1 Express yourself: Quantitative real-time PCR assays for rapid chromosomal antimicrobial

2 resistance detection in Pseudomonas aeruginosa

- 3 Danielle E. Madden^{1,2}, Olusola Olagoke^{1,2}, Timothy Baird^{2,3}, Jane Neill^{2,3}, Kay A. Ramsay⁴, Tamieka A.
- 4 Fraser^{1,2}, Scott C. Bell^{4,5,6}, Derek S. Sarovich^{1,2*}, and Erin P. Price^{1,2*}
- ⁵ ¹Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- 6 ²Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- ³Respiratory Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
- 8 ⁴Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
- 9 ⁵Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, Queensland, Australia
- 10 ⁶Translational Research Institute, Woolloongabba, Queensland, Australia
- 11 Keywords: Antibiotic, AMR, gene expression, *Pseudomonas aeruginosa*, efflux pumps, qPCR, *ampC*,
- 12 genomics
- 13 Running title: Assays for rapid AMR detection in *P. aeruginosa*
- 14 *These authors contributed equally
- 15 Corresponding authors:
- 16 Derek Sarovich, <u>dsarovich@usc.edu.au</u> Ph: +61 7 5456 3748
- 17 Erin Price, eprice@usc.edu.au Ph: +61 7 5456 5568

18 Abstract

19	The rise of antimicrobial-resistant (AMR) bacteria is a global health emergency. One critical facet in
20	tackling this epidemic is more rapid AMR diagnosis in serious multi-drug resistant pathogens like
21	Pseudomonas aeruginosa. Here, we designed and then validated two multiplex quantitative real-
22	time PCR (qPCR) assays to simultaneously detect differential expression of the resistance-
23	nodulation-division efflux pumps MexAB-OprM, MexCD-OprJ, MexEF-OprN, MexXY-OprM, the AmpC
24	eta-lactamase, and the porin OprD, which are commonly associated with chromosomally-encoded
25	AMR. Next, qPCRs were tested on 15 sputa from 11 participants with <i>P. aeruginosa</i> respiratory
26	infections to determine AMR profiles in vivo. We confirm multiplex qPCR testing feasibility directly
27	on sputa, representing a key advancement in <i>in vivo</i> AMR diagnosis. Notably, comparison of sputa
28	with their derived isolates grown in Luria-Bertani broth (±2.5% NaCl) or a 5-antibiotic cocktail
29	showed marked expression differences, illustrating the difficulty in replicating in vivo expression
30	profiles in vitro. Cystic fibrosis sputa showed significantly reduced mexE and mexY expression when
31	compared with chronic obstructive pulmonary disease sputa, despite harbouring fluoroquinolone-
32	and aminoglycoside-resistant strains, indicating that these loci are not contributing to AMR in vivo.
33	oprD was also significantly downregulated in cystic fibrosis sputa, even in the absence of
34	contemporaneous carbapenem use, suggesting a common adaptive trait in chronic infections that
35	may affect carbapenem efficacy. Sputum <i>ampC</i> expression was highest in participants receiving
36	carbapenems (6.7-15x), some of whom were simultaneously receiving cephalosporins, the latter of
37	which would be rendered ineffective by the upregulated <i>ampC</i> . Our qPCR assays provide valuable
38	insights into the <i>P. aeruginosa</i> resistome, and their use on clinical specimens will permit timely
39	treatment alterations that will improve patient outcomes and antimicrobial stewardship measures.

40 Introduction

41	The persistent rise in the prevalence and dissemination of antimicrobial-resistant (AMR) bacteria
42	threatens to push humankind towards a post-antibiotic world (1) where untreatable superbugs
43	endanger global health and food security and cause significant morbidity, mortality and economic
44	burden (2). The opportunistic Gram-negative bacterium, <i>Pseudomonas aeruginosa</i> , is a member of
45	the 'ESKAPE' group of AMR pathogens that represent the greatest concern to global health (3). P.
46	aeruginosa can cause life-threatening infections (4), including in those with chronic respiratory
47	diseases where localised immune defences are compromised such as cystic fibrosis (CF) or chronic
48	obstructive pulmonary disease (COPD) (5). Once infection is established, <i>P. aeruginosa</i> eradication is
49	made more difficult by many factors, including its high intrinsic AMR and its capacity to develop
50	multi-drug resistance (MDR) to all classes of clinically-relevant antibiotics (6).
51	AMR diagnostics are a critical weapon in our battle against superbugs as they enable rapid, cost-
52	effective, and high-throughput AMR detection, leading to more judicious and targeted antibiotic use
53	(7). However, a lack of such diagnostics means that broad-spectrum antimicrobials are commonly
54	used in the clinic in lieu of personalised treatments guided by antimicrobial sensitivity, genotype,
55	and gene expression data (8). This practice, exacerbated during the COVID-19 pandemic (9), has
56	unfortunately contributed to the emergence, persistence, and spread of AMR and MDR pathogens
57	worldwide, with potentially devastating outcomes including treatment failure and mortality (10).
58	Advancements in next-generation sequencing (NGS) technologies are enabling close-to-real-time
59	identification of AMR (11). However, it is currently impractical and costly to use these technologies
60	for rapid, high-throughput detection (12); as such, their implementation in routine clinical
61	diagnostics is not yet feasible. Instead, nucleic acid-based detection platforms such as real-time PCR
62	remain vital – and substantially cheaper, simpler, and more accessible in routine clinical
63	microbiology services than NGS – for the rapid identification of pathogens and their AMR
64	determinants (12). In addition to identifying AMR-conferring single-nucleotide polymorphisms

65	[SNPs] (13, 14), insertions/deletions (15), copy-number variants (16), gene gain (17, 18), or gene loss
66	(19), targeting altered RNA expression of key AMR loci (20-23) provides a rapid way to identify the
67	phenotypic consequences of the myriad genotypic variants that underpin AMR. For example, a
68	quantitative real-time PCR (qPCR) targeting upregulation of three key AMR resistance-nodulation-
69	division (RND) efflux pumps in the melioidosis pathogen, Burkholderia pseudomallei, enables the
70	simultaneous identification of meropenem (MEM) resistance, and decreased susceptibility towards
71	doxycycline and co-trimoxazole, in a single reaction (24).
72	Due to the large number of genetic mutations that can confer AMR in <i>P. aeruginosa</i> (25, 26), it
73	remains impractical to target each individual variant using PCR. Fortunately, most clinically-relevant
74	AMR in <i>P. aeruginosa</i> is thought to be conferred by a handful of key mechanisms, some of which
75	alter gene expression to drive the AMR phenotype (25). The primary AMR-conferring mutations in P.
76	<i>aeruginosa</i> include those that cause: i) <i>oprD</i> inactivation or repression, which commonly leads to
77	carbapenem resistance (27, 28); ii) <i>ampC</i> hyper-production, a predominant cause of β -lactam AMR
78	(25); iii) DNA gyrase A (gyrA) alteration, associated with fluoroquinolone (FQ) AMR (13, 29); and iv)
79	upregulation of one or more RND efflux pumps, leading to AMR or MDR (23). The most important
80	AMR-conferring RND efflux pumps in <i>P. aeruginosa</i> are MexAB-OprM (30) (FQs, β -lactams including
81	carbapenems (31), and β -lactam inhibitors (25)), MexEF-OprN (FQs) (32), MexXY (33)
82	(aminoglycosides and FQs (34)), and MexCD-OprJ (35) (FQs (36) and some fourth-generation
83	cephalosporins (37)).
84	Whilst PCR assays exist to individually detect differential gene expression of <i>ampC</i> (20, 26, 34), <i>mexB</i>
85	(22, 38), mexX (20, 39), mexY, mexD, mexF (22, 23), mexA and oprD (22, 34, 39) in P. aeruginosa,
86	none simultaneously detect expression of these genes. In addition, nearly all P. aeruginosa AMR
87	gene expression studies to date have assessed lab-cultured isolates (23, 38); with only one published
88	study assessing AMR gene expression <i>in vivo,</i> whereby singleplex assays were used to detect <i>ampC</i>

89 and mexX expression in 31 CF sputa, followed by comparison with corresponding derived isolates

90 (20).

91	To address these	knowledge gaps,	we developed	and validated tw	o multiplex gPCR assays	to
----	------------------	-----------------	--------------	------------------	-------------------------	----

- 92 simultaneously detect altered expression of six key genes that confer AMR towards most clinically-
- 93 relevant antibiotic classes, using *rpsL* as an internal reference gene for expression normalisation.
- 94 qPCRs were initially tested in cultures, and subsequently directly on 15 sputa, to permit *in vivo P*.
- 95 *aeruginosa* gene expression characterisation (20), thus removing transcriptional biases introduced
- 96 by culturing. qPCR results were also correlated with current anti-pseudomonal treatment to
- 97 determine the impact of antibiotic therapy on *in vivo* AMR gene expression, along with strain
- 98 phenotype and predicted *in silico* AMR genotype data.

