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ABSTRACT 
 

SARS-CoV-2 virus genomes are currently being sequenced at an unprecedented pace. The 

choice of viral sequences used in genetic and epidemiological analysis is important as it can 

induce biases that detract from the value of these rich datasets. This raises questions about 

how a set of sequences should be chosen for analysis, and which epidemiological parameters 

derived from genomic data are sensitive or robust to changes in sampling. We provide initial 

insights on these largely understudied problems using SARS-CoV-2 genomic sequences from 

Hong Kong and the Amazonas State, Brazil. We consider sampling schemes that select 

sequences uniformly, in proportion or reciprocally with case incidence and which simply use 

all available sequences (unsampled). We apply Birth-Death Skyline and Skygrowth methods 

to estimate the time-varying reproduction number (Rt) and growth rate (rt) under these 

strategies as well as related R0 and date of origin parameters. We compare these to estimates 

from case data derived from EpiFilter, which we use as a reference for assessing bias. We 

find that both Rt and rt are sensitive to changes in sampling whilst R0 and the date of origin 

are relatively robust. Moreover, we find that the unsampled datasets, which reflect an 

opportunistic sampling scheme, engender the most biased Rt and rt estimates for both our 

Hong Kong and Amazonas case studies. We highlight that sampling strategy choices may be 

an influential yet neglected component of sequencing analysis pipelines. More targeted 

attempts at genomic surveillance and epidemic analyses, particularly in resource-poor 

settings with limited sequencing capabilities, are necessary to maximise the informativeness 

of virus genomic datasets.   
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INTRODUCTION 

 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped single-

stranded zoonotic RNA virus belonging to the Betacoronavirus genus and Coronaviridae 

family1. It was first identified in late 2019 in a live food market in Wuhan City, Hubei 

Province, China2. Within a month, SARS-CoV-2 had disseminated globally through 

sustained human-to-human transmission. It was declared a public health emergency of 

international concern on the 30th of January 2020 by the World Health Organisation3. Those 

infected with SARS-CoV-2 have phenotypically diverse symptoms ranging from mild fever 

to multiple organ dysfunction syndromes and death4.  

 

Despite the implementation of non-pharmaceutical interventions (NPIs) by many countries to 

control their epidemics, to date over 418 million SARS-CoV-2 cases and 5.8 million deaths 

have been reported worldwide5. These NPIs can vary within and between countries and 

include restrictions on international and local travel, school closures, social distancing 

measures and the isolation of infected individuals and their contacts6. The key aim of NPIs is 

to reduce epidemic transmission, often measured by epidemiological parameters such as the 

time-varying effective reproduction number (Rt at time t) and growth rate (rt), which both 

provide updating measures of the rate of spread of a pathogen (see Supplementary Table 1 for 

detailed definitions)7,8.  

 

However, there is currently great difficulty in estimating and comparing epidemiological 

parameters derived from case and death data globally due to disparities in molecular 

diagnostic surveillance and notification systems between countries. Further, even if data are 

directly comparable, the choice of epidemiological parameter can implicitly shape insights 

into how NPIs influence transmission potential9,10. As such, there is a need to supplement 

traditional estimates with information derived from alternative data sources, such as genomic 

data11, to gain improved and more robust insights into viral transmission dynamics12,13. 

 

Phylodynamic analysis of virus genome sequences have increasingly been used for studying 

emerging infectious diseases, as seen during the current SARS-CoV-2 pandemic14–17, recent 

Ebola virus epidemics in Western Africa18 and the Zika epidemic in Brazil and the 

Americas19,20. Transmissibility parameters such as the basic reproduction number (R0), Rt and 

rt can be directly inferred from genomic sequencing data or from epidemiological data, while 
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other epidemiological parameters such as the date of origin of a given viral variant or lineage 

can only be estimated from genomic data. This is of particular importance for variants of 

concern (VOC), genetic variants with evidence of increased transmissibility, more severe 

disease, and/or immune evasion. VOC are typically detected through virus genome 

sequencing and only limited inferences can be made through epidemiological data alone21. 

 

Currently, SARS-CoV-2 virus genomes from COVID-19 cases are being sequenced at an 

unprecedented pace providing a wealth of virus genomic datasets22. There are currently over 

8.4 million genomic sequences available on GISAID, an open-source repository for influenza 

and SARS-CoV-2 genomic sequences23. These rich datasets can be used to provide an 

independent perspective on pathogen dynamics and can help validate or challenge parameters 

derived from epidemiological data. Specifically, the genomic data can potentially overcome 

some of the limitations and biases that can result from using epidemiological data alone. For 

example, genomic data are less susceptible to changes at the government level such as 

alterations to the definition of a confirmed case and changes to notification systems24,25. 

Inferences from virus genomic data improve our understanding of underlying epidemic 

spread and can facilitate better-informed infection control decisions26. However, these 

advantages are not straightforward to realise. The added value of genomic data depends on 

two related variables: sampling strategy and computational complexity. 

 

The most popular approaches used to investigate changes in virus population dynamics 

include the Bayesian Skyline Plot27 and Skygrid28 models and the Birth-Death Skyline 

(BDSKY)29. These integrate Markov Chain Monte Carlo (MCMC) procedures and often 

converge slowly on large datasets30. As such, currently available SARS-CoV-2 datasets 

containing thousands of sequences become computationally impractical to analyse and sub-

sampling is necessary. Although previous studies have examined how sampling choices 

might influence phylodynamic inferences30–34, this remains a neglected area of study35, 

particularly concerning SARS-CoV-2 for which sequencing efforts have been unprecedented 

36. To our knowledge, there are no published studies concerning SARS-CoV-2 which explore 

the effect that sampling strategies have on the phylodynamic reconstruction of key 

transmission parameters. Incorrectly implementing a sampling scheme or ignoring its 

importance can mislead inferences and introduce biases30,37.  

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 16, 2022. ; https://doi.org/10.1101/2022.02.04.22270165doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.04.22270165
http://creativecommons.org/licenses/by/4.0/


5 

This raises the important question that motivates our analysis: how should sequences be 

selected for phylodynamic analysis and which parameters are sensitive or robust to changes 

in different sampling schemes. Here we explore how diverse sampling strategies in genomic 

sequencing may affect the estimation of key epidemiological parameters. We estimate R0, Rt, 

and rt from genomic sequencing data under different sampling strategies from a location with 

higher genomic coverage represented by Hong Kong, and a location with lower genomic 

coverage represented by the Amazonas region, Brazil. We then compare our estimates against 

those derived from reference case data. By benchmarking genomic inferences against those 

from case data we can better understand the impact that sampling strategies may have on 

phylodynamic inference, bolster confidence in estimates of genomic-specific parameters such 

as the origin time and improve the interpretation of estimates from areas with heterogeneous 

genomic coverage. 
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METHODS 

 

Empirical Estimation of the Reproduction Number, Time-varying Effective 

Reproduction Number, and Growth Rate 

 

Epidemiological Datasets 

Two sources of data from the Amazonas region, Brazil and one source of data from Hong 

Kong were used to calculate empirical epidemiological parameters. For the Amazonas region, 

case data from the SIVEP-Gripe (Sistema de Informação de Vigilância Epidemiológica da 

Gripe) SARI (severe acute respiratory infections) database from the 30th of November 2020 

up to 7th of February 2021 were used. Here we were interested in cases caused by the 

P.1/Gamma VOC first detected in Manaus, the number of P.1 cases was calculated by using 

the proportion of P.1/Gamma viral sequences uploaded to GISAID within each week 

(Supplementary Figure 1). For Hong Kong, all case data were extracted from the Centre of 

Health Protection, Department of Health, the Government of the Hong Kong Special 

Administrative region up to the 7th of May 2020. Due to lags in the development of detectable 

viral loads, symptom onset and subsequent testing38; the date on which each case was 

recorded was left shifted by 5 days within our models39 to account for these delays in both 

datasets.  

 

Basic Reproduction Number  

The R0 parameter was estimated using a time series of confirmed SARS-CoV-2 cases from 

both Hong Kong and the Amazonas region. To avoid the impact of NPIs, only data up to the 

banning of mass gathering in Hong Kong (27th March 2020) and until the imposition of strict 

restrictions in the Amazonas region (12th January 2021) were used. Weekly counts of 

confirmed cases were modelled using maximum likelihood methods. The weekly case counts 

were assumed to be Poisson distributed and were fitted to a closed Susceptible-Exposed-

Infectious-Recovered (SEIR) model (Equation 1) by maximising the likelihood of observing 

the data given the model parameters (Table 1). Subsequently, the log-likelihood was used to 

calculate the R0 by fitting β, the effective contact rate. 
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Equation 1: 

𝜆 =  
𝛽𝐼

𝑁
 

dS

𝑑𝑡
= −𝜆𝑆 

dE

𝑑𝑡
= 𝜆S −  𝛾E 

dI

𝑑𝑡
=  𝛾E - σI 

dR

𝑑𝑡
=  σI 

 

 

To generate approximate 95% confidence intervals (CIs) for R0, non-parametric 

bootstrapping was used with 1000 iterations.   

 

Table 1: This shows the parameter estimates used within the deterministic SEIR model. 

