  Research
conducted on pillar 1 testing during the first wave in the East of England region found higher risks of
infection in more urban areas (Brainard et al., 2022). Because we did not formally investigate land use in
any of our models, we do not know what the true effect was, though we can speculate as to why we did
not detect any sort of clear signal.  It is possible that the size of our spatial units were too large and
heterogenous in terms of their social environments to be able to detect a relationship like that found by
Brainard et al. (2022), however, it is also possible that our longer timescale and inclusion of community
testing collected a more representative sample of positive tests, or that this relationship does not hold in
more urban and deprived areas like Teesside. 

Our findings indicate that some weather variables affected the total positive tests across Teesside in
2020.  We  found  positive  tests  were  reduced  by  higher  temperatures,  in  accordance  with  previous
research (Ganslmeier et al., 2021; Alaniz et al., 2023; Nottmeyer et al., 2023). This is probably due to both
indirect and direct mechanisms, as warmer weather encourages outdoor (rather than indoor) socialising
and increased indoor ventilation, while also reducing transmissibility of the virus particles (Ganslmeier et
al., 2021). However, we did not find an effect of rainfall on positive tests, and while some research has
also found no significant associations  (Ganslmeier et al., 2021), other studies have found a relationship
(Tan & Schultz, 2022). Evidence from studies examining hourly rainfall and temperature data indicates
that  the  effects  of  weather  variables  on  positive  tests  are  stronger  during  periods  that  facilitate
transmission, such as mealtimes and when there are low/no restrictions on movement and socialising
(Ganslmeier et al., 2021; Fetzer, 2022). Therefore, a finer temporal resolution than was used in this study
is required to clarify the links between weather, transmission, and cases. It is also likely that the temporal
resolution we used was too coarse to detect an impact of the government restaurant subsidy on cases, as
the  effects  would  have  been  limited  to  days  when  the  subsidy  applied  (Monday-Wednesday)  and
mealtimes.  Other  research has  found that  cases  were increased  by  the  subsidy,  but  this  effect  was
weaker when high rainfall coincided with mealtimes (Fetzer, 2022). 

The government interventions introduced to manage COVID-19 cases during 2020 had mixed impacts
on the total number of positive tests in Teesside. The first lockdown was successful in reducing cases,
while  all  of  the  later  interventions  appeared  to  have  the  opposite  effect.  The  only  difference  in
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restrictions between the two national lockdowns was that the first included school closures, whereas the
second did not. A large body of evidence has demonstrated that school closures were one of the most
important interventions in controlling COVID-19 (Brauner et al., 2021; Davies et al., 2021; Hunter et al.,
2021; Ge et al., 2022; Torres et al., 2022). The length of the second lockdown was also shorter than the
first one, though in Teesside it was immediately followed by tier 3 restrictions, which only differed in
terms of the reopening of gyms, retail, and personal care non-essential businesses. The benefits of closing
such business is unclear, with some studies showing modest or no benefits (Brauner et al., 2021; Hunter
et al., 2021), while others show considerable benefits  (Sharma et al., 2021), which makes it difficult to
infer whether the length of the second lockdown related to its apparent failure. However, it does seem
likely that school closures were an important factor of the success of the first lockdown relative to the
failure  of  the  second.  The  apparent  positive  effect  of  the  second  lockdown  and  the  tier  2  and  3
restrictions  could  be  due  to  the  timing  of  imposition  coinciding  with  one  or  more  events  that  are
epidemiologically important, such as the introduction of more transmissible lineages of the virus into the
region, like B.1.177 and B.1.1.7 (Volz et al., 2021; Hinch et al., 2022; Panovska-Griffiths et al., 2022); or
temporary changes in social behaviour or movement that facilitated transmission, like the reopening of
retail businesses during the Christmas season. Other research has also found no effect or positive effects
of non-pharmaceutical interventions on case counts, and it has been suggested that this could represent
an association with increases in testing capacity or with changes in testing policy (Giudici et al., 2023;
Lison et al., 2023). However, this is effect will be minimised in our dataset (total sequenced PCR tests
rather  than  total  positive  PCR  and/or  antigen  tests)  by  the  sequencing  capacity  of  the  COG-UK
consortium, which did not increase at the same rate as testing capacity in 2020. It is also possible that the
difference in effectiveness could reflect differences in exposure between lockdowns due to changes in
behaviour or routine, e.g. increased use of public transport during the second wave. People experiencing
greater socio-economic deprivation in the UK have been shown to experience increased exposure to high
infection risk activities permitted during the lockdowns, and that this varied slightly over time between
different lockdowns/restrictions (Beale et al., 2022). Further research is needed to understand the factors
affecting lockdown success in different communities, particularly ones with high levels of deprivation,
such as Teesside. 