99 Methods

100	Ethics statement and participant recruitment. This study was approved by The Prince Charles
101	Hospital (TPCH) Human Research Ethics Committee, project IDs HREC/13/QPCH/127 (CF) and
102	HREC/2019/QPCH/48013 (COPD). Site-specific approvals were obtained for CF recruitment at TPCH,
103	Brisbane, Australia, and COPD recruitment at Sunshine Coast Hospital and Health Service, Sunshine
104	Coast, Australia. CF sputa were collected from participants with chronic P. aeruginosa infection who
105	were admitted to the Cystic Fibrosis Centre at TPCH for intravenous antibiotic therapy; COPD sputa
106	was collected from participants either admitted to Sunshine Coast University Hospital (SCUH) for
107	pulmonary exacerbations, or whose symptoms were being managed at home as part of the
108	Respiratory Acute Discharge Service program; whether they had acute or chronic P. aeruginosa
109	infection was not known. All participants provided written consent.
110	Total RNA extraction and microbial RNA enrichment from sputa. Nine sputa from five CF
111	participants, and six sputa from six COPD participants (40) (Table 1), all with high-load P. aeruginosa
112	infections according to sputum culture onto MacConkey agar (Oxoid, Heidelberg West, VIC,
113	Australia), were subjected to total RNA extraction to determine in vivo P. aeruginosa AMR gene
114	expression profiles. An additional six sputa from <i>P. aeruginosa</i> -infected COPD participants with low
115	P. aeruginosa load were also examined, along with three COPD sputa and 1 COPD bronchial washing
116	from <i>P. aeruginosa</i> culture-negative participants. Sputa were collected directly into RNA stabilisation
117	reagent (10mM EDTA, 25mM sodium citrate, 700g/L ammonium sulphate; pH=5.2; Sigma-Aldrich,
118	Castle Hill, NSW, Australia) to immediately halt transcriptional activity, and kept at 4 [®] C until RNA
119	extraction (up to ~1 month). Between 30 μL and 1 mL sputum was placed into 0.5-6 mL TRI Reagent
120	LS (Sigma) and 30-240 μ L 2-mercaptoethanol (Sigma) aliquoted into sterile, RNase-free 2 mL O-ring
121	tubes (SSIBio, Lodi, CA, USA) containing ~100 μ L equal mixture of 0.1 and 0.5 mm zirconia beads
122	(Daintree Scientific, St Helens, Tasmania, Australia). Tubes were parafilmed and subjected to four
123	rounds of bead beating at 30 sec pulses using the Minilys tissue homogeniser on the medium setting

124 (Bertin Instruments, Montigny-le-Bretonneux, France), with samples cooled on ice for >30 sec after 125 each round to minimise RNA degradation. Extracted RNA was treated with DNase Max (Qiagen), 126 confirmed DNA-free using a 16S ribosomal RNA gene PCR (41), and host RNA-depleted using 127 MICROBEnrich (Thermo Fisher Scientific, Seventeen Mile Rocks, QLD, Australia) as per 128 manufacturer's instructions. cDNA (iScript; Bio-Rad, Gladesville, NSW, Australia) was qPCR-tested at 129 neat and 1:10 concentrations. 130 Growth conditions and antibiotic sensitivity testing. Nineteen P. aeruginosa strains (12 CF, 7 COPD) 131 were isolated from sputa using MacConkey agar and incubated at 37^{III}C for 24 h. Subcultures were 132 grown on Luria-Bertani (LB) agar (Oxoid) under the same conditions. All strains were confirmed as P. 133 aeruginosa by rapid chelex-100 (Bio-Rad) heat soak extraction (42) followed by ecfX real-time PCR 134 on a 1:50 dilution of the chelex supernatant (43). Susceptibility towards amikacin (AMK; 30µg), 135 cefepime (30μg), ceftazidime (CAZ; 30μg), ciprofloxacin (5μg), colistin (10μg), imipenem (10μg), 136 piperacillin (30μg), piperacillin-tazobactam (100μg/10μg), polymyxin B (300U), and tobramycin (TOB; 137 10µg) were determined by disc diffusion (Edwards Group, Murrarie, QLD, Australia); Etests were 138 used for MEM susceptibility testing (bioMérieux, Baulkham Hills, NSW, Australia). Sensitivity, 139 intermediate resistance, and AMR were determined using CLSI M100S-Ed27:2021 guidelines (Table 140 1). PAO1 (LMG 12228) was included as a wild-type reference. MDR was defined as non-susceptibility 141 to at least one antibiotic in three or more antibiotic classes (44). 142 Growth experiments and RNA extraction. To assess AMR gene expression levels in derived cultures, 143 a starting inoculum of 10° cells was grown to late-log phase (OD₆₀₀ \approx 1) with orbital shaking at 250 rpm 144 (Ratek Laboratory Equipment [model number OM11], Boronia, VIC, Australia) for 16 h at 37¹/₂C in 145 2mL LB broth ±2.5% NaCl. RNA was extracted using TRI Reagent (Sigma-Aldrich) and treated with 146 TURBO DNase (Thermo Fisher Scientific) according to manufacturer's instructions. 1:10-diluted DNA-147 free RNA was converted to cDNA using iScript. cDNA was diluted 1:25 in molecular-grade H₂O prior 148 to qPCR.

149 We also attempted to induce AMR gene expression in two *P. aeruginosa* cultures, SCHI0002.S.9 and 150 SCHI0010.S.1, using sub-inhibitory concentrations (0.25µg/mL each) of five antibiotics not used in P. 151 aeruginosa treatment but known to induce its RND efflux pumps – gentamicin for mexX upregulation 152 (45), novobiocin for *mexB* upregulation (31), norfloxacin for *mexC* upregulation (46), 153 chloramphenicol for mexE upregulation (47) and ampicillin for ampC upregulation (48). These strains 154 were selected as both encode MDR phenotypes; in addition, SCHI0010.S.1 encodes a high-155 consequence frameshift mutation in MutS (R360fs), resulting in a hypermutator phenotype (49). 156 Multiplex AMR locus qPCR assay design and PCR conditions. To quantify mexAB-oprM, mexCD-oprJ, 157 mexEF-OprN, mexXY-OprM, ampC, and oprD expression, two multiplex assays targeting the mexB, 158 mexC, mexE, mexY, ampC, and oprD genes, respectively, were designed (Table 2). A BLAST database 159 comprising 730 P. aeruginosa genomes (50-54) was used to identify conserved regions for oligo 160 design. Oligo self-dimers and heterodimers were assessed and avoided as previously described (55). 161 Each PCR consisted of 1× SsoAdvanced Universal Probes Supermix (Bio-Rad), optimised primer and 162 probe concentrations (Macrogen Inc., Geumcheon-gu, Seoul, South Korea; Table 2), 1 µL genomic 163 DNA (gDNA) or cDNA template, and PCR-grade H_2O , to 5 μ L. Isolate gDNA/cDNA thermocycling 164 comprised enzyme activation at 95¹²C for 2 min, followed by a 2-step program (95¹²C for 5 sec and 165 60¹/₂C for 15 sec) for 45 cycles; for sputum cDNA, a 3-step program (95¹/₂C for 5 sec, 60¹/₂C for 15 sec, 166 and 72¹/₂C for 15 sec) for 45 cycles was used to enhance *P. aeruginosa* detection from polymicrobial 167 DNA.

qPCR assay limits of detection (LoD) and quantification (LoQ). LoD and LoQ values were determined
for each assay when in multiplex format using 1:10 serial dilutions of SCH10005.S.10 *P. aeruginosa*genomic DNA ranging from 40 to 4 × 10⁻⁶ ng across eight replicates, as previously described (56, 57).
Genome equivalents (GEs) were calculated based on the average PAO1 genome size of 6.22Mbp and
a single copy of each gene. For all assays, all samples were run in duplicate, and at least two notemplate controls were included in each run.

174	qPCR normalisation and analysis. The constitutively expressed <i>rpsL</i> gene (Table S1) was used to
175	normalise AMR gene expression via the difference in cycles-to-threshold (ΔC_T) method (34, 58). After
176	<i>rpsL</i> normalisation, ΔC_T values were further normalised against either PAO1 expression, or to
177	SCHI0070_D2 COPD sputum ($\Delta\Delta C_T$), the latter of which enabled gene expression comparison among
178	sputa, and between sputa and derived isolates. SCH10070_D2 COPD sputum was chosen for
179	normalisation as this participant had no recent history of anti-pseudomonal antibiotic treatment, its
180	derived isolate, SCHI0070.S.1, was sensitive towards all 11 anti-pseudomonal antibiotics (Table 1),
181	and there was good gene expression across all seven loci for this sample, thus enabling relative
182	expression profiling of qPCR-tested genes across all tested sputa. For AMR loci lacking detectable
183	PCR amplification, a C_T value of 45 was assigned to permit visualisation of genes with very low/no
184	expression. According to previously defined criteria (23), strains were regarded as hyper-producers if
185	their AMR loci exhibited $>$ 10-fold higher expression compared with PAO1, except for <i>mexB</i> and
186	mexY, which were considered hyper-producing if >3-fold higher expression than PAO1 (23, 34, 38).
187	Strain genome sequencing. The genomes of 14 strains have been previously published (13); paired-
188	end Illumina genomes for SCHI0065.S.1 and SCHI0070.S.1 were generated in the current study and
189	appended to NCBI BioProject PRJNA761496. We did not sequence SCHI0018.S.11, SCHI0038.S.2, or
190	SCHI0038.S.4 as these data were not considered essential for study outcomes.
191	Culturome sequencing and <i>P. geruginosg</i> mixture analysis. Culturomes for SCHI0002 D8.
192	SCHI0002 D329 SCHI0010 D7 SCHI0013 D4 SCHI0038 SCHI0039 and SCHI0050 D3 were
103	generated from Chocolate agar culture sweeps. Microbial cells were lysed with 250 U/ml
100	
194	mutanolysin, 22 U/mL lysostaphin, and 20mg/mL lysozyme, followed by DNA extraction using the
195	Qiagen DNeasy Blood and Tissue kit 'Pretreatment for Gram-Positive Bacteria' protocol. Culturomic
196	data were Illumina paired-end sequenced at the Australian Genome Research Facility (Melbourne,
197	VIC, Australia) or Ramaciotti Centre for Genomics (Sydney, NSW, Australia) to obtain a minimum of 7
198	million reads. The culturomic sequence data are available under NCBI BioProject PRJNA761496.