 

Parameter Description Value (source) 

𝑅0 = 𝛽𝛼 
Basic Reproduction Number Estimated 

N 

Population of Hong Kong 7,481,800 persons40 

Population of Amazonas Region 4,207,714 persons41 

𝛽 
Effective Contact Rate Estimated 

α Infectious Period 0.07 day-1 42  

𝜆 Force of Infection  Estimated  

𝛾 Progression from E to I 5.26 day-1 43   

δ Progression from I to R 14.3 day-1
 
42 

S 
Estimated number of 

Susceptibles 
Estimated 

E Estimated number of Exposed Estimated 

I Number of Infected Weekly case counts 

R Estimated number of Recovered Estimated 
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Time-varying Effective Reproduction Number 

To estimate Rt from case line list data the EpiFilter method44 was used. EpiFilter describes 

transmission using a renewal model; a general and popular framework that can be applied to 

infer the dynamics of numerous infectious diseases from case incidence45. This model 

describes how the number of new cases (incidence) at time t depends on Rt at that specified 

time point and the past incidence, which is summarised by the cumulative number of cases up 

to each time point weighted by the generation time distribution, which we assume to be 

known. Epifilter integrates both Bayesian forward and backward recursive smoothing. This 

improves Rt estimates by leveraging the benefits of two of the most popular Rt estimation 

approaches: EpiEstim 46 and the Wallinga-Teunis method47. EpiFilter minimises the mean 

squared error in estimation and reduces dependence on prior assumptions, making it a 

suitable candidate for deriving reference estimates. We use these to benchmark estimates 

independently obtained from genomic data. We assume the generation time distribution is 

well approximated by the serial interval (SI) distribution46 , which describes the times 

between symptom onsets between an infector–infectee pair.  

 

Growth Rate  

After Rt has been inferred, the Wallinga-Lipsitch equation for a gamma distributed generation 

time distribution (Equation 2) was used to estimate the exponential epidemic rt
48. The SI for 

Hong Kong was derived from a systematic review and meta-analysis49 and a study exploring 

SI in Brazil was used for the Amazonas datasets50. The SI was assumed to be gamma 

distributed. The gamma distribution is represented by gamma (𝜀, 𝛾) with 𝜀 and 𝛾 being the 

shape and scale parameters respectively. 

 

Equation 2: 

𝑟𝑡 =  𝜀(𝑅𝑡

(
1
𝛾

)
− 1) 

 

SARS-CoV-2 Brazilian Gamma VOC and Hong Kong datasets 

All high-quality, complete SARS-CoV-2 genomes were downloaded from GISAID23 for 

Hong Kong (up to 7th May 2020) and the Amazonas state, Brazil (from 30th November 2020 

up to 7th February 2021). Using the Accession ID of each sequence, all sequences were 

screened and only sequences previously analysed and published in PubMed, MedRxiv, 
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BioRxiv, virological or Preprint repositories were selected for subsequent analysis. For both 

datasets, sequence alignment was conducted using MAFFTV.751. The first 130 base pairs 

(bp) and last 50 bps of the aligned sequences were trimmed to remove potential sequencing 

artefacts in line with the Nextstrain protocol52. Both datasets were then processed using the 

Nextclade pipeline for quality control (https://clades.nextstrain.org/). Briefly, the Nextclade 

pipeline examines the completeness, divergence, and ambiguity of bases in each genetic 

sequence. Only sequences deemed ‘good’ by the Nextclade pipeline were selected for. 

Subsequently, all sequences were screened for identity and in the case of identical sequences, 

for those with the same location, collection date, only one such isolate was used. Moreover, 

PANGO lineage classification was conducted using the Pangolin22 software tool 

(http://pangolin.cog-uk.io) on sequences from the Amazonas region and only those with the 

designated P.1/Gamma lineage were selected for (Supplementary Figure 1).  

 

Maximum Likelihood tree reconstruction 

Maximum likelihood phylogenetic trees were reconstructed using IQTREE253 for both 

datasets. A TIM2 model of nucleotide substitution with empirical base frequencies and a 

proportion of invariant sites was used as selected for by the ModelFinder application54 for the 

Hong Kong dataset. For the Brazilian dataset, a TN model of nucleotide substitution55 with 

empirical base frequencies was selected for. To assess branch support, the approximate 

likelihood-ratio test based on the Shimodaira–Hasegawa-like procedure with 

1,000 replicates56, was used. 

 

Root-to-tip regression 

To explore the temporal structure of both the Brazilian and Hong Kong dataset, TempEst 

v.1.5.357 was used to regress the root-to-tip genetic distances against sampling dates (yyyy-

mm-dd). The ‘best-fitting’ root for the phylogeny was found by maximising the R2 value of 

the root-to-tip regression (Supplementary Figure 2). Several sequences showed incongruent 

genetic diversity and were discarded from subsequent analyses. This resulted in a final 

dataset of N = 117 Hong Kong sequences and N = 196 Brazilian sequences. The gradient of 

the slopes (clock rates) provided by TempEst were used to inform the clock prior in the 

phylodynamic analysis.   
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Subsampling for analysis  

Four retrospective sampling schemes were used to select a subsample of Amazonas and Hong 

Kong sequences. Each sampling period was broken up into weeks with each week being used 

as an interval according to a temporal sampling scheme (without replacement). This temporal 

sampling scheme was based on the number of reported cases of SARS-CoV-2. 

The temporal sampling schemes that we explored were: 

● Uniform sampling: All weeks have equal probability. 

● Proportional sampling: Weeks are chosen with a probability proportional to the 

value of the number of cases in each epi-week. 

● Reciprocal-proportional sampling: Weeks are chosen with a probability 

proportional to the reciprocal of the number of cases in each epi-week. 

● No sampling strategy applied: All sequences were included without a sampling 

strategy applied (equivalent to opportunistic sampling).  

These sampling schemes were inspired by those recommended by the WHO for practical use 

in different settings and scenarios58. Proportional sampling is equivalent to representative 

sampling, uniform sampling is equivalent to fixed sampling whilst the unsampled data 

includes all sampling strategies. Reciprocal-proportional sampling is not commonly used in 

practice as was used as a control within this study. 

 

Bayesian Evolutionary Analysis  

Date molecular clock phylogenies were inferred for all sampling strategies applied to the 

Amazonas and Hong Kong dataset using BEAST v1.10.459 with BEAGLE library v3.1.060 for 

accelerated likelihood evaluation. For both the Amazonas and Hong Kong datasets, a HKY 

substitution model with gamma-distributed rate variation among sites and four rate categories 

was used to account for among-site rate variation61. A strict clock molecular clock model was 

chosen. Both the Amazonas and Hong Kong dataset were analysed under a flexible non-

parametric skygrid tree prior62. Four independent MCMC chains were run for both datasets. 

For the Amazonas dataset, each MCMC chain consisted of 250,000,000 steps with sampling 

every 50,000 steps. Meanwhile, for the Hong Kong dataset, each MCMC chain consisted of 

200,000,000 steps with sampling every 40,000 steps. For both datasets, the four independent 

MCMC runs were combined using LogCombiner v1.10.459. Subsequently, 10% of all trees 

were discarded as burn in, and the effective sample size of parameter estimates were 
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evaluated using TRACER v1.7.263. An effective sample size of over 200 was obtained for all 

parameters. Maximum clade credibility (MCC) trees were summarised using Tree 

Annotator59. 

 

Phylodynamic Reconstruction  

Estimation of the Basic and Time-varying Effective Reproduction Numbers 

The Bayesian birth-death skyline (BDSKY) model29 implemented within BEAST 2 v2.6.564 

was applied to estimate the time-varying transmissibility parameter Rt (Table 2). A HKY 

substitution model with a gamma-distributed rate variation among sites and four rate 

categories61 was used alongside a strict molecular clock model. The selected number of 

intervals for both datasets was 5, representing Rt changing every 2.5 weeks for the Hong 

Kong datasets and every 2 weeks for the Brazilian datasets, with equidistant intervals per 

step. An exponential distribution was used with a mean of 36.5y-1 for the rate of becoming 

infectious, assuming a mean duration of infection of 10 days15. A uniform distribution prior 

was used for the sampling proportion, which models changes in case ascertainment. Four 

independent MCMC chains were run for 50 million MCMC steps with sampling every 5000 

steps for each dataset. These MCMC runs were combined using LogCombiner v2.6.5.64 and 

the effective sample size of parameter estimates evaluated using TRACER v1.7.263. We 

obtained an effective sample size above 200 for all parameters (indicating convergence) and 

plotted all results using the bdskytools R package (https://github.com/laduplessis/bdskytools). 
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Table 2: Values and priors for the parameters of the BDSKY model 

 

Parameter Dataset Value or prior Rationale/Assumption 

Clock rate 

Brazil 
4.0x10-4 

(subs/site/year) Informed by root-to-tip 

regression 

Hong Kong 
1.0x10-4

 

(subs/site/year) 

Death rate 
Brazil and Hong 

Kong 
36.5 y-1 

The period between 

infection and becoming 

uninfectious assumed an 

exponential distribution 

with a mean of 10 days15 

Reproduction number 
Brazil and Hong 

Kong 

Lognormal (0.8, 

0.5) 

Median 2.2, 95% IQR 0.8 

to 5.9 

Time of origin 

Brazil 

Lognormal (-1.50, 

0.4) y before 

present 

Median 4th December 

2020, 95% IQR 25th 

September 2020 to 12th 

January, 2021 

Hong Kong 

Lognormal (-1.75, 

0.4) y before 

present 

Median 18th January 

2020, 95% IQR 17th 

November 2019 to 15th 

February 2020 

Sampling proportion 

Brazil Uniform (0, 0.024) 

196 sequences from 8246 

suspected P.1 cases as of 

7th February, 2021 

Hong Kong Uniform (0, 0.116) 

117 sequences from 1012 

confirmed cases as of 7th 

May, 2020 
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Estimation of Growth Rates 

For each dataset, a scaled proxy for rt was obtained from the skygrowth method65 within R. 

