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Abstract

Background

The coronavirus disease 2019 (COVID-19) presents an urgent threat to global health. Identification of 

predictors of poor outcomes will assist medical staff in treatment and allocating limited healthcare 

resources.

Aims

The primary aim was to study the value of D-dimer as a predictive marker for in-hospital mortality.

Methods

This was a cohort study. The study population consisted of hospitalized patients (age >18 years), who were 

diagnosed with COVID-19 based on real-time PCR at 9 hospitals during the first COVID-19 wave in 

Lombardy, Italy (Feb-May 2020). The primary endpoint was in-hospital mortality. Information was obtained 

from patient records. Statistical analyses were performed using a Fine-Gray competing risk survival model. 

Model discrimination was assessed using Harrell’s C-index and model calibration was assessed using a 

calibration plot.

Results

Out of 1049 patients, 501 patients had evaluable data. Of these 501 patients, 96 died. The cumulative 

incidence of in-hospital mortality within 30 days was 20% (95CI: 16%-23%), and the majority of deaths 

occurred within the first 10 days. A prediction model containing D-dimer as the only predictor had a C-index 

of 0.66 (95%CI: 0.61-0.71). Overall calibration of the model was very poor. The addition of D-dimer to a 

model containing age, sex and co-morbidities as predictors did not lead to any meaningful improvement in 

either the C-index or the calibration plot.

Conclusion

The predictive value of D-dimer alone was moderate, and the addition of D-dimer to a simple model 

containing basic clinical characteristics did not lead to any improvement in model performance.
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Introduction

The coronavirus disease 2019 (COVID-19) is an urgent threat to global health that has severely strained the 

healthcare system of many countries. [1–3]. Since the outbreak in early December 2019, the number of 

patients confirmed to have the disease has exceeded 164,981,323 and the number of people infected is 

probably much higher. More than 3,419,700 people have died from COVID-19 infection (up to May 20th 

2021).[4]

Due to a large number of COVID-19 patients overwhelming the Italian healthcare system during the first 

COVID-19 wave in Lombardy, Italy (Feb-May 2020), it was important to understand the role of early 

predictive markers, in order to better triage patients.

D-dimer is a fibrin degradation product, which originates from the formation and lysis of cross-linked fibrin 

and reflects activation of coagulation and fibrinolysis. Among the clinical and biochemical parameters 

associated with poor prognosis, increased D-dimer levels seemed to be predictive for acute respiratory 

distress syndrome (ARDS), the need for admission to an intensive care unit (ICU) or death. [5,6] 

Furthermore, several studies have reported an increased incidence of thromboembolic events in 

hospitalized COVID-19 patients.[7]

Taken together, these early studies indicate that D-dimer values at admission might be used to determine 

which patients would require hospitalization. (thereby decreasing the burden on the healthcare system) 

Therefore, the primary aim of this paper was to study the predictive value of D-dimer levels at admission on 

in-hospital mortality. The secondary aim of this paper was assess if there was any causal relationship 

between D-dimer levels and in-hospital mortality.

Methods

Study design and population

This was an observational cohort study. The study population consisted of patients aged > 18 years who 

were hospitalized and who were positive for COVID-19 based on real-time PCR at 9 Italian hospitals, during 

the first COVID-19 wave in Lombardy, Italy (Feb-May 2020). Patients that were directly admitted to the ICU 

were excluded. Patients in this study were followed-up for 30 days.

This study was approved by the Medical Ethics Committee of the Fondazione IRCCS Ca' Granda Ospedale 

Maggiore Policlinico. Written informed consent was obtained from patients before data collection. In cases 

where it was not possible to obtain informed consent, due to severe illness or death. Data collection was 

still performed assuming the patient’s consent.
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Data collection and definition of variables

All information was obtained from electronic patient records, using a standardized case report form. The 

exposure of interest, D-dimer levels (expressed as ng/mL) was used as either a continuous variable or split 

into quartiles with the lowest quartile being used as the reference category. The primary endpoint was in-

hospital mortality.

The following patient- and treatment characteristics were obtained: age (continuous variable), sex 

(dichotomous variable; male, female), the use of anticoagulant therapy during the study (dichotomous 

variable; yes, no) and the number of days between symptom onset and hospital admission (continuous 

variable). Lastly, information on the number of comorbidities was obtained (continuous variable; based on 

the list of comorbidities used in the Charlson comorbidity index, with the addition of clinician-defined 

obesity). The total list of comorbidities was as follows; cardiovascular disease, chronic obstructive 

pulmonary disease, chronic kidney disease, diabetes mellitus, cancer, liver disease, dementia, connective 

tissue disease, HIV aids and clinician-defined obesity.