P. aeruginosa mixtures were assessed by mapping reads to PAO1 (GenBank: CP053028.1) with

200	ARDaP v1.9 (59) (<u>https://github.com/dsarov/ARDaP</u>) using themixtures flag. Heterogeneous
201	variant sites were then identified and counted from each sample's variant call file (.vcf) based on
202	'0/1' in the 'GT' (genotype) field.
203	AMR prediction from genomes and culturomes. In silico AMR prediction for 16 genome-sequenced
204	isolates, PAO1 (Table 1), and the sputum culturomic data was carried out using the P. aeruginosa-
205	specific database in ARDaP. Prior to ARDaP analysis, <i>Pseudomonas</i> (taxid: 286) and <i>P. aeruginosa</i>
206	(taxid: 287) specific reads were extracted from the raw culturomic data using Kraken 2 (60) to
207	classify reads followed by sektq (<u>https://github.com/lh3/seqtk</u>) for retrieval, with resultant coverage
208	ranging from 21x to 43x (calculated using Mosdepth (61)). For culturomic analysis, ARDaP was again
209	run in mixture mode (mixtures flag), with the ResFinder (62) component disabled due to the
210	presence of multiple species.
211	Statistical analysis. Gene expression differences were assessed using a two-way analysis of variance
212	test and Tukey's multiple comparison test using GraphPad Prism (GraphPad Software Inc., CA, USA).

213 Corrected *p* values of <0.05 were considered significant.

214 Results

215 Multiplex qPCR assay performance. To assess assay sensitivity, LoD and LoQ values were 216 determined using a 10-fold DNA dilution series (40 ng to 0.04 fg). The LoD for all assays was 400 fg 217 (59 GEs), the LoQ for mexB, mexE and mexC was 400fg (59 GEs), and the LoQ for rpsL, ampC, mexY 218 and oprD was 4000 fg (587 GEs) (Figures S1 and S2). Based on these results, an rpsL C_T<30 was 219 identified as the upper threshold for accurately assessing gene expression of AMR loci. 220 Antibiotic susceptibility profiles. Testing towards 11 anti-pseudomonal antibiotics identified much 221 higher rates of AMR (range: 0-9 antibiotics) and MDR (10/12 strains) in CF-derived isolates when 222 compared with COPD-derived isolates (range: 0-2 antibiotics; 0/7 MDR strains) (Table 1). This was 223 consistent with much greater antibiotic use in the CF cohort (Table 1) (40). The lowest susceptibility 224 rates were towards cefepime (0% CF and 100% COPD) and piperacillin (33% CF and 100% COPD), 225 whereas all 19 strains were susceptible to colistin and polymyxin B (Table 1). Interestingly, cefepime 226 is rarely used for CF treatment at TPCH, indicating probable cross-resistance towards this antibiotic 227 in all CF-derived isolates. None of the participants were receiving polymyxins; as such, no AMR was 228 expected towards these antibiotics. 229 In silico AMR prediction in isolate genomes. Genomic analysis of the derived P. aeruginosa isolates 230 revealed a much greater number of AMR determinants in the CF-derived strains (Table 1). Although 231 some AMR determinants were identified in COPD isolates, only one was associated with 232 dysregulated expression of the six AMR loci. In contrast, many CF-derived isolates encoded 233 mutations predicted to alter gene expression of our qPCR gene targets (Table 1). Specifically, *ampC* 234 overexpression was predicted in SCHI0030.S.2 and SCHI0030.S.3 due to AmpD regulator loss (P42fs) 235 (63), and a non-inducible *ampC* phenotype was predicted in SCHI0038.S.3 due to a E592fs nonsense 236 mutation in AmpG (64); mexAB-oprM overexpression was predicted in SCHI0002.S.9 and 237 SCHI0002.S.12 due to a D187H missense mutation in the NalD regulator (65); and mexCD-oprJ 238 overexpression was predicted in SCHI0030.S.4 due to NfxB regulator loss (F126fs) (66). No mutations

medRxiv preprint doi: https://doi.org/10.1101/2022.02.03.22270419; this version posted March 21, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

239	associated with mexEF-oprN or mexXY-oprM overexpression were identified. Although not
240	associated with gene expression changes, oprD loss was predicted in SCHI0002.S.8 (W339Ter) and
241	SCHI0030.S.3 (G193fs), which is linked to carbapenem resistance, especially when associated with
242	ampC upregulation (25, 67) as observed in SCHI0030.S.3.
243	Other AMR determinants were identified in our strain dataset, including multiple determinants
244	encoding decreased susceptibility or AMR towards CIP (GyrA T831, D87H or D87N, GyrB S466F and
245	ParE A473V (68)) (Table 1). In addition, an R504C missense variant in Ftsl, known to confer resistance
246	to β -lactams (69), was detected in three CF-derived, multi- β -lactam-resistant isolates (SCH10002.S.8,
247	SCHI0030.S.2, and SCHI0030.S.3), and a FusA1 missense mutation, A555E (70), was identified in CF-
248	derived isolate SCHI0010.S.1 (AMK- and TOB-resistant) (Table 1). Finally, MexEF-OprN loss was
249	predicted in SCHI0013.S.2 and SCHI0013.S.12 due to a frameshift (R229fs) in the MexE membrane
250	fusion protein, and in SCHI0030.S.2 and SCHI0030.S.3 due to the introduction of a stop codon
251	(Y37Ter) in the MexF multidrug inner membrane transporter (71). Unlike the AMR variants, these
252	mexE and mexF mutations render the MexEF-OprN pump inoperable, and thus unable to contribute
253	towards AMR, irrespective of mexEF-oprN upregulation.
254	In silico AMR prediction in culturomes. Mixed variant site analysis (Table S2) of culturomic data
255	identified multiple <i>P. aeruginosa</i> strains in 1/4 CF and 0/3 COPD sputa. The SCHI0002_D8 culturome
256	had a high number of mixed variant sites (21664 variants), confirming that \ge 2 genetically distinct
257	strains were present; in contrast, multiple strains were not detected in the SCHI0002_D329,
258	SCHI0010_D7, SCHI0013_D4, SCHI0038, SCHI0039, or SCHI0050_D3 sputa (833, 1521, 701, 1039,
259	688, 678 variants, respectively) when compared with mixed variant site analysis in clonal, derived
260	strains (Table S2).

261 ARDaP AMR prediction (Table 1) identified AMR determinants not retrieved during single-strain

culturing in 3/7 culturomes (3/4 CF and 0/3 COPD sputa). GyrB E483D (72) and ParC S87W (73),

known to contribute to ciprofloxacin resistance, were identified in SCHI0002_D8 at a frequency of

264	8% and 10%, respectively; further, this sample had minor components of the AMR determinants
265	FdnH V215fs (12%), PA1259 F273fs (38%), PA2198 R33fs (11%), and PepA E363fs (14%), all of which
266	cause decreased piperacillin susceptibility (74). A FtsI H394R missense mutation (75) was identified
267	in SCH10010 at 61% prevalence, and in SCH10013, a W6Ter nonsense mutation caused by a G $ ightarrow$ A
268	transition was identified in OprD at 22% prevalence, predicted to cause carbapenem resistance,
269	along with PA3093 loss (15%), associated with intermediate piperacillin resistance (Table 1).
270	Importantly, no additional mutations were identified that were predicted to alter expression of the
271	six AMR loci. Further, the culturomic data did not detect some AMR determinants found in the
272	single-isolate data (Table 1).
273	Comparison of AMR variant prediction with in vitro AMR gene expression. Relative AMR gene
274	expression in derived <i>P. isolates</i> grown in LB broth (<i>n</i> =15; Figure S3), LB+NaCl (<i>n</i> =14; Figure S4), or a
275	5-antibiotic cocktail (n=2; Figure S5) was assessed. All qPCR targets exhibited expression in at least
276	one strain; however, in some strains, particularly the CF-derived isolates, certain genes exhibited no
277	expression (Figures S3-S5). Just two loci were expressed in all tested strains across all conditions: the
278	housekeeping gene rpsL (C_T =25.3±1.97) and mexB (C_T =29.0±2.14). oprD was expressed in all strains
279	except SCHI0039.S.1 grown in LB+NaCl. In contrast, ampC, and mexC, mexE, and mexY were
280	expressed in 1, 23, 26, and 2 of the 31 tested strains, respectively. Genetic analysis of all qPCR-
281	targeted loci confirmed 100% primer and probe matches in those strains with genomic data, thereby
282	ruling out assay failure as a cause of undetectable expression.
283	Unexpectedly, there was no concordance between <i>in silico</i> AMR predictions and qPCR results for
284	strains grown under any of the tested conditions. SCH10030.S.2 and SCH10030.S.3, which were
285	predicted to upregulate <i>ampC</i> through a previously undocumented AmpD frameshift variant (P42fs),
286	exhibited negligible or no <i>ampC</i> expression when grown in LB broth or LB+NaCl (Figures S3 and S4).
287	In contrast, SCHI0010.S.1, which does not encode any known chromosomal variant associated with
288	<i>ampC</i> upregulation (Table 1), demonstrated <i>ampC</i> hyper-expression (43x) in LB broth relative to

289 PAO1, although no detectable *ampC* expression under salt (Figure S2) or antibiotic stress (Figure S3). 290 Similarly, SCH10002.S.9 and SCH10002.S.12 failed to overexpress mexB, and, surprisingly, 291 SCHI0030.S.4 failed to overexpress mexC, despite predicted upregulation. Once again, SCHI0010.S.1 292 grown in LB, but not in LB+NaCl, unexpectedly hyper-expressed mexB (19x), mexC (19x), mexE (24x), 293 and mexY (16x) in lieu of encoding any known variants associated with upregulation of these loci. No 294 other strain tested under any condition upregulated mexB, mexC, mexE, or mexY. Although no 295 strains were predicted to exhibit oprD downregulation, oprD was not expressed in SCHI0039.S.1 296 grown in LB±NaCl, and was significantly downregulated in SCHI0010.S.1 grown in LB+NaCl (Figures S3 297 and S4). All other strains exhibited good oprD expression, including SCHI0002.S.8 and SCHI0030.S.3; 298 although these strains encode truncated OprD, these deleterious mutations occur downstream of 299 the oligo-binding sites, and are therefore undetected by our assay. 300 AMR gene expression in sputa. All COPD sputa yielded more similar expression profiles to the 301 SCHI0070 D2 COPD control than any of the nine CF sputa (Figure 1). The only overexpressed loci in 302 the CF or COPD sputa were: *ampC* (4/9 CF [1.7-15.1x] and 2/5 COPD [1.7-3.5x]), *mexB* (3/5 COPD 303 [1.5-2.5x]), mexC (2/9 CF [1.7-2.1x] and 2/5 COPD [6.4x each]), mexY (4/5 COPD [1.8-7.3x]), and oprD 304 (3/5 COPD [1.7-51x]) (Figure 2). All CF sputa exhibited downregulation or no expression of mexB 305 $(\geq 4.0x)$, mexE $(\geq 3.9x)$, mexY $(\geq 5.2x)$, and oprD $(\geq 377x)$, and 6/9 were downregulated or had no 306 detectable expression for mexC (\geq 3.4x). When comparing CF and COPD sputum expression, no 307 significant difference was observed for ampC, mexB, or mexC; in contrast, mexE, mexY, and oprD 308 were all significantly downregulated in CF sputa (Figure 1). 309 Correlation of qPCR results with antibiotic treatment (Table 1) identified that sputum ampC 310 expression levels were a good indicator of current β -lactam use, with 4/5 sputa with elevated *ampC* 311 expression collected from participants contemporaneously receiving β -lactams (SCHI0002 D8, 312 SCHI0010 D7, SCHI0013 D4, and SCHI0018 D8). Notably, 2/3 sputa (SCHI0002 D8 and