Skygrowth uses a non-parametric Bayesian approach to apply a first-order autoregressive 

stochastic process on the growth rate of the effective population size. The MCMC chains 

were run for one million iterations for each dataset on their MCC tree with an Exponential 

(10-5) prior on the smoothing parameter. The skygrowth model was parameterised assuming 

that the effective population size of SARS-COV-2 could change every two weeks. To 

facilitate a comparison of the scaled proxy for rt estimated by skygrowth and exponential rt 

estimated by EpiFilter, the rt estimated by the skygrowth method was rescaled to the 

exponential growth rate. This was achieved by adding a gamma rate variable to the scaled 

proxy for rt, which assumed a mean duration of infection of 10 days15, to calculate Rt. 

Subsequently, the Wallinga-Lipsitch equation (Equation 2) was used to convert Rt into the 

exponential growth rate48. 

 

Comparing Parameter Estimates from Genetic and Epidemiological Data 

To compare estimates derived from epidemiological and genetic data the Jensen-Shannon 

divergence (DJS)66, which measures the similarity between two probability mass functions 

(PMFs), was applied. The DJS offers a formal information theoretic evaluation of 

distributions and is more robust than comparing Bayesian credible intervals (BCIs) since it 

considers both the shape and spread of a given distribution. The DJS is essentially a 

symmetric and smoothed version of the Kullback-Leibler divergence (DKL) and is commonly 

used in the fields of machine learning and bioinformatics. The DKL between two PMFs, P and 

Q, is defined in Equation 3 below67. 

 

Equation 3:  

𝐷𝐾𝐿 (𝑃||𝑀) =  ∑ 𝑃(𝑥)log (
𝑃(𝑥)

𝑄(𝑥)
)

𝑥
 

 

To calculate the PMF for each epidemiological parameter, the cumulative probability density 

function (PDF) was extracted for each model, converted to a probability density function 

(PDF), and a discretisation procedure then applied τ represents the PDF and is discretized via 

Equation 4, where s = 0.05, 0.01….and  𝜏(𝜐) is the cumulative probability density of τ and i 

is the incidence. 
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Equation 4:  

𝜏𝑅𝑡,𝑟𝑡,𝑅0 = ∫ 𝜏(𝜐)𝜏𝑖
𝑠+0.025

𝑠−0.025

 

 

The Jensen-Shannon distance (JSD) metric quantifies the DJS by taking the square-root of the 

total DJS and is the metric that we used to compare parameter estimations from differing 

sampling strategies. The JSD can be calculated using Equation 5 with P and Q representing 

the two probability distributions and DKL as the KL divergence. A smaller JSD metric 

indicates that two probability distributions (P and Q) are more similar with a Jensen-Shannon 

distance of 0 indicating equivalence of the two distributions. The mean JSD was taken over 

all intervals for the BDSKY and Skygrowth models to obtain an overall measure of the level 

of estimated similarity.  

 

Equation 5: 

JSD (𝑃||𝑄 ) =  √
1

2
𝐷𝐾𝐿(𝑃||𝑀 ) +

1

2
𝐷𝐾𝐿 (𝑄||𝑀 ) where 𝑀 =  

1

2
 (𝑃 + 𝑄) 

 

 

Data availability 

Please see https://github.com/rhysinward/Phylodyanmic-Subsampling for code and data used 

within this study.  
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RESULTS  

Sampling Schemes 

Hong Kong 

Hong Kong reacted rapidly upon learning of the emergence of SARS-CoV-2 in Wuhan, 

Hubei province, China, by declaring a state of emergency on the 25th of January 2020 and by 

mobilising intensive surveillance schemes in response to initial cases68. This appeared to be 

successful in controlling the first wave of cases. However, due to imported cases from Europe 

and North America, a second wave of SARS-CoV-2 infections emerged prompting stricter 

NPIs such as the closure of borders and restrictions on gatherings 68. Following these 

measures, the incidence of SARS-CoV-2 rapidly decreased (Figure 1). Hong Kong has a high 

sampling intensity with 11.6% of confirmed cases sequenced during our study period. 

Further, Hong Kong has high quality case data with a high testing rate through effective 

tracing of close contacts, testing of all asymptomatic arriving travellers and all patients with 

pneumonia69.    

  

Figure 1. Confirmed SARS-CoV-2 cases from Hong Kong until 7th of May 2020. The 

dashed lines represent policy change-times68.   
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The number of cases within Hong Kong for each week was used to inform the sampling 

schemes used within this study. This resulted in the unsampled scheme having N = 117 

sequences, the proportional sampling scheme having N = 54 sequences, the uniform sampling 

scheme having N = 79 and the reciprocal-proportional sampling scheme having N = 84 

sequences (Supplementary Figure 3).  

Amazonas  

The Amazonas state of Brazil had its first laboratory confirmed case of SARS-CoV-2 in 

March 2020 in a traveller returning from Europe70. After a first large wave of SARS-CoV-2 

infections within the state that peaked in early May 2020 (Figure 2), the epidemic waned, 

cases dropped, remaining stable until mid-December 2020. The number of cases then started 

growing exponentially, ushering in a second epidemic wave. This second wave peaked in 

January 2021 (Figure 2) and coincided with the emergence of a new SARS-CoV-2 VOC, 

designated P.1/Gamma14.  

To combat this second wave, the Government of the Amazonas state suspended all non-

essential commercial activities on the 23rd of December 2020 

(http://www.pge.am.gov.br/legislacao-covid-19/). However, in response to protests, these 

restrictions were reversed, and cases continued to climb. On the 12th of January, when local 

transmission of P.1/Gamma was confirmed in Manaus, capital of Amazonas state71, NPIs 

were re-introduced (http://www.pge.am.gov.br/legislacao-covid-19/) which seemed to be 

successful in reducing the case incidence in the state. However, cases remained 

comparatively high (Figure 4). Amazonas has a low sampling intensity with 2.4% of 

suspected P.1/gamma cases sequenced during our study period.   
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Figure 2. Confirmed SARS-CoV-2 cases from Amazonas state, north Brazil until 7th of 

February 2021. The dashed lines represent policy change-times 72.   

 

The number of cases within the Amazonas region informed the sampling schemes used 

within this study. This resulted in the unsampled scheme having N = 196 sequences, the 

proportional sampling scheme having N = 168 sequences, the uniform sampling scheme 

having N = 150 and the reciprocal-proportional sampling scheme having N = 67 sequences 

(Supplementary Figure 4).  

Root-to-tip Regression 

The correlation (R2) between genetic divergence and sampling dates for the Hong Kong 

datasets ranged between 0.36 and 0.52 and between 0.13 and 0.20 for the Amazonas datasets 

(Supplementary Figure 2). This implies that the Hong Kong datasets have a stronger temporal 

signal. This is likely due to the Hong Kong datasets have a wider sampling interval (106 

days) compared to the Amazonas datasets (69 days). A wider sampling interval can lead to a 

stronger temporal signal73. The gradient (rate) of the regression ranged from 1.16x10-3 to 

2.09x10-3 s/s/y for the Hong Kong datasets and 4.41x10-4 to 5.30x10-4 s/s/y for the Amazonas 

datasets.  
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Estimation of Evolutionary Parameters 

The mean substitution rate (measured in units of number of substitutions per site per year, 

s/s/y) and the time to most common recent ancestor (TMRCA) was estimated in BEAST, for 

both datasets, and the estimation from all sampling schemes was compared. 

 

Hong Kong 

 

For Hong Kong, the mean substitution rate per site per year ranged from 9.16x10-4 to 

2.09x10-3 with sampling schemes all having overlapped Bayesian credible intervals (BCIs) 

(Supplementary table 2; Supplementary Figure 5A). This indicates that the sampling scheme 

did not have a significant impact on the estimation of the clock rate. Moreover, the clock rate 

is comparable to estimations from the root-to-tip regression and to early estimations of the 

mean substitution rate per site per year of SARS-CoV-2 (Duchene et al., 2020).  

 

Molecular clock dating of the Hong Kong dataset indicates that the estimated time of the 

most common recent ancestor was around December 2020 (Figure 3B; Supplementary Table 

2). This is a few weeks before the first confirmed case which was reported on the 18th of 

January 2021. Once again, all sampling strategies have overlapped BCIs and with the range 

in means differing by around three weeks, a relatively short time scale, suggesting that the 

sampling scheme does not significantly impact the estimation of the TMRCA.  

 

Brazil 

For the P.1 lineage in the Amazonas region, the mean substitution rate ranged from 4.00x10-4 

to 5.56x10-4 s/s/y with all sampling schemes having overlapped BCIs (Figure 3D, 

Supplementary Table 2; Supplementary Figure 5B). This indicates that sampling strategy 

does not impact the estimation of the clock rate, supporting findings from the Hong Kong 

dataset. This also supports estimations from the root-to-tip analysis (Supplementary Figure 

2). 

 

Molecular clock dating estimated a TMRCA mean around late October to early November 

(Figure 3D; Supplementary Table 2). This is around five weeks before the date of the first P.1 

case identified in Manaus used in our study. All sampling schemes have overlapping BCI 

consistent with the conclusion from the Hong Kong data that TMRCA is relatively robust to 

sampling. 
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Estimation of Basic Reproduction Number  

We found that Hong Kong had a significantly lower R0 of 2.17 (95% credible interval (CI) = 

1.43 - 2.83) when compared to Amazonas which had a R0 of 3.67 (95% CI = 2.83 – 4.48).  

All sampling schemes for both datasets were characterised by similar R0 values (Figure 3) 

indicating that the estimation of R0 is robust to changes in sampling scheme. 

 

 

Figure 3. R0 estimated from BDSKY and TMRCA for Hong Kong and Brazil. Figure 1A 

and B represent Hong Kong and Figure 1C and D represent the Amazonas.   

Time-varying Reproduction number and Growth rate 

 

We estimate Rt and rt for local SARS-CoV-2 epidemics in Hong Kong and Amazonas, Brazil. 

Our main results showing these two parameters and JSD metrics are shown in figures 4-8. 