Our findings suggest that the local tier system of interventions was less effective at reducing cases
than a long and strict national lockdown, which has also been found in other studies (Davies et al., 2021;
Torres  et  al.,  2022).  We also  found that  the tier  restrictions  were equally  ineffective  as  the  second
national lockdown, all of which were applied during the second wave. This suggests that if there are any
benefits to applying local-scale interventions in response to local-scale cases (rather than cases on the
national scale, which in this context were determined by more populous and distant regions), they are
masked by the  effects  of  other  factors,  such  as  stringency  and duration  of  restrictions,  introduction
events, and transmissibility of present lineages.  Another possibility is that the tiered restrictions were
not followed as rigorously as the national restrictions, either intentionally due to “pandemic fatigue” or
accidentally due to poor communication (Smith et al., 2022; Delussu et al., 2022), especially as the tier
levels in the UK could change at short notice and were not applied consistently across locations. While
the tier levels were consistent within Teesside during their periods of imposition, communication of the
restrictions was still unclear and complex as the tier levels were applied slightly differently in different
parts of England and the information was usually published in long lists. 

The  analyses  of  positive  tests  of  the  eight  most  common  SARS-CoV-2  lineages  in  Teesside
demonstrated different spatial and temporal relationships between the lineages, which also differed to
those of total  positive tests,  with differences in both magnitude and direction. Some of this disparity
could be explained by the relatively small sample sizes of the lineage models; for example, the effect of
socio-economic  deprivation  was  significant  for  three  lineages  (B.1.1.1,  B.1.1.119,  B.1.1.315),  but  the
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confidence  intervals  for  this  variable  were very  large in all  models.  It  seems likely  that  most  of  the
differences between the total cases model and the separate lineages models are caused by the restricted
spatial or temporal presence of the individual lineages when compared to all cases. For example, positive
tests of lineage B.1.1.37 were positively related to temperature, but case numbers were generally very
low and the only peak in cases occurred two weeks after a peak in temperature. While it is likely that
some of the differences we observed in the spatial and temporal patterns between the different lineages
are due to differences in transmissibility,  particularly for B.1.1.7 (the alpha variant)  (Volz et al.,  2021;
Hinch et al.,  2022; Panovska-Griffiths et al.,  2022), differences in the timing,  location,  and number of
introductions are also likely to be a factor (Vöhringer et al., 2021). While the utility of examining covariate
relationships for individual lineages over small geographic areas (with low numbers of sequenced tests)
may appear to be low, the use of genomic sequencing to track community spread over such local scales
holds great potential  (du Plessis et al., 2021). Such forensic tracking could be used to further increase
epidemiological understanding and perhaps target local interventions more effectively. 

It  has  been  well  documented  by  large-scale  studies  that  previous  infections  can  confer  natural
immunity  to  subsequent  infections  (Flacco  et  al.,  2022;  Hall  et  al.,  2022;  Murugesan  et  al.,  2022).
Therefore, it is possible that natural immunity could explain some of the different spatial and temporal
patterns between lineages in our data, particularly as the relative risk and the rate of increase in cases
during the second wave tended to be higher in areas that had low relative risk and case numbers during
the first wave. However, when we included the number of cases of first-wave lineages as a fixed effect in
a GLMM modelling the number of cases of second-wave lineages, there was no apparent relationship. It
seems likely that we were unable to detect a natural immunity effect because of the low numbers of
sequenced positive tests in our study. This suggests that natural immunity, and possibly other disease
processes, are easier to detect at larger spatial scales and with larger datasets. 

Our study has demonstrated the effects of weather and government interventions on the number of
SARS-CoV-2 positive tests at a sub-regional scale in Teesside, UK. The number of COVID-19 cases was
negatively  related to  temperature  and the first  national  lockdown.  There were positive  relationships
between cases and total population, socio-economic deprivation, the second lockdown, and local tiered
restrictions.  While further research is needed to investigate the factors affecting lockdown success in
different communities, we feel confident to make several recommendations regarding future epidemic
policy  responses  in  local/regional  contexts,  based  on  both  ours  and  other’s  findings.  Firstly,  school
closures are one of the most important interventions in controlling transmission and mortality (Brauner
et al., 2021; Davies et al., 2021; Hunter et al., 2021; Ge et al., 2022; Torres et al., 2022) , therefore school
closures should be included in national and local/regional lockdowns. Secondly, interventions applied at
the local/regional scale are less effective if they are less strict or applied later (Davies et al., 2021; Torres
et  al.,  2022),  therefore  all  tier  levels  (not  just  the  highest)  should  be stringent  and  they  should  be
imposed early. It is also imperative that local restrictions are communicated clearly and effectively with
the public, and that the rules are simple and consistent across areas, so as to facilitate adherence ( Smith
et al., 2022). Thirdly, transmission at the regional scale is dependent on introductions (da Silva Filipe et
al., 2021; du Plessis et al., 2021; Lane et al., 2021; Vöhringer et al., 2021) , particularly during periods of
low  restrictions  (Lemey  et  al.,  2021),  so  long-distance  domestic  and  international  travel  restrictions
should be imposed quickly at the start of an epidemic and the latter maintained. And finally, regional and
local transmission is dependent on both the transmissibility,  location, and number of introductions of
different lineages  (da Silva Filipe et al., 2021; du Plessis et al., 2021; Lane et al., 2021; Vöhringer et al.,
2021), therefore the possibility of using genomic sequencing to conduct forensic tracking of community
spread should be investigated.
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