313 SCHI0013_D4) obtained from participants being treated with MEM, either with or without CAZ,

314 overexpressed ampC at high levels (6.7-15x); in contrast, ampC expression was only moderately 315 upregulated (1.7-1.9x) in two sputa (SCHI0010 D7 and SCHI0018 D8) from participants on CAZ but 316 not MEM (Table 1; Figure 2). ampC was downregulated or not expressed in eight sputa (Figure 2) - of 317 these, four were collected from participants receiving no antibiotics at the time of collection, three 318 were receiving antibiotics other than β -lactams, and just one (SCHI0002_D329) was receiving CAZ 319 and MEM at the time of sputum collection (Table 1). 320 AMR gene expression between sputa and in vitro cultures. Sputum AMR gene expression was 321 compared with derived cultures grown in LB broth (Figure S3), LB+NaCl (Figure S4), and a 5-antibiotic 322 cocktail (Figure S5) to determine whether culture AMR gene expression was reflective of in vivo 323 conditions. Overall, there was very poor concordance between *in vivo* and *in vitro* expression 324 profiles across all tested in vitro conditions, with most loci exhibiting dissimilar expression between 325 derived isolates and their corresponding sputa. Most striking was oprD, which, in most cases, was 326 upregulated in strains grown under the three *in vitro* conditions (Figures S3-S5) yet largely 327 downregulated in vivo (Figure 2). 328 **RND efflux pump expression during antibiotic treatment.** The four longitudinal sputa collected from 329 SCHI0030, who received intravenous TOB and aztreonam for 15 days, provides an interesting case 330 study for observing AMR gene expression dynamics before, during, and after antibiotic treatment 331 (Table 1). Although TOB has previously been shown to induce MexXY-OprM expression in CF sputa 332 (20), we unexpectedly did not observe AMR gene expression changes in SCHI0030 sputa (Figure 2). 333 Five sputa from other CF participants also showed limited or no mexY expression. In comparison, 334 mexY was significantly upregulated in 4/5 COPD sputa (Figure 2), none of whom have ever received 335 TOB (Table 1).

336 Discussion

337	Here, we developed and validated two multiplex qPCR assays for the simultaneous detection of
338	altered AMR locus expression in the ESKAPE pathogen, P. aeruginosa. When run in multiplex format,
339	our qPCRs showed very good to excellent LoD and LoQ values. qPCRs can be used both on <i>P</i> .
340	aeruginosa cultures and directly on human RNA-depleted sputa, the latter of which provides in vivo
341	expression profiling that overcomes transcriptional bias introduced with <i>in vitro</i> culture (20).
342	Building upon the pioneering work of Martin and colleagues, who first reported limited correlation
343	in <i>ampC</i> and <i>mexX</i> expression between sputa and corresponding derived isolates (20), we also
344	observed poor concordance between in vivo and in vitro expression profiles across six tested AMR
345	loci. Further, we found surprisingly poor correlation between in silico-predicted and in vitro AMR
346	gene expression. These findings raise questions about the clinical utility of in vitro antimicrobial gene
347	expression profiling and highlight the need for more work in this critical area of AMR research.
348	AmpC-driven AMR. We found that sputum <i>ampC</i> expression correlated well with contemporaneous
349	eta-lactam treatment. In particular, two CF participants (SCHI0010 and SCHI0018) receiving CAZ but no
350	other β -lactams overexpressed <i>ampC</i> at moderate levels (1.7-2x); this overexpression increased to
351	6.7-15x in two other participants (SCHI0002 and SCHI0013) receiving MEM (Table 1; Figure 2).
352	Carbapenems such as MEM can be potent <i>ampC</i> inducers (67) and can remain effective even when
353	ampC expression is elevated (25), whereas cephalosporins such as CAZ are relatively weak inducers
354	of <i>ampC</i> and are readily hydrolysed by this enzyme (25). Our findings confirm that MEM can act as a
355	strong inducer of <i>ampC</i> expression <i>in vivo</i> . In light of this, we recommend that <i>P. aeruginosa</i>
356	infections should not simultaneously be treated with carbapenems and cephalosporins due to
357	potential $ampC$ induction, which would render cephalosporin (and likely other β -lactam) antibiotics
358	ineffective (25). In contrast, eight sputa exhibited downregulated or no <i>ampC</i> expression (Figure 2),
359	seven of which were taken from participants either not on antibiotics or not receiving eta -lactams at
200	the time of complexeduction which likely evolution the lack of θ lactom driven empC selection

361 pressure. Of note, two COPD sputa, SCHI0109 and SCHI0050 D3, showed ampC upregulation (1.7-362 3.5x), despite neither participant receiving contemporaneous β -lactam therapy. Whilst the basis for 363 this upregulation is unknown, we speculate that β -lactam use in these participants would be 364 ineffective for *P. aeruginosa* eradication. Taken together, our results demonstrate that routine *ampC* 365 qPCR testing of *P. aeruginosa*-positive specimens is a useful diagnostic for monitoring *in vivo* 366 cephalosporin efficacy, enabling more rapid treatment shifts in instances where *ampC* is 367 upregulated. 368 Unlike sputa, almost all derived isolates failed to express *ampC* when grown in three different liquid 369 media. The exception was the derived isolate from CF participant SCHI0010. In LB broth, 370 SCHI0010.S.1 exhibited *ampC* hyper-expression (15x relative to SCHI0070 D2, and 43x relative to 371 PAO1; Figure S3), yet the corresponding sputum showed only modest *ampC* upregulation (1.7x; 372 Figure 2). This finding was unexpected as SCHI0010.S.1 does not encode any known chromosomal 373 variant associated with *ampC* upregulation (Table 1), and did not overexpress *ampC* when grown in 374 LB+NaCl or the 5-antibiotic cocktail (Figures S4-S5). These results indicate that SCHI0010.S.1 encodes 375 an enigmatic determinant for upregulating *ampC* expression when grown under particular 376 conditions. Whilst the basis of this overexpression requires further investigation, we postulate that it 377 may be driven by global transcriptional regulator inactivation due to its hypermutator status, 378 resulting in marked transcriptome differences affecting multiple gene pathways. In contrast, strains 379 SCHI0030.S.2 and SCHI0030.S.3, both predicted to upregulate *ampC* due to a truncated AmpD, 380 exhibited negligible or no *ampC* expression *in vitro* (Figures S3-S4). This result correlated with the 381 longitudinal SCHI0030 sputa, all of which exhibited significantly downregulated *ampC* expression. 382 One possibility for the lack of *ampC* expression in SCH10030 is that the AmpD P42fs mutation may 383 only confer a partially de-repressed *ampC* phenotype (26); another possibility is that additional 384 chromosomal determinants, such as those occurring in other AmpD homologues (26) or DacB (76), 385 may be required to confer *ampC* upregulation (63) in AmpD P42fs-encoding strains.

386	Expression of <i>ampC</i> was also undetectable in the MDR strain, SCHI0002.S.9, across the three <i>in vitro</i>
387	conditions (Figures S3-S4). Whilst this observation is consistent with the lack of predicted <i>ampC</i>
388	dysregulation in the SCHI0002.S.9 genome, it does not reflect the AMR phenotype of this strain,
389	which was resistant to all six tested penicillin, cephalosporin, and carbapenem antibiotics (Table 1).
390	In addition, the corresponding SCHI0002_D8 sputum displayed the greatest <i>ampC</i> upregulation (15x;
391	Figure 2), probably due to contemporaneous CAZ and MEM treatment (Table 1). One possible
392	explanation for these spurious results is that high sputum <i>ampC</i> levels are conferred by an un-
393	retrieved <i>P. aeruginosa</i> strain (20), as supported by two distinct AMR phenotypes and genotypes
394	isolated from SCHI0002_D8, SCHI0013_D4, and SCHI0030_D50 sputa (Table 1) and <i>in silico</i> strain
395	mixture analysis of culturomic data, which identified multiple <i>P. aeruginosa</i> strains in one CF sputum
396	sample (SCHI0002_D8) (Table S2). Indeed, phenotypic and genotypic diversity of <i>P. aeruginosa</i> is
397	well-documented in chronic CF infections (77), and increasingly, in COPD infections (78). However,
398	our culturomic mixture analysis failed to identify any additional mutations associated with altered
399	gene expression of <i>ampC</i> or the other tested AMR loci (Table 1), so it remains unconfirmed whether
400	undetected determinants are contributing to AMR. Another explanation is that <i>ampC</i> expression in
401	SCHI0002 strains may require MEM (20) or cefoxitin (79) rather than ampicillin (48) for <i>in vitro</i>
402	induction, as certain antibiotics are known to be better than others for inducing <i>ampC</i> (20).
403	However, antibiotic induction only provides a crude representation of in vivo P. aeruginosa activity,
404	as the lung environment is exceptionally difficult to mimic <i>in vitro</i> (20, 77, 80). The lack of correlation
405	between <i>ampC</i> upregulation in sputa and derived cultures (Figures S3-S5) has also been reported in
406	a separate study (20), and emphasises the challenges in replicating <i>in vivo</i> conditions <i>in vitro</i> .
407	Efflux-mediated AMR. mexB, mexC, mexE and mexY represent the RND efflux pumps most
408	frequently associated with AMR and MDR in <i>P. aeruginosa</i> (23, 25). As most CF participants were
409	being treated with anti-pseudomonal antibiotics at the time of sputum collection, and many of their
410	derived isolates encode key mutations associated with altered RND efflux pump expression (Table
411	1), we expected upregulation of these four efflux pumps in CF sputa. It was therefore surprising that