Statistical analysis, general approach

Descriptive analyses were reported as mean/SD, median/IQR, or as proportions. The cumulative incidence 

of in-hospital mortality and the relationship between D-dimer levels and in-hospital mortality were 

assessed using survival analysis methods. Discharge within 30 days with a good prognosis served as a 

competing outcome, in that it (practically) precludes the occurrence of the main outcome of interest (in-

hospital mortality). Therefore, it was decided to model the relationship between D-dimer and in-hospital 

mortality using the Fine-Gray competing risk survival model, which accounts for the presence of competing 

events. In the multivariable analyses, we adjusted for age, sex and the number of comorbidities.

For similar reasons, we did not use the Kaplan Meier function to estimate the cumulative incidence of 

mortality. Instead, we used the cumulative incidence function, which correctly accounts for competing 

events. 

A complete case analysis was performed, meaning that patients with missing values for the exposure, 

outcome or confounders were removed.

Statistical analysis, causal relationship between D-dimer levels and in-hospital mortality

The relationship between D-dimer levels and in-hospital mortality was estimated using the aforementioned 

Fine-Gray competing risk survival model. We adjusted for age, sex and comorbidities, as well as 

anticoagulant therapy during hospitalization and the time between symptom onset and hospital admission.

Statistical analysis, The predictive value of D-dimer for in-hospital mortality
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Three prediction models were tested; a model containing only D-dimer as a predictor, a model containing 

age, sex and comorbidities, and a model containing D-dimer, age, sex and comorbidities.

For all three models, model discrimination (i.e. how well can the model discriminate between patients with 

and without the outcome) and model calibration (i.e. the degree to which predicted mortality and observed 

mortality are similar) were assessed.

Model discrimination was measured by calculating a modified version of Harrel’s C-index [8], which is a 

measure of how well the model can discriminate between patients with and without the outcome. In the 

presence of competing risks, Harrel’s C-index is biased. [9] We calculated a modified version of Harrel’s C-

index by setting the follow-up time of patients who experience a competing event to larger than our 

prediction horizon (which is 30 days), instead of censoring these patients, as was proposed by Wolbers et 

al. [9]

Model calibration was measured by first dividing the population into ten groups (or deciles), based on their 

predicted mortality risk. Next, the predicted 30-day mortality for each decile (obtained from the Fine-Gray 

competing risk survival model) was plotted against the observed 30-day mortality for that decile (obtained 

from the cumulative incidence function). Furthermore, to examine calibration across the whole range, we 

also fitted a LOWESS (Locally Weighted Scatterplot Smoothing) line to the data.

Sample size calculation

A formal sample size calculation for the development of a prediction model was not performed. However, 

96 patients died during follow-up (see results section) and the number of predictors used in the prediction 

models ranged from 1 (for the model containing only D-dimer as a predictor) to 4 (for the model containing 

D-dimer, age, sex and comorbidities as predictors). Accordingly, the number of events per predictor ranged 

from 96 to 24, well above the minimum of 10 events per variable needed to accurately estimate the model 

coefficients.[10] Therefore, we deemed the sample size sufficient for these analyses.

Results

Baseline characteristics

Out of 1094 patients, 506 had missing D-dimer levels, 27 had incomplete follow-up data, 13 were excluded 

due to immediately being admitted to the ICU after admission and 47 patients had missing data on either 

anticoagulant therapy during hospitalization, or for the time between symptom onset and hospital 

admission. Finally, 501 patients had evaluable data. Of these, 96 patients died within 30 days after 

admission. Patients were enrolled between March 6th 2020 to September 20th 2020. Almost all (98%) 

patients were enrolled before May 31st 2020. (the end of the first COVID-19 wave) D-dimer values were 

associated with advanced age and the number of comorbidities at admission. (Table 1) 
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From March 6th 2020 to September 20th 2020, the cumulative incidence of in-hospital mortality within 30 

days was 20% (95CI: 16%-23%). Mortality was higher in the early phase of the epidemic and slightly 

decreased over time. (Supplemental table 1) The cumulative incidence of discharge because of a good 

prognosis within 30 days was 71% (95CI: 67%-75%) (Figure 1), with most patients (75%) who died doing so 

in the first 10 days. After this period the death rate slowed down, as evidence by the flattening of the 

survival curve. (Figure 1)