 

Hong Kong 

We applied the BDSKY model to estimate the Rt for each dataset subsampled according to 

the different sampling strategies (Figure 4). We compared these against the Rt from case data, 

derived from EpiFilter. Based on the proportional sampling scheme, which had the lowest 
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JSD (Figure 4E), we initially infer a super-critical Rt value, with a mean around 2, that 

appears to fall swiftly in response to the state of emergency and the rapid implementation of 

NPIs. A steady transmission rate subsequently persisted throughout the following weeks 

around the critical threshold (Rt = 1). This period is followed by a sharp increase in Rt, 

peaking at a mean value of 2.6. This is likely due to imported cases from North America and 

Europe68. This led to a ban on international travel resulting in a sharp decline in Rt (Figure 2). 

However, this decline lasted around a week with the mean Rt briefly increasing until more 

stringent NPIs such as the banning of major gatherings were implemented. Following this, 

the Rt continued its sharp decline falling below the critical threshold, with transmission 

becoming sub-critical (Figure 4).  

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 16, 2022. ; https://doi.org/10.1101/2022.02.04.22270165doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.04.22270165
http://creativecommons.org/licenses/by/4.0/


21 

 

Figure 4: Rt estimated from both the BDSKY and EpiFilter methods for Hong Kong. The 

bold writing represents the sampling scheme used in panels A-D. The light-shaded area 

represents the 95% Highest Posterior Density Interval with the darker-shaded area 

presenting where the BDSKY and EpiFilter models overlap. The solid line represents the 

mean Rt estimate with EpiFilter in red and BDSKY in blue. The dashed lines represent 

policy change-times. The Jensen Shannon Distance is ordered from best to worse in panel 

E.   

These results were mirrored in the estimation of rt. (Figure 5) for which the uniform and 

proportional sampling schemes showed the least divergence (Figure 5E). There was an initial 

decline in the rt, which steadied at a value of ~ 0, indicating that epidemic stabilisation had 

occurred. This stable period is followed by an increase in rt peaking at around a 0.050 d-1 

(Figure 5). In response to NPIs, the rt starts to decrease, falling below 0, indicating a receding 

epidemic. The rate of this decline peaks at around -0.075 d-1 (Figure 5). 
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Figure 5: rt estimated from both the Skygrowth and EpiFilter methods for Hong Kong. The 

bold writing represents the sampling scheme used in panels A-D. The light-shaded area 

represents the 95% Highest Posterior Density Interval with the darker-shaded area 

presenting where the BDSKY and Skygrowth models overlap. The solid line represents the 

mean rt estimate with Skygrowth in red and BDSKY in blue. The dashed lines represent 

policy change-times. The JSD metric is ordered from best to worse in panel E. 
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Brazil 

Based on the uniform sampling scheme, which had the lowest JSD (Figure 6E), we initially 

infer super-critical transmission (Rt > 1) with a mean value of 3 (Figure 6). From this point, 

the Rt declines, although it remains above the critical threshold (Rt = 1) for much of the study 

period. Sub-critical transmission (Rt < 1) was only reached after the re-imposition of NPIs. 

This implies that initial restrictions, such as the suspension of commercial activities, were 

likely insufficient for suppressing spread. Only after more stringent restrictions were imposed 

did Rt become sub-critical. However, there is no evidence of a sharp decrease in Rt once 

restrictions were re-imposed, which may suggest limited effectiveness. 
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Figure 6: Rt estimated from both the BDSKY and EpiFilter methods forAmazonas, Brazil. 

The bold writing represents the sampling scheme used in panels A-D. The light-shaded area 

represents the 95% Highest Posterior Density Interval with the darker-shaded area 

presenting where the BDSKY and EpiFilter models overlap. The solid line represents the 

mean Rt estimate with EpiFilter in red and BDSKY in blue. The dashed lines represent 

policy change-times. The Jensen Shannon Distance is ordered from best to worse in panel 

E. 

Based on the uniform sampling scheme, which had the lowest JSD (Figure 7E) we infer a 

steady decline in rt which matches the pattern seen with the Rt value (Figure 7). The initial rt 

implied a 0.250 d-1. Subsequently, the rt falls over the study period. rt falls below 0 after the 

re-imposition of NPIs declining at -0.030 d-1 by the end of the study period. There is no 

evidence of any noticeable declines in rt when interventions were introduced indicating that 

they might not have significantly impacted the growth rate of P.1/gamma.  
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Figure 7: rt estimated from both the Skygrowth and EpiFilter methods for Amazonas, 

Brazil. The bold writing represents the sampling scheme used in panels A-D. The light-

shaded area represents the 95% Highest Posterior Density Interval with the darker-shaded 

area presenting where the BDSKY and Skygrowth models overlap. The solid line represents 

the mean rt estimate with Skygrowth in red and BDSKY in blue. The dashed lines represent 

policy change-times. The JSD is ordered from best to worse in panel E. 
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Discussion  

In this study, phylodynamic methods have been applied to available SARS-CoV-2 sequences 

from Hong Kong and the Amazonas region of Brazil to infer their key epidemiological 

parameters and to compare the impact that various sampling strategies have on the 

phylodynamic reconstruction of these parameters. 

We estimated the basic reproductive number of SARS-CoV-2 in Hong Kong to be 2.17 (95% 

CI = 1.43-2.83). This supports previous estimates of the initial R0 in Hong Kong68,74 which 

estimates R0 to be 2.23 (95% CI = 1.47-3.42). For the Amazonas region in Brazil, we 

estimated the R0 to be 3.67 (95% CI = 2.83 – 4.48). Whilst the population of Amazonas State 

may not be fully susceptible to P.1/gamma14, this should not affect the comparison among 

sampling schemes. We found that R0 is robust to changes in sampling schemes (Figure 3A 

and C). 

For the Hong Kong dataset, the proportional sampling scheme was superior to all other 

sampling schemes in estimating Rt. It successfully predicted the initial super-critical Rt, its 

decline in response to rapid NPIs, and subsequent increase and decline during the second 

wave of infections (Figure 4B). This was in comparison to the reciprocal-proportional 

scheme, which provided the worst (largest) JSD (Figure 4D) and an Rt estimate that was 

largely insensitive to NPIs. The proportional sampling scheme, alongside the uniform 

sampling scheme, best estimated rt (Figure 5B and C). In contrast, for the Amazonas dataset, 

the uniform sampling scheme best estimated the Rt and rt (Figure 6C and Figure 7C). It 

captured both its initial super-critical Rt and high rt alongside their subsequent decline. Our Rt 

estimates are consistent with previous estimates of P.1 in Amazonas state14. This contrasted 

with the unsampled data in which the rt increased at the end of the period (Figure 7A). This 

highlights that unlike R0, both Rt and rt are sensitive to changes in sampling and that even 

related epidemiological parameters like Rt and rt may require different sampling strategies to 

optimise inferences. 

Molecular clock dating of the Hong Kong and Amazonas dataset has revealed that the date of 

origin is relatively robust to changes in sampling schemes. For Hong Kong, SARS-CoV-2 

likely emerged in mid-December 2019 around 5 weeks before the first reported case on the 

22nd of January 202068. The Amazonas dataset revealed that the date of the common ancestor 

of the P.1 lineage emerged around late October 2020 to early November, around 5 weeks 

before the first reported case on the 6th of December14, with all BCI’s overlapping for each 
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sampling strategy. Like the molecular clock dating, we found that the molecular clock rate 

was robust to changes in sampling strategies in both datasets with all sampling strategies 

having overlapped BCI’s (Supplementary Table 2 and Supplementary Figure 5). For the 

Hong Kong dataset, its clock rate is comparable to early estimations of the mean substitution 

rate per site per year of SARS-CoV-213. However, the clock rate estimated for the Brazilian 

dataset is lower than initial 8.00x10-4 s/s/y which is used in investigating SARS-CoV-275 and 

that has been used in previous analyses of P.176. This initial estimation of evolutionary rate 

was estimated from genomic data taken over a short time span at the beginning of the 

pandemic introducing a time dependency bias. By using a more appropriate clock rate it can 

improve tree height and rooting resulting in more robust parameter estimations77.  

Treating sampling times as uninformative has been shown to be inferior to including them as 

dependent on effective population size and other parameters by several previous 

studies30,31,34,78. Whilst these studies did not consider the estimation of epidemiological 

parameters, they highlight the potential of systematic biases being introduced into the 

phylodynamic reconstruction by not using a sampling scheme or by assuming an incorrect 

model for how sampling schemes introduce information. This was supported by our results as 

phylodynamic inferences with no sampling strategy applied had the poorest performance for 

both Hong Kong and the Amazonas region. This implies that sampling has a significant 

impact on phylodynamic reconstruction, and that exploration of sampling strategies is needed 

to obtain the most robust parameter estimates.  

 

While our results provide a rigorous underpinning and insight into the dynamics of SARS-

CoV-2 and the impact of sampling strategies in the Amazonas region and Hong Kong, there 

are limitations. The Skygrowth and BDSKY models do not explicitly consider imports into 

their respective regions. This is particularly relevant for Hong Kong as most initial sequences 

from the region were sequenced from importation events79 which can introduce error into 

parameter estimation. However, as the epidemic expanded, more infections were attributable 

to autochthonous transmission79, and the risk of error introduced by importation events 

decreased. Moreover, while sampling strategies can account for temporal variations in 

genomic sampling fractions there is currently no way to account for non-random sampling 

approaches in either the BDSKY or Skygrowth models80. It is unclear how network-based 

sampling may affect parameter estimates obtained through these models81 presenting a key 
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challenge in molecular and genetic epidemiology. Spatial heterogeneities were also not 

explored within this work. This represents the next key step in understanding the impact of 

sampling as spatial sampling schemes would allow the reconstruction of the dispersal 

dynamics and estimation of epidemic overdispersion (k), a key epidemiological parameter. 