412 mexC was the only efflux system that demonstrated modest (1.7-2.1x) upregulation in a few patients 413 (2/9 CF sputa), whereas the other RND efflux systems were largely downregulated, or switched off 414 entirely, in CF sputa (Figure 2). Also surprising was that most COPD sputa showed good expression of 415 these loci, despite only two COPD participants contemporaneously receiving anti-pseudomonal 416 antibiotics, and almost no AMR phenotypes or efflux pump expression-altering genotypes in the 417 derived COPD isolates (Table 1). This difference between diseases was most apparent for mexE, 418 mexY, and oprD, which were significantly downregulated in CF but not COPD sputa (Figure 1). 419 Although our dataset is small, these observations suggest that RND efflux pump expression, and 420 particularly mexE and mexY expression, may not be required for chronic P. aeruginosa persistence in 421 CF airways. This finding contradicts prior in vitro work suggesting that MexXY-OprM efflux pump 422 upregulation is necessary for *P. aeruginosa* survival in the CF lung (81). We further postulate that the 423 MexEF-OprN and MexXY-OprM RND efflux pumps may have a minimal role, if any, in conferring AMR in P. aeruginosa in vivo. mexE and mexY qPCR testing across a larger CF and COPD sputum panel is 424 425 needed to determine to veracity of our findings. 426 One possible explanation for efflux pump downregulation in CF sputa is that the CF cohort all

427 harboured chronic P. aeruginosa infections, whereas the COPD cohort potentially only had transient 428 (i.e. acute) infections. Like virulence factors (82), RND efflux pump expression may be upregulated 429 during the acute phase but then downregulated once *P. aeruginosa* transitions to a chronic lifestyle, 430 the latter of which is characterised by biofilm formation and reduced metabolic activity (25, 83). In 431 support of this hypothesis, longitudinal sputa collected from CF participant SCHI0030 just prior, 432 during, and after a 15-day course of intravenous TOB and aztreonam treatment showed virtually no 433 change in RND efflux pump expression, with all AMR genes (including *mexY*) downregulated (Figure 434 2) despite the aminoglycoside onslaught. In addition, one of two SCHI0030 strains obtained 35 days 435 after antibiotic cessation was fully susceptible to all 11 tested antibiotics, including TOB, hinting at 436 insufficient antibiotic penetration due to biofilm. As ours is one of the few studies to investigate P. 437 aeruginosa AMR gene expression in vivo, and the first to assess COPD sputa, more work is required

438 to verify these hypotheses, as there remains stark limitations in our understanding of the 439 characteristics of *P. aeruginosa* infection (including AMR development), particularly in people with 440 COPD (84). Examining in vivo AMR gene expression dynamics over a long-term P. aeruginosa 441 infection would shed important information about the adaptive processes that occur during the 442 transition from acute infection to chronic persistence. We anticipate that our multiplex assays will 443 be a valuable tool for such studies. 444 Analysis of RND efflux expression among the CF-derived isolates encoding predicted RND efflux 445 upregulation revealed that almost none demonstrated increased efflux pump expression in vitro 446 (Figures S3-S5). Curiously, the MDR and hypermutated isolate SCHI0010.S.1, which does not encode 447 any known mutations associated with RND efflux pump upregulation, exhibited mexB (5.3x), mexC 448 (1.7x), mexE (1.5x), and mexY (28x) overexpression when grown in LB, although not when grown in 449 LB+NaCl or the 5-antibiotic cocktail (Figures S3-S5). These results indicate that there are growth-450 specific requirements associated with upregulation of these genes. Furthermore, these observations 451 collectively indicate that in vitro efflux pump expression is not a good proxy for AMR phenotype, as 452 our CF-derived *P. aeruginosa* isolates demonstrate extensive MDR, yet we were unable to reproduce 453 their expected gene expression alterations in vitro. Our results contradict other in vitro experiments 454 reporting RND efflux pump hyper-expression as a major contributing factor to AMR development in 455 CF airway-derived *P. aeruginosa* (34, 39). Caution should thus be taken when attempting to correlate 456 predicted AMR phenotypes with in vitro RND efflux pump expression profiles due to considerable 457 AMR gene expression changes exhibited under different culture conditions. 458 **OprD-mediated AMR.** As with the other AMR loci, we saw an unexpectedly poor correlation 459 between in vitro and in vivo oprD expression. Whereas 17/19 in vitro cultures expressed oprD at high 460 levels (Figures S3-S5), 9/9 CF and 2/5 COPD sputa exhibited no detectable oprD expression (Figure 461 2), and oprD was significantly downregulated in CF sputa (Figure 1). This finding strongly suggests

that oprD downregulation is a common, and potentially dominant, adaptive in vivo trait in chronic P.

463 aeruginosa infections. Another noteworthy observation is that in vivo oprD downregulation was not 464 strictly associated with contemporaneous carbapenem use, as only three of the CF sputa were 465 obtained during carbapenem treatment, and none of the COPD participants had ever received 466 carbapenems. We posit that this adaptive mechanism may provide a rapid, efficient, and effective 467 way for *P. aeruginosa* to evade carbapenems in lieu of encoding functional oprD loss. In support of 468 this hypothesis, two prior studies reported decreased oprD expression as a cause of carbapenem 469 AMR in 19/33 (58%) (85) and 39/117 (33%) (86) clinical isolates. However, another study showed 470 that in vitro oprD downregulation in carbapenem-resistant isolates is a rare event, occurring in just 471 5/40 (13%) isolates (34). As our study illustrates, the markedly different oprD expression profiles 472 observed among studies may reflect differing in vitro growth conditions; nevertheless, these in vitro 473 findings show that *P. aeruginosa* can modulate its *oprD* expression to confer carbapenem AMR. Like 474 ampC, our oprD results indicate that there may be great clinical value in characterising in vivo oprD 475 expression to rapidly identify *P. aeruginosa* infections that are recalcitrant to carbapenem therapy. 476 **Concluding remarks**. Our results add further weight to growing concerns about the relevance of *in* 477 vitro AMR research, particularly in vitro gene expression analysis, in clinical practice (87, 88). Due to 478 poor correlation between *in vitro* AMR testing and treatment outcomes in CF, empirical antibiotic 479 selection remains the preferred option due to better patient responses (80). Our findings confirm 480 that alternative approaches must be explored that minimise the transcriptional biases introduced 481 during culture (89) to better reflect in vivo P. aeruginosa gene expression (87). We recommend that, 482 wherever possible, gene expression of clinical specimens (e.g. sputum) be tested alongside cultured 483 isolates (20). This information will greatly improve our understanding of the shortcomings of in vitro 484 AMR testing whilst aiding in clinical decision making, providing more targeted treatment strategies, 485 enhancing antimicrobial stewardship, and improving patient outcomes. Finally, implementation of 486 microbial-enriched metagenomic sequencing of clinical specimens and *in silico* mixture analysis 487 would permit the detection of AMR determinants within a heterogeneous strain population,

488 providing a superior method to culture-based methods for comprehensive AMR determinant

489 identification.

490 Acknowledgements

- 491 This work was supported by Advance Queensland (awards AQIRF0362018 and AQRF13016-17RD2),
- 492 an Australian Government Research Training Program Scholarship, the Wishlist Sunshine Coast
- 493 Health Foundation (award 2019-14), the IMPACT Philanthropy Application Program
- 494 (IPAP2016/01112), UQ-QIMRB (Australian Infectious Disease Grant initiative), the National Health
- 495 and Medical Research Council (award 455919), The Children's Health Foundation Queensland (50 0
- 496 07), and The Health Innovation, Investment and Research Office of Queensland Health. The funders
- 497 had no role in study design, data acquisition, analysis, interpretation, writing or submission of the
- 498 manuscript.