With increasing D-dimer levels, the absolute risk of mortality also increased strongly, from 4% (95CI:2%-9%) 

in patients with D-dimer levels in the lowest quartile to 28% (95CI: 20%-36%) in patients with D-dimer 

levels in the highest quartile. (Table 2)

Causal relationship between D-dimer levels and in-hospital mortality

Compared with patients in the lowest quartile of D-dimer blood concentration, the unadjusted hazard ratio 

for in-hospital mortality in patients in the 2nd, 3rd and 4th quartile was 4.2 (95CI: 1.6-11.1), 8.6 (95CI: 3.4-

21.8) and 7.6 (95CI: 3.0-19.3) respectively. (Table 2) After adjusting for age, sex, comorbidities, 

anticoagulant therapy during hospitalization and the time between symptom onset and hospital admission, 

the hazard ratio for patients in the 2nd, 3rd and 4th quartile was 4.0 (95CI: 1.6-10.2), 6.1 (95CI: 2.4-15.4), and 

4.8 (95CI: 1.9-12.1) respectively. (Table 2)

The predictive value of D-dimer for in-hospital mortality

The predictive model containing D-dimer as the only predictor had a C-index of 0.66 (95%CI: 0.61-0.71). 

Overall calibration of the model was very poor (Figure 2a). Next, the predictive model containing age, sex 

and comorbidities as predictors had a C-index of 0.82 (95%CI: 0.78-0.86). Overall calibration of the model 

was acceptable (Figure 2b). Lastly, the predictive model containing D-dimer, age, sex and comorbidities as 

predictors had a C-index of 0.83 (95%CI: 0.79-0.86). Overall calibration of this model was acceptable (Figure 

2c).

Discussion

Our results show that despite a strong correlation between D-dimer levels and mortality, the predictive 

value of D-dimer as a single biomarker was unclear. Model discrimination was moderate (C-index: 0.67) 

while model calibration was very poor. Furthermore, the addition of D-dimer to a simple model containing 

only basic clinical characteristics (age, sex and co-morbidities) did not lead to any meaningful improvement 

in either the C-index or the calibration plot.

D-dimer is a breakdown product, generated after a fibrin clot is degraded by fibrinolysis. It is a recognized 

valid lab biomarker that is widely used as part of the diagnostic workup of patients with a suspected venous 

thromboembolism (VTE) or disseminated intravascular coagulation (DIC) and is predictive of poor outcomes 
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and thromboembolic events. [11] Changes in D-dimer levels are seen in most patients that are hospitalized 

with COVID-19. [12] Changes in other hemostatic parameters, such as a slightly elongated PT, elongated 

aPTT, or mild thrombocytopenia are less common. [13] Furthermore, in addition to the increase in D-dimer 

(which is also an acute-phase protein that rises with general inflammation) an increase in inflammatory 

biomarkers such as CRP, particularly in COVID-19 patients with a more severe disease phenotype, is also 

seen. [14] 

The mechanisms underlying this COVID-19 induced coagulopathy may, in part, be explained by the same 

general mechanisms that also underlie other cases of bacteria-induced septic coagulopathy such as 

overproduction of pro-inflammatory cytokines by monocytes. Furthermore, direct activation of coagulation 

by monocytes via tissue-factor and phosphatidylserine (which are expressed on the cell surface of 

monocytes) also play a role. [14] Furthermore, studies have reported endothelial dysfunction in patients 

with COVID-19 induced coagulopathy, which is probably mediated by the production of pro-inflammatory 

cytokines as well as activation of the complement cascade. [15,16]

A strong correlation between D-dimer and mortality was also reported by other studies. A meta-analysis of 

six studies containing 1355 hospitalized patients found that D-dimer levels were higher in deceased 

patients (standardized mean difference: 3.59 mcg/L, 95%CI 2.79—4.40). [17] This meta-analysis did not 

calculate a pooled C-index to assess the overall predictive performance of D-dimer. 