 

Finally, we compared our phylodynamic estimates against epidemiological inferences derived 

from case data from Hong Kong and Amazonas state, two settings with very different 

diagnostic capacity. While Hong Kong has high quality case data with a high testing rate 

through69, there is a large underreporting of SARS-CoV-2 cases in the Amazonas state72,82 . 

Future epidemiological modelling work is needed to compare parameter estimates obtained 

from case data, death data and excess death data across different settings.  

 

This work has highlighted the impact and importance that applying temporal sampling 

strategies can have on phylodynamic reconstruction. Whilst more genomic datasets from a 

variety of countries and regions with different sampling intensities and proportions are 

needed to create a more generalisable sampling framework and to dissect any potential 

cofounders, it has been shown that genomic datasets with no sampling strategy applied can 

introduce significant uncertainty and biases in the estimation of epidemiological parameters. 

This finding identifies the need for more targeted attempts at performing genomic 

surveillance and epidemic analyses particularly in resource-poor settings which have a 

limited genomic capability.  
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Supplementary Figures and Tables  

 

Supplementary Table 1: Key parameters and definitions for SARS-CoV-2 

Parameter Definition 

Basic reproduction number 

(R0) 

Average number of individuals infected by a single infected 

person in a fully susceptible population 

Time-varying or effective 

reproduction number (Rt) 

Average number of secondary infections generated per 

effective primary case at a certain time point and in the 

presence of susceptible depletion or interventions  

Growth rate (rt) 
Rate of change of the logarithm of the number of new cases 

per unit of time 

Incubation period Time between infection and symptom onset 

Infectious period 
Period in which an infectious host can transmit infectious 

agents to a susceptible individual 

Generation interval Time between infection events in an infector–infectee pair 

Date of origin Date in which viral variant is thought to have emerged 

Serial Interval Time between symptom onsets in an infector–infectee pair 
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Supplementary Figure 1: The proportion of P.1 sequences compared to non-P.1 

sequences found on GISaid (Shu and McCauley, 2017). 
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Supplementary Figure 2: Root-to-tip genetic distances to sample collection dates for the 

SARS-CoV-2 genome datasets used in this study: A-D represents Hong Kong and E-H 

represent Amazonas State. Plots are based on the maximum likelihood trees rooted by 

maximising R2. The linear regression trend lines are shown to data points, corresponding to 

the genome sequences (represented with black dots).  
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Supplementary Figure 3: Number of sequences for each week and sampling scheme for 

Hong Kong dataset.  

 

 

 

Supplementary Figure 4: Number of sequences for each week and sampling scheme for 

Amazonas dataset.  
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Supplementary Table 2: TMRCA and mean substitution rate both with 95% BCI for each 

sampling strategy for Hong Kong and Amazonas datasets alongside the Jensen-Shannon 

distance. Full posterior distribution of the TMRCA and substitution rates obtained under the 

different sampling strategies can be found in Figure 3B and D and Supplementary Figure 5. 

Sampling 

Strategy 

Dataset TMRCA (95% BCI) Mean 

Substitution 

Rate (95% BCI, 

subs/site/year, 

s/s/y) 

Unsampled 

Hong Kong  2nd December 2019 (10th 

November 2019 – 24th 

December 2019) 

1.12x10-3 

(9.16x10-4 – 

1.35x10-3) 

Brazil 
30th October 2020 (8th October 

2020 – 13th December 2020) 

4.58x10-4 

(3.69x10-4 – 

5.56x10-4) 

Proportional 

Hong Kong 24th December 2019 (21st 

November 2019 – 11th January 

2020) 

1.39x10-3 

(9.28x10-4 – 

2.48x10-3) 

Brazil 
30th October 2020 (25th August  

2020 – 29th November 2020) 

4.60x10-4 

(3.70x10-4 – 

5.56x10-4) 

Uniform 

Hong Kong 13th December 2019 (18th 

November 2019 – 4th January 

2020) 

1.64x10-3 

(1.22x10-3 – 

2.09x10-3) 
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Brazil 
27th October 2020 (5th October 

2020 – 25th November 2020) 

4.60x10-4 

(3.70x10-4 – 

5.56x10-4) 

Reciprocal-

proportional 

Hong Kong  6th December 2019 (10th 

November 2019 – 28th December 

2019) 

1.30x10-3 

(1.03x10-3 – 

1.59x10-3) 

Brazil 30th October 2020 (27th 

September 2020 – 25th November 

2020) 

4.00x10-4 

(2.56x10-4 – 

5.55x10-4) 

 

 

 

 

Supplementary Figure 5: Mean substitution rate (s/s/y) for Hong Kong and Brazil. Figure 

1A represents Hong Kong with Figure 1B representing the Amazonas.   
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Supplementary Table 3: Accession ID of each Hong Kong sequence for each sampling 

strategy used within this study 

 

Unsampled Proportional Uniform Reciprocal-

proportional 

EPI_ISL_ 412028 EPI_ISL_ 414517 EPI_ISL_ 412029 EPI_ISL_ 412028 

EPI_ISL_ 412029 EPI_ISL_ 414519 EPI_ISL_ 414517 EPI_ISL_ 412029 

EPI_ISL_ 412030 EPI_ISL_ 414527 EPI_ISL_ 414519 EPI_ISL_ 412030 

EPI_ISL_ 414517 EPI_ISL_ 418815 EPI_ISL_ 414527 EPI_ISL_ 414517 

EPI_ISL_ 414519 EPI_ISL_ 419224 EPI_ISL_ 414569 EPI_ISL_ 414519 

EPI_ISL_ 414527 EPI_ISL_ 419229 EPI_ISL_ 414571 EPI_ISL_ 414527 

EPI_ISL_ 414528 EPI_ISL_ 419232 EPI_ISL_ 416314 EPI_ISL_ 414528 

EPI_ISL_ 414569 EPI_ISL_ 450404 EPI_ISL_ 417064 EPI_ISL_ 414569 

EPI_ISL_ 414571 EPI_ISL_ 450405 EPI_ISL_ 417443 EPI_ISL_ 414571 

EPI_ISL_ 416314 EPI_ISL_ 450410 EPI_ISL_ 419214 EPI_ISL_ 416314 

EPI_ISL_ 417064 EPI_ISL_ 476801 EPI_ISL_ 419215 EPI_ISL_ 417064 

EPI_ISL_ 417176 EPI_ISL_ 476802 EPI_ISL_ 419217 EPI_ISL_ 417176 

EPI_ISL_ 417178 EPI_ISL_ 476803 EPI_ISL_ 419224 EPI_ISL_ 417178 

EPI_ISL_ 417181 EPI_ISL_ 497769 EPI_ISL_ 419225 EPI_ISL_ 417181 

EPI_ISL_ 417185 EPI_ISL_ 497773 EPI_ISL_ 419227 EPI_ISL_ 417185 

EPI_ISL_ 417187 EPI_ISL_ 497775 EPI_ISL_ 419228 EPI_ISL_ 417187 

EPI_ISL_ 417188 EPI_ISL_ 497784 EPI_ISL_ 419229 EPI_ISL_ 417188 

EPI_ISL_ 417193 EPI_ISL_ 497786 EPI_ISL_ 419231 EPI_ISL_ 417193 

EPI_ISL_ 417197 EPI_ISL_ 497791 EPI_ISL_ 419232 EPI_ISL_ 417197 

EPI_ISL_ 417443 EPI_ISL_ 497796 EPI_ISL_ 419245 EPI_ISL_ 417443 

EPI_ISL_ 418815 EPI_ISL_ 497799 EPI_ISL_ 419247 EPI_ISL_ 418815 

EPI_ISL_ 419214 EPI_ISL_ 497806 EPI_ISL_ 419250 EPI_ISL_ 419214 

EPI_ISL_ 419215 EPI_ISL_ 497808 EPI_ISL_ 419252 EPI_ISL_ 419215 

EPI_ISL_ 419216 EPI_ISL_ 497810 EPI_ISL_ 434564 EPI_ISL_ 419216 

EPI_ISL_ 419217 EPI_ISL_ 497811 EPI_ISL_ 434565 EPI_ISL_ 419217 
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EPI_ISL_ 419219 EPI_ISL_ 497818 EPI_ISL_ 434567 EPI_ISL_ 419219 