499 References

500 501	1.	Alanis AJ. 2005. Resistance to antibiotics: Are we in the post-antibiotic era? <i>Arch Med Res</i>
501	2	Zhen X Lundhorg CS Sun X Hu X Dong H 2019 Economic hurden of antibiotic resistance in
502	Ζ.	ESKAPE organisms: a systematic review. Antimicrob Resist Infect Control 8:137.
504	3.	Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. 2019. Emerging strategies to
505		combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front Microbiol
506		10:539-539.
507	4.	Bassetti M, Vena A, Croxatto A, Righi E, Guery B. 2018. How to manage <i>Pseudomonas</i>
508		aeruginosa infections. Drugs Context 7:1-18.
509	5.	Botelho J, Grosso F, Peixe L. 2019. Antibiotic resistance in Pseudomonas aeruginosa -
510		Mechanisms, epidemiology and evolution. Drug Resist Updat 44:26-47.
511	6.	Breidenstein EB, de la Fuente-Nunez C, Hancock RE. 2011. <i>Pseudomonas aeruginosa</i> : all
512		roads lead to resistance. Trends Microbiol 19:419-26.
513	7.	Shallcross LJ, Howard SJ, Fowler T, Davies SC. 2015. Tackling the threat of antimicrobial
514		resistance: From policy to sustainable action. <i>Philos Trans R Soc Lond B Biol Sci</i> 370:1-5.
515	8.	O'Neill J. 2014. Antimicrobial resistance: Tackling a crisis for the health and wealth of
516		nations. Accessed 12 August 2021.
517	9.	Patel A. 2021. Tackling antimicrobial resistance in the shadow of COVID-19. <i>mBio</i> 12:1-4.
518	10.	Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, Vlieghe E, Hara
519		GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E,
520		Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown
521		ED, Cars O. 2013. Antibiotic resistance - the need for global solutions. <i>Lancet Infect Dis</i>
522		13:1057-1098.
523	11.	Su M, Satola SW, Read TD. 2019. Genome-based prediction of bacterial antibiotic resistance.
524		J Clin Microbiol 57:1-15.
525	12.	Rossen JWA, Friedrich AW, Moran-Gilad J. 2018. Practical issues in implementing whole-
526		genome-sequencing in routine diagnostic microbiology. Clin Microbiol Infect 24:355-360.
527	13.	Madden DE, McCarthy KL, Bell SC, Olagoke O, Baird T, Neill J, Ramsay KA, Kidd TJ, Stewart
528		AG, Subedi S, Choong K, Fraser TA, Sarovich DS, Price EP. 2021. Rapid fluoroquinolone
529		resistance detection in Pseudomonas aeruginosa using mismatch amplification mutation
530		assay-based real-time PCR. <i>medRxiv</i> .
531	14.	Richardot C, Plesiat P, Fournier D, Monlezun L, Broutin I, Llanes C. 2015. Carbapenem
532		resistance in cystic fibrosis strains of <i>Pseudomonas aeruginosa</i> as a result of amino acid
533		substitutions in porin OprD. Int J Antimicrob Agents 45:529-32.
534	15.	Godfroid M, Dagan T, Merker M, Kohl TA, Diel R, Maurer FP, Niemann S, Kupczok A. 2020.
535		Insertion and deletion evolution reflects antibiotics selection pressure in a Mycobacterium
536		tuberculosis outbreak. PLoS Pathog 16:1-24.
537	16.	Huang TW, Chen TL, Chen YT, Lauderdale TL, Liao TL, Lee YT, Chen CP, Liu YM, Lin AC, Chang
538		YH, Wu KM, Kirby R, Lai JF, Tan MC, Siu LK, Chang CM, Fung CP, Tsai SF. 2013. Copy number
539		change of the NDM-1 sequence in a multidrug-resistant <i>Klebsiella pneumoniae</i> clinical
540		isolate. PLoS One 8:1-12.
541	17.	Chalhoub H, Sáenz Y, Rodriguez-Villalobos H, Denis O, Kahl BC, Tulkens PM, Van Bambeke F.
542		2016. High-level resistance to meropenem in clinical isolates of <i>Pseudomonas aeruginosa</i> in
543		the absence of carbapenemases: role of active efflux and porin alterations. Int J Antimicrob
544		Agents 48:740-743.
545	18.	Stewart AG, Price EP, Schabacker K, Birikmen M, Harris PNA, Choong K, Subedi S, Sarovich
546		DS. 2021. Molecular epidemiology of third-generation cephalosporin-resistant
547		Enterobacteriaceae in Southeast Queensland, Australia. Antimicrob Agents Chemother 65:1-
548		13.

549 550	19.	Chantratita N, Rholl DA, Sim B, Wuthiekanun V, Limmathurotsakul D, Amornchai P, Thanwisai A, Chua HH, Ooi WF, Holden MT, Day NP, Tan P, Schweizer HP, Peacock SJ. 2011. Antimiarahial registance to coftagidime involving loss of papieillin hinding protein 2 in
551		Antimicrobial resistance to certazidime involving loss of peniciliin-binding protein 3 in Burkholdoria psaudomalloi. Proc Natl Acad Sci U.S.A 108:17165-70
553	20	Martin I.W. Rohson Cl. Watts AM. Grav AR. Wainwright CF. Bell SC. Ramsav KA. Kidd TI. Reid
554	20.	DW Brockway B Lamont II 2018 Expression of <i>Pseudomonas geruginosa</i> antibiotic
555		resistance genes varies greatly during infections in cystic fibrosis natients. Antimicrob Agents
556		Chemother 62:1-11.
557	21.	Wheatley R. Diaz Caballero J. Kapel N. de Winter FHR. Jangir P. Ouinn A. del Barrio-Tofiño E.
558		López-Causapé C, Hedge J, Torrens G, Van der Schalk T, Xavier BB, Fernández-Cuenca F,
559		Arenzana A, Recanatini C, Timbermont L, Sifakis F, Ruzin A, Ali O, Lammens C, Goossens H,
560		Kluytmans J, Kumar-Singh S, Oliver A, Malhotra-Kumar S, MacLean C. 2021. Rapid evolution
561		and host immunity drive the rise and fall of carbapenem resistance during an acute
562		Pseudomonas aeruginosa infection. Nat Commun 12:1-12.
563	22.	Lee JY, Ko KS. 2012. OprD mutations and inactivation, expression of efflux pumps and AmpC,
564		and metallo-beta-lactamases in carbapenem-resistant <i>Pseudomonas aeruginosa</i> isolates
565		from South Korea. Int J Antimicrob Agents 40:168-72.
566	23.	Cabot G, Ocampo-Sosa AA, Tubau F, Macia MD, Rodriguez C, Moya B, Zamorano L, Suarez C,
567		Pena C, Martinez-Martinez L, Oliver A. 2011. Overexpression of AmpC and efflux pumps in
568		Pseudomonas aeruginosa isolates from bloodstream infections: prevalence and impact on
569		resistance in a Spanish multicenter study. Antimicrob Agents Chemother 55:1906-11.
570	24.	Webb JR, Price EP, Somprasong N, Schweizer HP, Baird RW, Currie BJ, Sarovich DS. 2018.
571		Development and validation of a triplex quantitative real-time PCR assay to detect efflux
572		pump-mediated antibiotic resistance in <i>Burkholderia pseudomallei</i> . <i>Future Microbiol</i>
5/3	25	
574	25.	Poole K. 2011. Pseudomonds deruginosa: Resistance to the max. Front Microbiol 2:1-13.
5/5	26.	Juan C, Woya B, Perez JL, Oliver A. 2006. Stepwise upregulation of the <i>Pseudomonas</i>
570		involves three AmpD hemologues. Antimicroh Agents Chemother 50:1720.7
578	27	Shull Kuo Al Sull H Liu TP Lee MH Sull N Wu TL 2017 Development of carbanenem
579	27.	resistance in <i>Pseudomonas geruginosa</i> is associated with OnrD polymorphisms, particularly
580		the amino acid substitution at codon 170 / Antimicroh Chemother 72-2489-2495
581	28	Sherrard I I Wee BA Duplancic C Ramsay KA Dave KA Ballard F Wainwright CF Grimwood
582		K. Sidiabat HF. Whiley DM. Beatson SA. Kidd TJ. Bell SC. 2021. Emergence and impact of <i>oprD</i>
583		mutations in <i>Pseudomonas aeruainosa</i> strains in cystic fibrosis. <i>J Cyst Fibros</i> 21:1-9.
584	29.	Lee JK, Lee YS, Park YK, Kim BS. 2005. Alterations in the GyrA and GyrB subunits of
585		topoisomerase II and the ParC and ParE subunits of topoisomerase IV in ciprofloxacin-
586		resistant clinical isolates of <i>Pseudomonas aeruginosa</i> . Int J Antimicrob Agents 25:290-5.
587	30.	Poole K, Tetro K, Zhao Q, Neshat S, Heinrichs DE, Bianco N. 1996. Expression of the multidrug
588		resistance operon mexA-mexB-oprM in <i>Pseudomonas aeruginosa</i> : mexR encodes a regulator
589		of operon expression. Antimicrob Agents Chemother 40:2021-8.
590	31.	Chen W, Wang D, Zhou W, Sang H, Liu X, Ge Z, Zhang J, Lan L, Yang CG, Chen H. 2016.
591		Novobiocin binding to NalD induces the expression of the MexAB-OprM pump in
592		Pseudomonas aeruginosa. Mol Microbiol 100:749-58.
593	32.	Köhler T, Epp SF, Curty LK, Pechère JC. 1999. Characterization of MexT, the regulator of the
594		MexE-MexF-OprN multidrug efflux system of <i>Pseudomonas aeruginosa. J Bacteriol</i>
595		181:6300-5.
596	33.	Morita Y, Tomida J, Kawamura Y. 2012. MexXY multidrug efflux system of <i>Pseudomonas</i>
597	24	aeruginosa. Front Microbiol 3:1-13.
598 599	34.	Agnazaden M, Hojabri Z, Mandian K, Nahaei MK, Kahmati M, Hojabri T, Pirzadeh T, Pajand O. 2014. Role of efflux pumps: MexAB-OprM and MexXY(-OprA), AmpC cephalosporinase and