A later meta-analysis reporting on 16 studies containing 4468 COVID-19 patients reported a pooled C-index 

of 0.86 (95CI: 83-89) for predicting all-cause mortality. [18] However, these results were most likely 

strongly influenced by publication bias. In addition, it is somewhat unclear how the pooled C-index was 

calculated, as many studies did not report the C-index directly.

A retrospective study by Zhang et al. evaluated D-dimer levels and mortality in 343 patients. [19] D-dimer 

levels were measured within the first 24 hours, and hospitalized patients were followed until death or 

discharge. The study showed a very strong correlation between D-dimer levels over 2.0 mcg/mL and 

mortality. (HR: 51.5, 95%CI 12.9-206.7). However, the study did not adjust for any confounders. It is 

therefore unclear how different confounders could have affected the reported results. The predictive value 

of D-dimer was also very high (C-index: 0.89) There was no information about anticoagulant use during the 

study follow-up.

These strong results were not confirmed by a later study by Naymagon et al. [20] that followed 1062 

COVID-19 patients during hospitalization. Each 1 μg/ml increase in D-dimer levels (measured within 3 days 

of admission) was associated with a hazard ratio of death of 1.05 (95%CI: 1.04-1.07). The association did 

not change after adjustment for age, smoking, Charlson comorbidity index and anticoagulant use at 

admission. However, discriminative performance of D-dimer levels was moderate (C-index: 0.694). At 
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baseline, 9.1% of patients were on anticoagulant use and no information was given about anticoagulant use 

during the study.

Overall, it seems that early studies reported that D-dimer was strongly predictive of mortality, although this 

effect was not as strong in the larger studies. Furthermore, all aforementioned studies only assessed the 

discriminative performance of D-dimer, but not model calibration.

Our study has several strengths. Firstly, our study had a large sample size with a sufficient number of 

events. Secondly, we applied a competing risk survival model to analyze the relationship between D-dimer 

and poor outcomes to avoid bias. Not taking competing risks into account could lead to misleading results, 

as shown in a recent simulation study on competing risks in COVID-19 research. [21] In addition, we 

evaluated both discrimination (as was done in earlier studies) and model calibration (which was not 

reported in any of the aforementioned studies). This is important because models may show good 

discrimination but could still be poorly calibrated. [22]

Our study also has some limitations. The main limitation is that values for D-dimer levels were not available 

for 506 out of 1094 patients. D-dimer tests are most commonly ordered if a patient has some symptoms or 

medical history which are indicative of a thromboembolic event. Therefore, patients that were excluded 

from the study due to missing information on D-dimer were most likely patients with a low a priori 

likelihood of having a VTE. Also, D-dimer assays vary widely in their set-up. This lack of standardization 

makes comparison of different study results somewhat difficult. [23,24]

Due to the rapid pace of change in the treatment of patients with COVID-19, the predictive value of D-

dimer (and therefore, it’s clinical usefulness) will most likely have diminished over time. For example, in 

Lombardy, many patients in the second COVID-19 wave (Oct-Dec 2020) were already being prescribed 

anticoagulant treatment by their general practitioner before hospitalization. Furthermore, as the outbreak 

went on, patients with milder symptoms were also being hospitalized. Due to these treatment changes, we 

can speculate that patients hospitalized after the first COVID-19 wave will have had lower D-dimer levels at 

admission, when compared to patients admitted in the first COVID-19 wave (Feb-May 2020). Furthermore, 

D-dimer levels would have been less strongly associated with mortality in these patients, when compared 

to patients admitted in the first COVID-19 wave (Feb-May 2020). 

As shown before, a part of COVID-19 related mortality is due to an underlying coagulopathy. (which might 

manifest as a VTE, as DIC or a TMA) Consequently, some studies have suggested that D-dimer levels could 

be used to stratify patients with COVID-19, and to individualize treatment. [19] However, our analyses 

show that, despite a strong correlation between D-dimer levels and mortality, the predictive value of D-

dimer alone was not sufficient. However, that was to be expected as COVID-19 is not a coagulation disorder 

but a multi-systemic (although mainly respiratory) disease that influences health through multiple 
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pathways, one of which is the coagulation system. However, D-dimer also showed little added value when 

added to simple risk prediction model containing only age, sex and comorbidities as predictors.