EPI_ISL_ 419221 EPI_ISL_ 497819 EPI_ISL_ 434568 EPI_ISL_ 419221 

EPI_ISL_ 419222 EPI_ISL_ 497821 EPI_ISL_ 434569 EPI_ISL_ 419222 

EPI_ISL_ 419224 EPI_ISL_ 497823 EPI_ISL_ 434570 EPI_ISL_ 419224 

EPI_ISL_ 419225 EPI_ISL_ 497824 EPI_ISL_ 434571 EPI_ISL_ 419225 

EPI_ISL_ 419226 EPI_ISL_ 497840 EPI_ISL_ 450405 EPI_ISL_ 419226 

EPI_ISL_ 419227 EPI_ISL_ 497845 EPI_ISL_ 450408 EPI_ISL_ 419227 

EPI_ISL_ 419228 EPI_ISL_ 497846 EPI_ISL_ 450409 EPI_ISL_ 419228 

EPI_ISL_ 419229 EPI_ISL_ 497847 EPI_ISL_ 450410 EPI_ISL_ 419229 

EPI_ISL_ 419231 EPI_ISL_ 497850 EPI_ISL_ 450411 EPI_ISL_ 419231 

EPI_ISL_ 419232 EPI_ISL_ 497856 EPI_ISL_ 476801 EPI_ISL_ 419232 

EPI_ISL_ 419245 EPI_ISL_ 497865 EPI_ISL_ 476802 EPI_ISL_ 419245 

EPI_ISL_ 419247 EPI_ISL_ 497870 EPI_ISL_ 476804 EPI_ISL_ 419247 

EPI_ISL_ 419250 EPI_ISL_ 516798 EPI_ISL_ 497769 EPI_ISL_ 419250 

EPI_ISL_ 419252 EPI_ISL_ 539820 EPI_ISL_ 497771 EPI_ISL_ 419252 

EPI_ISL_ 434560 EPI_ISL_ 539850 EPI_ISL_ 497783 EPI_ISL_ 434563 

EPI_ISL_ 434563 EPI_ISL_ 539851 EPI_ISL_ 497784 EPI_ISL_ 434564 

EPI_ISL_ 434564 EPI_ISL_ 610167 EPI_ISL_ 497791 EPI_ISL_ 434565 

EPI_ISL_ 434565 EPI_ISL_ 610168 EPI_ISL_ 497806 EPI_ISL_ 434566 

EPI_ISL_ 434566 EPI_ISL_ 610169 EPI_ISL_ 497810 EPI_ISL_ 434567 

EPI_ISL_ 434567 EPI_ISL_ 610170 EPI_ISL_ 497811 EPI_ISL_ 434568 

EPI_ISL_ 434568 EPI_ISL_ 610171 EPI_ISL_ 497813 EPI_ISL_ 434569 

EPI_ISL_ 434569 EPI_ISL_ 610172 EPI_ISL_ 497818 EPI_ISL_ 434570 

EPI_ISL_ 434570 EPI_ISL_ 610173 EPI_ISL_ 497821 EPI_ISL_ 434571 

EPI_ISL_ 434571 EPI_ISL_ 610174 EPI_ISL_ 497823 EPI_ISL_ 450405 

EPI_ISL_ 450404 EPI_ISL_ 610175 EPI_ISL_ 497824 EPI_ISL_ 450408 

EPI_ISL_ 450405 EPI_ISL_ 610177 EPI_ISL_ 497826 EPI_ISL_ 450409 

EPI_ISL_ 450408  EPI_ISL_ 497827 EPI_ISL_ 450410 

EPI_ISL_ 450409  EPI_ISL_ 497831 EPI_ISL_ 450411 

EPI_ISL_ 450410  EPI_ISL_ 497832 EPI_ISL_ 450412 

EPI_ISL_ 450411  EPI_ISL_ 497846 EPI_ISL_ 476802 

EPI_ISL_ 450412  EPI_ISL_ 497847 EPI_ISL_ 476804 
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EPI_ISL_ 476801  EPI_ISL_ 497848 EPI_ISL_ 497769 

EPI_ISL_ 476802  EPI_ISL_ 497856 EPI_ISL_ 497771 

EPI_ISL_ 476803  EPI_ISL_ 497860 EPI_ISL_ 497773 

EPI_ISL_ 476804  EPI_ISL_ 497865 EPI_ISL_ 497783 

EPI_ISL_ 497769  EPI_ISL_ 539820 EPI_ISL_ 497784 

EPI_ISL_ 497771  EPI_ISL_ 539850 EPI_ISL_ 497791 

EPI_ISL_ 497773  EPI_ISL_ 539851 EPI_ISL_ 497797 

EPI_ISL_ 497775  EPI_ISL_ 610165 EPI_ISL_ 497811 

EPI_ISL_ 497783  EPI_ISL_ 610166 EPI_ISL_ 497812 

EPI_ISL_ 497784  EPI_ISL_ 610167 EPI_ISL_ 497818 

EPI_ISL_ 497786  EPI_ISL_ 610168 EPI_ISL_ 497819 

EPI_ISL_ 497791  EPI_ISL_ 610169 EPI_ISL_ 497823 

EPI_ISL_ 497796  EPI_ISL_ 610171 EPI_ISL_ 497824 

EPI_ISL_ 497797  EPI_ISL_ 610173 EPI_ISL_ 497827 

EPI_ISL_ 497798  EPI_ISL_ 610174 EPI_ISL_ 497831 

EPI_ISL_ 497799  EPI_ISL_ 610175 EPI_ISL_ 497833 

EPI_ISL_ 497806  EPI_ISL_ 610177 EPI_ISL_ 497848 

EPI_ISL_ 497808   EPI_ISL_ 497850 

EPI_ISL_ 497810   EPI_ISL_ 497856 

EPI_ISL_ 497811   EPI_ISL_ 497860 

EPI_ISL_ 497812   EPI_ISL_ 497864 

EPI_ISL_ 497813   EPI_ISL_ 497865 

EPI_ISL_ 497818   EPI_ISL_ 539850 

EPI_ISL_ 497819   EPI_ISL_ 539851 

EPI_ISL_ 497820   EPI_ISL_ 610165 

EPI_ISL_ 497821   EPI_ISL_ 610166 

EPI_ISL_ 497823   EPI_ISL_ 610172 

EPI_ISL_ 497824   EPI_ISL_ 610177 
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EPI_ISL_ 497826    

EPI_ISL_ 497827    

EPI_ISL_ 497831    

EPI_ISL_ 497832    

EPI_ISL_ 497833    

EPI_ISL_ 497840    

EPI_ISL_ 497845    

EPI_ISL_ 497846    

EPI_ISL_ 497847    

EPI_ISL_ 497848    

EPI_ISL_ 497850    

EPI_ISL_ 497856    

EPI_ISL_ 497860    

EPI_ISL_ 497864    

EPI_ISL_ 497865    

EPI_ISL_ 497870    

EPI_ISL_ 516798    

EPI_ISL_ 539820    

EPI_ISL_ 539850    

EPI_ISL_ 539851    

EPI_ISL_ 610165    

EPI_ISL_ 610166    

EPI_ISL_ 610167    

EPI_ISL_ 610168    

EPI_ISL_ 610169    

EPI_ISL_ 610170    

EPI_ISL_ 610171    

EPI_ISL_ 610172    
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EPI_ISL_ 610173    

EPI_ISL_ 610174    

EPI_ISL_ 610175    

EPI_ISL_ 610177    

 

 

Supplementary Table 4: Accession ID of each Amazonas State, Brazil sequence for each 

sampling strategy used within this study 

 

Unsampled Proportional Uniform Reciprocal-

proportional 

EPI_ISL_ 1034306 EPI_ISL_ 1034304 EPI_ISL_ 1034304 EPI_ISL_ 1034306 

EPI_ISL_ 1060876 EPI_ISL_ 1034306 EPI_ISL_ 1034306 EPI_ISL_ 1060913 

EPI_ISL_ 1060877 EPI_ISL_ 1060877 EPI_ISL_ 1060877 EPI_ISL_ 1060914 

EPI_ISL_ 1060881 EPI_ISL_ 1060881 EPI_ISL_ 1060881 EPI_ISL_ 1068149 

EPI_ISL_ 1060888 EPI_ISL_ 1060897 EPI_ISL_ 1060888 EPI_ISL_ 1068150 

EPI_ISL_ 1060889 EPI_ISL_ 1060900 EPI_ISL_ 1060889 EPI_ISL_ 1068156 

EPI_ISL_ 1060894 EPI_ISL_ 1060902 EPI_ISL_ 1060897 EPI_ISL_ 1068198 

EPI_ISL_ 1060897 EPI_ISL_ 1060904 EPI_ISL_ 1060900 EPI_ISL_ 1068258 

EPI_ISL_ 1060900 EPI_ISL_ 1060906 EPI_ISL_ 1060912 EPI_ISL_ 1068260 

EPI_ISL_ 1060902 EPI_ISL_ 1060912 EPI_ISL_ 1060913 EPI_ISL_ 1068262 

EPI_ISL_ 1060904 EPI_ISL_ 1060913 EPI_ISL_ 1060956 EPI_ISL_ 1068263 

EPI_ISL_ 1060906 EPI_ISL_ 1060914 EPI_ISL_ 1061026 EPI_ISL_ 1068264 

EPI_ISL_ 1060911 EPI_ISL_ 1060918 EPI_ISL_ 1068111 EPI_ISL_ 1068278 

EPI_ISL_ 1060912 EPI_ISL_ 1060956 EPI_ISL_ 1068149 EPI_ISL_ 1068286 

EPI_ISL_ 1060913 EPI_ISL_ 1061026 EPI_ISL_ 1068150 EPI_ISL_ 1068288 

EPI_ISL_ 1060914 EPI_ISL_ 1068110 EPI_ISL_ 1068154 EPI_ISL_ 1166615 

EPI_ISL_ 1060918 EPI_ISL_ 1068111 EPI_ISL_ 1068158 EPI_ISL_ 1213190 

EPI_ISL_ 1060956 EPI_ISL_ 1068112 EPI_ISL_ 1068160 EPI_ISL_ 1261690 

EPI_ISL_ 1061026 EPI_ISL_ 1068114 EPI_ISL_ 1068169 EPI_ISL_ 1261694 

EPI_ISL_ 1068110 EPI_ISL_ 1068149 EPI_ISL_ 1068198 EPI_ISL_ 2777236 

EPI_ISL_ 1068111 EPI_ISL_ 1068150 EPI_ISL_ 1068222 EPI_ISL_ 2777320 

EPI_ISL_ 1068112 EPI_ISL_ 1068151 EPI_ISL_ 1068225 EPI_ISL_ 2777363 

EPI_ISL_ 1068114 EPI_ISL_ 1068154 EPI_ISL_ 1068226 EPI_ISL_ 2777375 
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EPI_ISL_ 1068149 EPI_ISL_ 1068156 EPI_ISL_ 1068243 EPI_ISL_ 2777376 