600		OprD porin in non-metallo-beta-lactamase producing <i>Pseudomonas aeruginosa</i> isolated
601		from cystic fibrosis and burn patients. Infect Genet Evol 24:187-92.
602	35.	Poole K, Gotoh N, Tsujimoto H, Zhao Q, Wada A, Yamasaki T, Neshat S, Yamagishi J, Li XZ,
603		Nishino T. 1996. Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type
604		multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol 21:713-24.
605	36.	Fraud S, Campigotto AJ, Chen Z, Poole K. 2008. MexCD-OprJ multidrug efflux system of
606		Pseudomonas aeruginosa: Involvement in chlorhexidine resistance and induction by
607		membrane-damaging agents dependent upon the AlgU stress response sigma factor.
608		Antimicrob Agents Chemother 52:4478-4482.
609	37.	Gotoh N, Tsujimoto H, Tsuda M, Okamoto K, Nomura A, Wada T, Nakahashi M, Nishino T.
610		1998. Characterization of the MexC-MexD-OprJ Multidrug Efflux System in mexA-mexB-
611		oprM Mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 42:1938-1943.
612	38.	Oh H, Stenhoff J, Jalal S, Wretlind B. 2003. Role of efflux pumps and mutations in genes for
613		topoisomerases II and IV in fluoroquinolone-resistant <i>Pseudomonas aeruginosa</i> strains.
614		Microb Drug Resist 9:323-8.
615	39.	Islam S, Jalal S, Wretlind B. 2004. Expression of the MexXY efflux pump in amikacin-resistant
616		isolates of Pseudomonas aeruginosa. Clin Microbiol Infect 10:877-83.
617	40.	Webb KA, Olagoke O, Baird T, Neill J, Pham A, Wells TJ, Ramsay KA, Bell SC, Sarovich DS,
618		Price EP. 2021. Genomic diversity and antimicrobial resistance of <i>Prevotella</i> spp. isolated
619		from chronic lung disease airways. <i>Microb Genom</i> 8:000754.
620	41.	Nadkarni MA, Martin FE, Jacques NA, Hunter N. 2002. Determination of bacterial load by
621		real-time PCR using a broad-range (universal) probe and primers set. <i>Microbiology (Reading)</i>
622		148:257-266.
623	42.	de Lamballerie X, Zandotti C, Vignoli C, Bollet C, de Micco P. 1992. A one-step microbial DNA
624		extraction method using "Chelex 100" suitable for gene amplification. <i>Res Microbiol</i>
625		143:785-90.
626	43.	Anuj SN, Whiley DM, Kidd TJ, Bell SC, Wainwright CE, Nissen MD, Sloots TP. 2009.
627		Identification of Pseudomonas aeruginosa by a duplex real-time polymerase chain reaction
628		assay targeting the ecfX and the gyrB genes. <i>Diagn Microbiol Infect Dis</i> 63:127-31.
629	44.	Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. 2019.
630		Epidemiology and treatment of multidrug-resistant and extensively drug-resistant
631		Pseudomonas aeruginosa infections. Clin Microbiol Rev 32:1-52.
632	45.	Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. 2000. Substrate
633		specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in <i>Pseudomonas</i>
634		aeruginosa. Antimicrob Agents Chemother 44:3322-7.
635	46.	Buffet-Bataillon S, Tattevin P, Maillard J-Y, Bonnaure-Mallet M, Jolivet-Gougeon A. 2016.
636		Efflux pump induction by quaternary ammonium compounds and fluoroquinolone resistance
637		in bacteria. <i>Future Microbiol</i> 11:81-92.
638	47.	Fetar H, Gilmour C, Klinoski R, Daigle DM, Dean CR, Poole K. 2011. mexEF-oprN multidrug
639		efflux operon of <i>Pseudomonas aeruginosa</i> : Regulation by the MexT activator in response to
640		nitrosative stress and chloramphenicol. Antimicrob Agents Chemother 55:508-514.
641	48.	Dunne WM, Jr., Hardin DJ. 2005. Use of several inducer and substrate antibiotic
642		combinations in a disk approximation assay format to screen for AmpC induction in patient
643		isolates of Pseudomonas aeruginosa, Enterobacter spp., Citrobacter spp., and Serratia spp. J
644		of Clin Microbiol 43:5945-5949.
645	49.	Oliver A, Baquero F, Blázquez J. 2002. The mismatch repair system (<i>mutS, mutL</i> and <i>uvrD</i>
646		genes) in Pseudomonas aeruginosa: Molecular characterization of naturally occurring
647		mutants. <i>Mol Microbiol</i> 43:1641-1650.
648	50.	van Belkum A, Soriaga LB, LaFave MC, Akella S, Veyrieras J-B, Barbu EM, Shortridge D, Blanc
649		B, Hannum G, Zambardi G, Miller K, Enright MC, Mugnier N, Brami D, Schicklin S, Felderman
650		M, Schwartz AS, Richardson TH, Peterson TC, Hubby B, Cady KC. 2015. Phylogenetic

CE1		
021		distribution of CRISPR-Cas systems in antibiotic-resistant <i>Pseudomonus del dymosa</i> . <i>Indio</i>
652	F 1	0:1-13. Cabat C. Lánas Causaná C. Osamura Casa A.A. Camura a I.M. Damíanura MÁ. Zamana a L
000 6E4	51.	Cabot G, Lopez-Causape C, Ocampo-Sosa AA, Sommer LM, Dominguez MA, Zamorano L,
034 655		Judi C, Tubau F, Rounguez C, Moya B, Pena C, Martinez-Martinez L, Piesiat P, Oliver A. 2010.
055		becipitering the resistone of the widespread <i>Pseudomonus derugmosa</i> sequence type 175
030 657		Chemether 60:7415, 7422
05/	БЭ	Chemoliner 60:7415-7423. Kas VNL Dérasna M. Malaughlin DE. Whiteakar ID. Day DIL Alm DA. Carbail I. Cardnar II.
000	52.	Kos VN, Deraspe M, McLaughlin RE, Whiteaker JD, Koy PH, Alm RA, Corbell J, Gardner H.
659		2015. The resistome of <i>Pseudomonas deruginosa</i> in relationship to phenotypic susceptibility.
660	F 2	Antimicrob Agenis chemother 59.427-430.
001	55.	Del Barrio-Tolino E, Lopez-Causape C, Cabol G, Rivera A, Benito N, Segura C, Montero MM,
662		Sorii L, Tubau F, Gomez-Zorrina S, Tormo N, Dura-Navarro R, Vieuma E, Resino-Foz E,
005		Fernandez-Wartinez W, Gonzalez-Rico C, Alejo-Cancho I, Wartinez JA, Labayru-Echverna C,
004 CCF		Duenas C, Ayestaran I, Zamorano L, Martinez-Martinez L, Horcajada JP, Oliver A. 2017.
665		Genomics and susceptibility profiles of extensively drug-resistant <i>Pseudomonas deruginosa</i>
000	E 4	Isolates from Spain. Antimicrob Agents Chemother 01, 1-15.
667	54.	Sherraru LJ, Tal AS, wee BA, Ramsay KA, Kiuu TJ, Ben Zakour NL, Whiley Divi, Bealson SA,
660		acruainesa strein sub tune in custic fibrosic. <i>PLoS ONE</i> 12:1, 15
670	55	Erson TA Boll MG Harris DNA Boll SC Borgh H Nguyon TK Kidd TL Nimmo GP Sarovich
671	JJ.	Prise FR, Bell MG, Harris FNA, Bell SC, Bergin H, Nguyen F-K, Kud H, Ninnio GK, Sarovich
672		intrinsically multidrug-resistant bacterial nathogen Stenatronhomongs moltonhilig. Microh
673		Genom 5.2.11
674	56	Price EP Dale II. Cook IM Sarovich DS Seymour MI. Ginther II. Kaufman El. Beckstrom-
675	50.	Sternberg SM, Mayo M, Kaestli M, Glass MB, Gee JE, Wuthiekanun V, Warner JM, Baker A
676		Eoster IT Tan P. Tuanvok A. Limmathurotsakul D. Peacock SI. Currie BI. Wagner DM. Keim P.
677		Pearson T 2012 Development and validation of <i>Burkholderig nseudomallei</i> -specific real-
678		time PCR assays for clinical environmental or forensic detection applications. <i>PLoS One</i> 7:1-
679		9
680	57.	Araujo P. 2009. Key aspects of analytical method validation and linearity evaluation. /
681	• • •	Chromatoar B Analyt Technol Biomed Life Sci 877:2224-34.
682	58.	Livak KJ. Schmittgen TD. 2001. Analysis of relative gene expression data using real-time
683		quantitative PCR and the 2(-Delta Delta C(T)) Method. <i>Methods</i> 25:402-8.
684	59.	Madden DE, Webb JR, Steinig EJ, Currie BJ, Price EP, Sarovich DS. 2021. Taking the next-gen
685		step: Comprehensive antimicrobial resistance detection from <i>Burkholderia pseudomallei</i> .
686		EBioMedicine 63:103152.
687	60.	Wood DE, Lu J, Langmead B. 2019. Improved metagenomic analysis with Kraken 2. <i>Genome</i>
688		Biol 20:257.
689	61.	Pedersen BS, Quinlan AR. 2018. Mosdepth: quick coverage calculation for genomes and
690		exomes. <i>Bioinformatics</i> 34:867-868.
691	62.	Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL,
692		Rebelo AR, Florensa AF, Fagelhauer L, Chakraborty T, Neumann B, Werner G, Bender JK,
693		Stingl K, Nguyen M, Coppens J, Xavier BB, Malhotra-Kumar S, Westh H, Pinholt M, Anjum
694		MF, Duggett NA, Kempf I, Nykäsenoja S, Olkkola S, Wieczorek K, Amaro A, Clemente L,
695		Mossong J, Losch S, Ragimbeau C, Lund O, Aarestrup FM. 2020. ResFinder 4.0 for predictions
696		of phenotypes from genotypes. <i>Journal of Antimicrobial Chemotherapy</i> 75:3491-3500.
697	63.	Juan C, Macia MD, Gutierrez O, Vidal C, Perez JL, Oliver A. 2005. Molecular mechanisms of β -
698		lactam resistance mediated by AmpC hyperproduction in <i>Pseudomonas aeruginosa</i> clinical
699		strains. Antimicrob Agents Chemother 49:4733-8.
700	64.	Kong KF, Aguila A, Schneper L, Mathee K. 2010. Pseudomonas aeruginosa beta-lactamase
701		induction requires two permeases, AmpG and AmpP. <i>BMC Microbiol</i> 10:328.