Conclusion

The predictive value of D-dimer alone was moderate, and the addition of D-dimer to a simple model 

containing basic clinical characteristics did not lead to any improvement in model performance.
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Tables & Figures

Figure 1: Cumulative incidence function of 501 COVID-19 patients hospitalized in the region of Lombardy, 
Italy, during the first COVID-19 wave (Feb-May 2020).
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Table 1: Baseline characteristics of COVID-19 patients hospitalized in the region of Lombardy, Italy, during the first COVID-19 wave (Feb-May 2020).

ddimer, 
< 538 ng/mL

(N=126)

ddimer, 
538-957 ng/mL

(N=124)

ddimer,
957-1764 ng/mL

(N=124)

ddimer, 
> 1764 ng/mL

(N=127)

Overall
(N=501)

mean age (SD) 57.3 (16.5) 62.1 (14.1) 67.8 (14.1) 69.5 (13.6) 64.2 (15.4)

sex

female 45 (35.7%) 31 (25.0%) 47 (37.9%) 53 (41.7%) 176 (35.1%)

male 81 (64.3%) 93 (75.0%) 77 (62.1%) 74 (58.3%) 325 (64.9%)

charlson comorbidity 
index

no comorbidities 73 (57.9%) 74 (59.7%) 68 (54.8%) 55 (43.3%) 270 (53.9%)

1 comorbidity 36 (28.6%) 25 (20.2%) 32 (25.8%) 41 (32.3%) 134 (26.7%)

2 comorbidities 14 (11.1%) 20 (16.1%) 16 (12.9%) 21 (16.5%) 71 (14.2%)

3 or more 
comorbidities

3 (2.4%) 5 (4.0%) 8 (6.5%) 10 (7.9%) 26 (5.2%)

anticoagulant therapy 
during hospitalization

no 27 (21.4%) 26 (21.0%) 18 (14.5%) 25 (19.7%) 96 (19.2%)

yes 99 (78.6%) 98 (79.0%) 106 (85.5%) 102 (80.3%) 405 (80.8%)

mean number of days  
between first symptoms 
and admission (SD)

8.9 (6.5) 10.7 (12.3) 11.1 (11.8) 10.7 (10.0) 10.4 (10.4)

SD: standard deviation
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Table 2: Association between D-dimer values and in-hospital mortality

N n Observed 
incidence
after 30 days

Univariate 
model

Multivariable 
model 11

Multivariable 
model 22

D-dimer

    < 538 ng/mL 126 5 0.04 (0.02-0.09) ref ref ref

    538-957 ng/mL 124 20 0.16 (0.10-0.24) 4.2 (1.6-11.1) 3.9 (1.5-10.0) 4.0 (1.6-10.2)

    957-1764 ng/mL 124 36 0.30 (0.22-0.38) 8.6 (3.4-21.8) 5.8 (2.3-14.7) 6.1 (2.4-15.4)

    > 1764 ng/mL 127 35 0.28 (0.20-0.36) 7.6 (3.0-19.3) 4.6 (1.8-11.5) 4.8 (1.9-12.1)

1: Model, corrected for age, sex and Charlson comorbidity index score. 2: Model, corrected for age, sex, Charlson 
comorbidity index score, anticoagulant therapy during hospitalization, and the time between symptom onset and 
hospital admission.
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A 
A

B 
A

C 
A

Figure 2: Calibration plot of prediction models

Legend: The figure shows the calibration plot of the model containing only d-dimer as a predictor (A), containing age, sex and comorbidities (B) and containing d-dimer, age, sex and comorbidities 

(C). The population was divided into ten groups (or deciles) based on their predicted mortality risk. (represented as black dots in the plot) The predicted probability of mortality according to the 

model is shown on the X-axis while the observed mortality is shown on the Y-axis. Groups with a higher predicted risk of mortality should have a higher observed risk. To examine calibration 

across the whole range, we also fitted a LOWESS (Locally Weighted Scatterplot Smoothing) line to the data. (shown here as a blue line) The dotted line represents perfect prediction (where the 

predicted risk is exactly the same as the observed risk).
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Appendix
Supplemental Table 1: cumulative incidence of death, per time-period

Time period N Cumulative 
incidence of death

March 6 to September 20 501 20% (95CI: 16-23)

March 6 to March 14 35 19% (95CI: 7-34)

March 14 to March 31 263 20% (95CI: 15-25)

April 1 to April 14 126 21%  (95CI: 14-28)

April 14 to April 30 51 18% (95CI: 9-30)

April 30 to September 20 26 15% (95CI: 5-32)
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