EPI_ISL_ 1068150 EPI_ISL_ 1068158 EPI_ISL_ 1068248 EPI_ISL_ 2777384 

EPI_ISL_ 1068151 EPI_ISL_ 1068160 EPI_ISL_ 1068249 EPI_ISL_ 2777388 

EPI_ISL_ 1068154 EPI_ISL_ 1068169 EPI_ISL_ 1068260 EPI_ISL_ 2777397 

EPI_ISL_ 1068156 EPI_ISL_ 1068198 EPI_ISL_ 1068261 EPI_ISL_ 2777399 

EPI_ISL_ 1068158 EPI_ISL_ 1068221 EPI_ISL_ 1068262 EPI_ISL_ 2777401 

EPI_ISL_ 1068160 EPI_ISL_ 1068222 EPI_ISL_ 1068263 EPI_ISL_ 2777403 

EPI_ISL_ 1068169 EPI_ISL_ 1068225 EPI_ISL_ 1068264 EPI_ISL_ 2777404 

EPI_ISL_ 1068198 EPI_ISL_ 1068248 EPI_ISL_ 1068266 EPI_ISL_ 2777409 

EPI_ISL_ 1068221 EPI_ISL_ 1068249 EPI_ISL_ 1068268 EPI_ISL_ 2777410 

EPI_ISL_ 1068222 EPI_ISL_ 1068258 EPI_ISL_ 1068269 EPI_ISL_ 2777414 

EPI_ISL_ 1068225 EPI_ISL_ 1068260 EPI_ISL_ 1068270 EPI_ISL_ 2777415 

EPI_ISL_ 1068226 EPI_ISL_ 1068261 EPI_ISL_ 1068271 EPI_ISL_ 2777465 

EPI_ISL_ 1068243 EPI_ISL_ 1068262 EPI_ISL_ 1068272 EPI_ISL_ 2777466 

EPI_ISL_ 1068248 EPI_ISL_ 1068263 EPI_ISL_ 1068273 EPI_ISL_ 2777467 

EPI_ISL_ 1068249 EPI_ISL_ 1068264 EPI_ISL_ 1068274 EPI_ISL_ 2777469 

EPI_ISL_ 1068258 EPI_ISL_ 1068266 EPI_ISL_ 1068279 EPI_ISL_ 2777470 

EPI_ISL_ 1068260 EPI_ISL_ 1068268 EPI_ISL_ 1068282 EPI_ISL_ 2777472 

EPI_ISL_ 1068261 EPI_ISL_ 1068269 EPI_ISL_ 1068283 EPI_ISL_ 2777473 

EPI_ISL_ 1068262 EPI_ISL_ 1068270 EPI_ISL_ 1068284 EPI_ISL_ 2777474 

EPI_ISL_ 1068263 EPI_ISL_ 1068271 EPI_ISL_ 1068285 EPI_ISL_ 2777475 

EPI_ISL_ 1068264 EPI_ISL_ 1068272 EPI_ISL_ 1068286 EPI_ISL_ 2777482 

EPI_ISL_ 1068266 EPI_ISL_ 1068273 EPI_ISL_ 1068287 EPI_ISL_ 2777483 

EPI_ISL_ 1068268 EPI_ISL_ 1068274 EPI_ISL_ 1068288 EPI_ISL_ 2777485 

EPI_ISL_ 1068269 EPI_ISL_ 1068275 EPI_ISL_ 1068290 EPI_ISL_ 2777503 

EPI_ISL_ 1068270 EPI_ISL_ 1068276 EPI_ISL_ 1068291 EPI_ISL_ 2777508 

EPI_ISL_ 1068271 EPI_ISL_ 1068278 EPI_ISL_ 1068292 EPI_ISL_ 2777509 

EPI_ISL_ 1068272 EPI_ISL_ 1068279 EPI_ISL_ 1166615 EPI_ISL_ 2777516 

EPI_ISL_ 1068273 EPI_ISL_ 1068280 EPI_ISL_ 1213190 EPI_ISL_ 2777599 

EPI_ISL_ 1068274 EPI_ISL_ 1068281 EPI_ISL_ 1213204 EPI_ISL_ 2777698 

EPI_ISL_ 1068275 EPI_ISL_ 1068282 EPI_ISL_ 1261683 EPI_ISL_ 2777986 

EPI_ISL_ 1068276 EPI_ISL_ 1068283 EPI_ISL_ 1261685 EPI_ISL_ 2777987 

EPI_ISL_ 1068278 EPI_ISL_ 1068284 EPI_ISL_ 1261690 EPI_ISL_ 2777993 
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EPI_ISL_ 1068279 EPI_ISL_ 1068285 EPI_ISL_ 1261694 EPI_ISL_ 2777999 

EPI_ISL_ 1068280 EPI_ISL_ 1068286 EPI_ISL_ 2777236 EPI_ISL_ 2778002 

EPI_ISL_ 1068281 EPI_ISL_ 1068287 EPI_ISL_ 2777248 EPI_ISL_ 2778004 

EPI_ISL_ 1068282 EPI_ISL_ 1068288 EPI_ISL_ 2777249 EPI_ISL_ 2778005 

EPI_ISL_ 1068283 EPI_ISL_ 1068289 EPI_ISL_ 2777250 EPI_ISL_ 833138 

EPI_ISL_ 1068284 EPI_ISL_ 1068290 EPI_ISL_ 2777320 EPI_ISL_ 833140 

EPI_ISL_ 1068285 EPI_ISL_ 1068291 EPI_ISL_ 2777363 EPI_ISL_ 906071 

EPI_ISL_ 1068286 EPI_ISL_ 1068292 EPI_ISL_ 2777364 EPI_ISL_ 918505 

EPI_ISL_ 1068287 EPI_ISL_ 1166615 EPI_ISL_ 2777373 EPI_ISL_ 918506 

EPI_ISL_ 1068288 EPI_ISL_ 1213190 EPI_ISL_ 2777374 EPI_ISL_ 918508 

EPI_ISL_ 1068289 EPI_ISL_ 1213204 EPI_ISL_ 2777375 EPI_ISL_ 918509 

EPI_ISL_ 1068290 EPI_ISL_ 1261683 EPI_ISL_ 2777376  

EPI_ISL_ 1068291 EPI_ISL_ 1261685 EPI_ISL_ 2777377  

EPI_ISL_ 1068292 EPI_ISL_ 1261690 EPI_ISL_ 2777378  

EPI_ISL_ 1166615 EPI_ISL_ 1261694 EPI_ISL_ 2777380  

EPI_ISL_ 1213190 EPI_ISL_ 2777236 EPI_ISL_ 2777383  

EPI_ISL_ 1213204 EPI_ISL_ 2777238 EPI_ISL_ 2777384  

EPI_ISL_ 1261683 EPI_ISL_ 2777248 EPI_ISL_ 2777385  

EPI_ISL_ 1261685 EPI_ISL_ 2777249 EPI_ISL_ 2777388  

EPI_ISL_ 1261690 EPI_ISL_ 2777250 EPI_ISL_ 2777397  

EPI_ISL_ 1261694 EPI_ISL_ 2777251 EPI_ISL_ 2777398  

EPI_ISL_ 2777236 EPI_ISL_ 2777320 EPI_ISL_ 2777399  

EPI_ISL_ 2777238 EPI_ISL_ 2777363 EPI_ISL_ 2777400  

EPI_ISL_ 2777248 EPI_ISL_ 2777364 EPI_ISL_ 2777401  

EPI_ISL_ 2777249 EPI_ISL_ 2777373 EPI_ISL_ 2777402  

EPI_ISL_ 2777250 EPI_ISL_ 2777374 EPI_ISL_ 2777403  

EPI_ISL_ 2777251 EPI_ISL_ 2777375 EPI_ISL_ 2777404  

EPI_ISL_ 2777320 EPI_ISL_ 2777376 EPI_ISL_ 2777405  

EPI_ISL_ 2777363 EPI_ISL_ 2777377 EPI_ISL_ 2777406  

EPI_ISL_ 2777364 EPI_ISL_ 2777378 EPI_ISL_ 2777407  

EPI_ISL_ 2777373 EPI_ISL_ 2777380 EPI_ISL_ 2777408  

EPI_ISL_ 2777374 EPI_ISL_ 2777382 EPI_ISL_ 2777410  

EPI_ISL_ 2777375 EPI_ISL_ 2777383 EPI_ISL_ 2777412  
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EPI_ISL_ 2777376 EPI_ISL_ 2777384 EPI_ISL_ 2777413  

EPI_ISL_ 2777377 EPI_ISL_ 2777385 EPI_ISL_ 2777414  

EPI_ISL_ 2777378 EPI_ISL_ 2777388 EPI_ISL_ 2777415  

EPI_ISL_ 2777380 EPI_ISL_ 2777397 EPI_ISL_ 2777417  

EPI_ISL_ 2777382 EPI_ISL_ 2777398 EPI_ISL_ 2777418  

EPI_ISL_ 2777383 EPI_ISL_ 2777399 EPI_ISL_ 2777419  

EPI_ISL_ 2777384 EPI_ISL_ 2777400 EPI_ISL_ 2777454  

EPI_ISL_ 2777385 EPI_ISL_ 2777401 EPI_ISL_ 2777461  

EPI_ISL_ 2777388 EPI_ISL_ 2777402 EPI_ISL_ 2777462  

EPI_ISL_ 2777397 EPI_ISL_ 2777403 EPI_ISL_ 2777465  

EPI_ISL_ 2777398 EPI_ISL_ 2777404 EPI_ISL_ 2777466  

EPI_ISL_ 2777399 EPI_ISL_ 2777405 EPI_ISL_ 2777467  

EPI_ISL_ 2777400 EPI_ISL_ 2777406 EPI_ISL_ 2777469  

EPI_ISL_ 2777401 EPI_ISL_ 2777407 EPI_ISL_ 2777470  

EPI_ISL_ 2777402 EPI_ISL_ 2777408 EPI_ISL_ 2777472  

EPI_ISL_ 2777403 EPI_ISL_ 2777409 EPI_ISL_ 2777473  

EPI_ISL_ 2777404 EPI_ISL_ 2777410 EPI_ISL_ 2777474  

EPI_ISL_ 2777405 EPI_ISL_ 2777412 EPI_ISL_ 2777475  

EPI_ISL_ 2777406 EPI_ISL_ 2777413 EPI_ISL_ 2777477  

EPI_ISL_ 2777407 EPI_ISL_ 2777414 EPI_ISL_ 2777478  

EPI_ISL_ 2777408 EPI_ISL_ 2777415 EPI_ISL_ 2777479  

EPI_ISL_ 2777409 EPI_ISL_ 2777416 EPI_ISL_ 2777481  

EPI_ISL_ 2777410 EPI_ISL_ 2777417 EPI_ISL_ 2777482  

EPI_ISL_ 2777412 EPI_ISL_ 2777418 EPI_ISL_ 2777483  

EPI_ISL_ 2777413 EPI_ISL_ 2777419 EPI_ISL_ 2777485  

EPI_ISL_ 2777414 EPI_ISL_ 2777420 EPI_ISL_ 2777495  

EPI_ISL_ 2777415 EPI_ISL_ 2777454 EPI_ISL_ 2777498  

EPI_ISL_ 2777416 EPI_ISL_ 2777460 EPI_ISL_ 2777503  

EPI_ISL_ 2777417 EPI_ISL_ 2777461 EPI_ISL_ 2777507  

EPI_ISL_ 2777418 EPI_ISL_ 2777462 EPI_ISL_ 2777508  

EPI_ISL_ 2777419 EPI_ISL_ 2777464 EPI_ISL_ 2777539  

EPI_ISL_ 2777420 EPI_ISL_ 2777466 EPI_ISL_ 2777599  

EPI_ISL_ 2777454 EPI_ISL_ 2777467 EPI_ISL_ 2777698  
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EPI_ISL_ 2777460 EPI_ISL_ 2777468 EPI_ISL_ 2777700  

EPI_ISL_ 2777461 EPI_ISL_ 2777469 EPI_ISL_ 2777701  

EPI_ISL_ 2777462 EPI_ISL_ 2777470 EPI_ISL_ 2777740  

EPI_ISL_ 2777464 EPI_ISL_ 2777472 EPI_ISL_ 2777986  

EPI_ISL_ 2777465 EPI_ISL_ 2777473 EPI_ISL_ 2777987  

EPI_ISL_ 2777466 EPI_ISL_ 2777475 EPI_ISL_ 2777993  

EPI_ISL_ 2777467 EPI_ISL_ 2777477 EPI_ISL_ 2777995  

EPI_ISL_ 2777468 EPI_ISL_ 2777478 EPI_ISL_ 2777996  

EPI_ISL_ 2777469 EPI_ISL_ 2777481 EPI_ISL_ 2777997  

EPI_ISL_ 2777470 EPI_ISL_ 2777482 EPI_ISL_ 2777998  

EPI_ISL_ 2777471 EPI_ISL_ 2777495 EPI_ISL_ 2777999  

EPI_ISL_ 2777472 EPI_ISL_ 2777498 EPI_ISL_ 2778000  

EPI_ISL_ 2777473 EPI_ISL_ 2777499 EPI_ISL_ 2778002  

EPI_ISL_ 2777474 EPI_ISL_ 2777503 EPI_ISL_ 2778005  

EPI_ISL_ 2777475 EPI_ISL_ 2777508 EPI_ISL_ 811149  

EPI_ISL_ 2777477 EPI_ISL_ 2777516 EPI_ISL_ 833136  

EPI_ISL_ 2777478 EPI_ISL_ 2777539 EPI_ISL_ 833139  

EPI_ISL_ 2777479 EPI_ISL_ 2777698 EPI_ISL_ 833140  

EPI_ISL_ 2777481 EPI_ISL_ 2777701 EPI_ISL_ 906071  

EPI_ISL_ 2777482 EPI_ISL_ 2777740 EPI_ISL_ 906077  

EPI_ISL_ 2777483 EPI_ISL_ 2777986 EPI_ISL_ 906081  

EPI_ISL_ 2777484 EPI_ISL_ 2777987 EPI_ISL_ 918500  

EPI_ISL_ 2777485 EPI_ISL_ 2777995 EPI_ISL_ 918502  

EPI_ISL_ 2777495 EPI_ISL_ 2777996 EPI_ISL_ 918503  

EPI_ISL_ 2777498 EPI_ISL_ 2777997 EPI_ISL_ 918506  

EPI_ISL_ 2777499 EPI_ISL_ 2777998 EPI_ISL_ 918508  

EPI_ISL_ 2777503 EPI_ISL_ 2778002 EPI_ISL_ 918509  

EPI_ISL_ 2777507 EPI_ISL_ 2778005 EPI_ISL_ 918511  

EPI_ISL_ 2777508 EPI_ISL_ 811149   

EPI_ISL_ 2777509 EPI_ISL_ 833136   

EPI_ISL_ 2777516 EPI_ISL_ 833138   

EPI_ISL_ 2777539 EPI_ISL_ 833139   

EPI_ISL_ 2777599 EPI_ISL_ 833140   

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 16, 2022. ; https://doi.org/10.1101/2022.02.04.22270165doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.04.22270165
http://creativecommons.org/licenses/by/4.0/


50 

EPI_ISL_ 2777698 EPI_ISL_ 906071   

EPI_ISL_ 2777700 EPI_ISL_ 906080   

EPI_ISL_ 2777701 EPI_ISL_ 906081   

EPI_ISL_ 2777740 EPI_ISL_ 918500   

EPI_ISL_ 2777986 EPI_ISL_ 918501   

EPI_ISL_ 2777987 EPI_ISL_ 918502   

EPI_ISL_ 2777993 EPI_ISL_ 918503   

EPI_ISL_ 2777995 EPI_ISL_ 918505   

EPI_ISL_ 2777996 EPI_ISL_ 918506   

EPI_ISL_ 2777997 EPI_ISL_ 918507   

EPI_ISL_ 2777998 EPI_ISL_ 918508   

EPI_ISL_ 2777999 EPI_ISL_ 918510   

EPI_ISL_ 2778000 EPI_ISL_ 918511   

EPI_ISL_ 2778002    

EPI_ISL_ 2778004    

EPI_ISL_ 2778005    

EPI_ISL_ 811149    

EPI_ISL_ 833136    

EPI_ISL_ 833138    

EPI_ISL_ 833139    

EPI_ISL_ 833140    

EPI_ISL_ 906071    

EPI_ISL_ 906075    

EPI_ISL_ 906076    

EPI_ISL_ 906077    

EPI_ISL_ 906080    

EPI_ISL_ 906081    

EPI_ISL_ 918499    

EPI_ISL_ 918500    

EPI_ISL_ 918501    

EPI_ISL_ 918502    

EPI_ISL_ 918503    

EPI_ISL_ 918504    

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 16, 2022. ; https://doi.org/10.1101/2022.02.04.22270165doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.04.22270165
http://creativecommons.org/licenses/by/4.0/


51 

EPI_ISL_ 918505    

EPI_ISL_ 918506    

EPI_ISL_ 918507    

EPI_ISL_ 918508    

EPI_ISL_ 918509    

EPI_ISL_ 918510    

EPI_ISL_ 918511    

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 16, 2022. ; https://doi.org/10.1101/2022.02.04.22270165doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.04.22270165
http://creativecommons.org/licenses/by/4.0/

	Empirical Estimation of the Reproduction Number, Time-varying Effective Reproduction Number, and Growth Rate
	Epidemiological Datasets
	Basic Reproduction Number
	Time-varying Effective Reproduction Number
	Growth Rate

	SARS-CoV-2 Brazilian Gamma VOC and Hong Kong datasets
	Maximum Likelihood tree reconstruction
	Root-to-tip regression
	Subsampling for analysis
	Bayesian Evolutionary Analysis
	Phylodynamic Reconstruction
	Estimation of the Basic and Time-varying Effective Reproduction Numbers
	Estimation of Growth Rates

	Comparing Parameter Estimates from Genetic and Epidemiological Data
	Sampling Schemes
	Estimation of Evolutionary Parameters
	The mean substitution rate (measured in units of number of substitutions per site per year, s/s/y) and the time to most common recent ancestor (TMRCA) was estimated in BEAST, for both datasets, and the estimation from all sampling schemes was compared.
	Hong Kong
	For Hong Kong, the mean substitution rate per site per year ranged from 9.16x10-4 to 2.09x10-3 with sampling schemes all having overlapped Bayesian credible intervals (BCIs) (Supplementary table 2; Supplementary Figure 5A). This indicates that the sam...
	Molecular clock dating of the Hong Kong dataset indicates that the estimated time of the most common recent ancestor was around December 2020 (Figure 3B; Supplementary Table 2). This is a few weeks before the first confirmed case which was reported on...
	Brazil
	For the P.1 lineage in the Amazonas region, the mean substitution rate ranged from 4.00x10-4 to 5.56x10-4 s/s/y with all sampling schemes having overlapped BCIs (Figure 3D, Supplementary Table 2; Supplementary Figure 5B). This indicates that sampling ...
	Molecular clock dating estimated a TMRCA mean around late October to early November (Figure 3D; Supplementary Table 2). This is around five weeks before the date of the first P.1 case identified in Manaus used in our study. All sampling schemes have o...
	Estimation of Basic Reproduction Number

	Time-varying Reproduction number and Growth rate
	CRediT authorship contribution statement: R.P.D.I, K.V.P and N.R.F conceived and designed the study, R.P.D.I wrote and performed the analyses. R.P.D.I wrote the manuscript which was edited and supervised by K.V.P and N.R.F. All authors have contribute...