702 703	65.	Tomás M, Doumith M, Warner M, Turton JF, Beceiro A, Bou G, Livermore DM, Woodford N. 2010. Efflux pumps, OprD porin, AmpC beta-lactamase, and multiresistance in <i>Pseudomonas</i>
704		aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother 54:2219-24.
705	66.	Purssell A, Poole K. 2013. Functional characterization of the NfxB repressor of the mexCD-
706		oprJ multidrug efflux operon of Pseudomonas aeruginosa. Microbiology (Reading) 159:2058-
707		2073.
708 709	67.	Livermore DM. 1995. Beta-Lactamases in laboratory and clinical resistance. <i>Clin Microbiol Rev</i> 8:557-84.
710	68.	Rehman A, Jeukens J, Levesque RC, Lamont IL. 2021. Gene-gene interactions dictate
711		ciprofloxacin resistance in Pseudomonas aeruginosa and facilitate prediction of resistance
712		phenotype from genome sequence data. Antimicrob Agents Chemother 65:1-15.
713	69.	Clark ST, Sinha U, Zhang Y, Wang PW, Donaldson SL, Coburn B, Waters VJ, Yau YCW, Tullis
714		DE, Guttman DS, Hwang DM. 2019. Penicillin-binding protein 3 is a common adaptive target
715		among Pseudomonas aeruginosa isolates from adult cystic fibrosis patients treated with β -
716		lactams. Int J Antimicrob Agents 53:620-628.
717	70.	Bolard A, Plésiat P, Jeannot K. 2018. Mutations in gene fusA1 as a novel mechanism of
718		aminoglycoside resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents
719		Chemother 62:1-10.
720	71.	Köhler T, Michéa-Hamzehpour M, Henze U, Gotoh N, Curty LK, Pechère JC. 1997.
721		Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of
722		Pseudomonas aeruginosa. Mol Microbiol 23:345-54.
723	72.	Feng X, Zhang Z, Li X, Song Y, Kang J, Yin D, Gao Y, Shi N, Duan J. 2019. Mutations in gyrB play
724		an important role in ciprofloxacin-resistant Pseudomonas aeruginosa. Infect Drug Resist
725		12:261-272.
726	73.	Higgins PG, Fluit AC, Milatovic D, Verhoef J, Schmitz FJ. 2003. Mutations in GyrA, ParC, MexR
727		and NfxB in clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents 21:409-13.
728 729	74.	Dötsch A, Becker T, Pommerenke C, Magnowska Z, Jänsch L, Häussler S. 2009. Genomewide identification of genetic determinants of antimicrobial drug resistance in <i>Pseudomonas</i>
730		aeruginosa. Antimicrob Agents Chemother 53:2522-31.
731	75.	Colque CA, Albarracin Orio AG, Feliziani S, Marvig RL, Tobares AR, Johansen HK, Molin S,
/32		Smania AM. 2020. Hypermutator Pseudomonas aeruginosa Exploits Multiple Genetic
/33		Pathways To Develop Multidrug Resistance during Long-Term Infections in the Airways of
/34		Cystic Fibrosis Patients. Antimicrob Agents Chemother 64.
/35	/6.	Zamorano L, Moya B, Juan C, Oliver A. 2010. Differential beta-lactam resistance response
/36		driven by <i>ampD</i> or <i>ddcB</i> (PBP4) inactivation in genetically diverse <i>Pseudomonds deruginosa</i>
/3/		strains. J Antimicrob Chemother 65:1540-2.
738	//.	Winstanley C, O Brien S, Brocknurst MA. 2016. <i>Pseudomonas deruginosa</i> evolutionary
739		adaptation and diversification in cystic fibrosis chronic lung infections. <i>Trends Microbiol</i>
740	70	24:327-337. Valdarrey AD, Dervela MJ, liméner DA, Marié MD, Oliver A, Betrer D, 2010, Chronic
741	78.	valderrey AD, Pozuelo MJ, Jimenez PA, Macia MD, Oliver A, Rotger R. 2010. Chronic
742		colonization by <i>Pseudomonas deruginosa</i> of patients with obstructive lung diseases: cystic
743		fibrosis, bronchiectasis, and chronic obstructive pulmonary disease. Diagn Wilcrobiol Infect
744	70	UIS 08:20-7.
745	79.	Lee M, Hesek D, Biazquez B, Lastochkin E, Boggess B, Fisher JF, Mobashery S. 2015. Catalytic
746		spectrum of the peniciliin-binding protein 4 of <i>Pseudomonds deruginosa</i> , a nexus for the
/4/ 7/0	<u>00</u>	Muuchon or p-ractam antipiotic resistance. J Am Chem Soc 137:190-200.
748 740	٥U.	van den bossche 5, De broe E, Coenye T, van Braecker E, Crabbe A. 2021. The cystic fibrosis
749	01	Vottorotti L. Dioriot D. Mullor C. El Corch E. Dhon C. Attroc. L. Duoruity A. Llongs C. 2000. Efficient
750	ο1.	unbalance in <i>Resudamende geruginesg</i> isolates from systic fibresis nationts. Antimiscoh
757 757		Agents Chemother 53:1987-97
152		

753	82.	Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S. 2004. A signaling network
754		Preciprocally regulates genes associated with acute infection and chronic persistence in
/55		Pseudomonas aeruginosa. Dev Cell 7:745-54.
756	83.	Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, Pitts B, Stewart PS. 2004.
757		Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70:6188-96.
758	84.	Murphy TF. 2008. The many faces of <i>Pseudomonas aeruginosa</i> in chronic obstructive
759		pulmonary disease. <i>Clin Infect Dis</i> 47:1534-1536.
760	85.	Quale J, Bratu S, Gupta J, Landman D. 2006. Interplay of efflux system, ampC, and oprD
761		expression in carbapenem resistance of <i>Pseudomonas aeruginosa</i> clinical isolates.
762		Antimicrob Agents Chemother 50:1633-1641.
763	86.	Pai H, Kim J, Kim J, Lee JH, Choe KW, Gotoh N. 2001. Carbapenem resistance mechanisms in
764		Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 45:480-4.
765	87.	Fung C, Naughton S, Turnbull L, Tingpej P, Rose B, Arthur J, Hu H, Harmer C, Harbour C,
766		Hassett DJ, Whitchurch CB, Manos J. 2010. Gene expression of Pseudomonas aeruginosa in a
767		mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum. J Med
768		Microbiol 59:1089-1100.
769	88.	Hill D, Rose B, Pajkos A, Robinson M, Bye P, Bell S, Elkins M, Thompson B, MacLeod C, Aaron
770		SD, Harbour C. 2005. Antibiotic susceptibilities of <i>Pseudomonas aeruginosa</i> isolates derived
771		from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. J of Clin
772		Microbiol 43:5085-5090.
773	89.	Kirchner S, Fothergill JL, Wright EA, James CE, Mowat E, Winstanley C. 2012. Use of artificial
774		sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions
775		more relevant to the cystic fibrosis lung. <i>J Vis Exp</i> 64:1-7.

777 Figures

778

789 Figure 2. Differential expression (relative \log_2 fold change) of *Pseudomonas aeruginosa* antimicrobial 790 resistance loci in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) sputa. Gene 791 expression for each locus was first normalised against *rpsL* (ΔC_T); relative expression was then 792 determined by comparing ΔC_{τ} values against sputum from COPD participant SCH10070 (i.e. $\Delta \Delta C_{\tau}$), 793 who was not receiving anti-pseudomonal antibiotics at the time of sputum collection. For 794 participants receiving anti-pseudomonal antibiotics, sputa are denoted by 'Day post-antibiotics' (D) 795 (see Table 1 for details). Error bars, standard deviation. †Participants receiving non-pseudomonal 796 antibiotics at the time of sputum collection.

Table 1. *Pseudomonas aeruginosa*-positive sputa, corresponding derived isolates, disc diffusion profiles across 11 anti-pseudomonal antibiotics, and
 predicted antimicrobial resistance (AMR) phenotypes from whole-genome sequencing (WGS) and culturomic data.

Disease	Sputum ID [†]	Derived isolate ID	며 또 Aminoglycosides		Penicillins		Cephalosporins		FQs	F Qs Polymyxins		Carbapenems		Treatment	WGS variants (AMR phenotype)	Culturomic variants (AMR phenotype; proportion identified)
			АМК	тов	PIP	TZP	CAZ	FEP	СІР	СЅТ	РМВ	IPM	MEM [#]			
CF		SCH10002.S.8	S	S	R			R		S	S	R	S	IV CAZ, MEM, TOB	GyrB S466F (ClPi); OprD W339Ter (MEMr, IPMr); Ftsl R504C (MEMr, IPMr, CAZr; FEPr, TZPr, PIPr)	NalD D187H (100%), PA1259 F273fs (PIPr; 38%), PA3127 loss (100%), GyrB E483D (CIPi;
	SCHI0002 (Day 8)	SCH10002.S.9	R	S	R	R	R	R	I	S	S	R	R	IV CAZ, MEM, TOB	NalD D187H (CIPi, FEPi, CAZi, MEMi, IPMi); PA3127 loss (PIPr)	8%), ParC S87W (CIPr; 10%), PA2198 R33fs (PIPr; 11%), PepA E363fs (PIPr; 14%), FdnH V215fs (PIPr; 12%)
	SCHI0002 (Day 329)	SCH 0002.S.12	R	R	R	R	R	R	I	S	S	S	S	IV CAZ, MEM, TOB	NalD D187H (CIPi, FEPi, CAZi, MEMi, IPMi); PA2326 loss (PIPr, FEPr); PA3127 loss (PIPr)	NaID D187H (100%)
	SCHI0010 (Day 7)	SCH 0010.S.1	R	R	R	R	R	R	R	S	S	R	R	IV CAZ, TOB	FusA1 A555E (AMKr, TOBr); GyrA T83I (CIPr); PA2693 D17fs (PIPr, TZPr, MEMr, FEPr, CAZr); PA2531 A137fs (PIPr); PckA G418fs (PIPr); aac(6')-IIa (TOBr)	Ftsl H394R (61%), FusA1 A555E (100%), GyrA T831 (100%), PA2693 D17fs (100%), PA2531 A137fs (78%)
	SCH10013 (Day 4)	SCH10013.S.2	S	R	S	S	S	—	S	S	S	R	S	IV FOF, MEM	GyrB S466Y (CIPi), ParE A473V (CIPi), PA1942 loss (PIPr), MexE R229fs (CIPs); ant(2'')-la (TOBr)	OprD W6Ter (IPMr, MEMr; 22%), GyrB S466Y (96%), PA1942 loss (51%), PA3093 loss (PIPi; 15%),
		SCHI0013.S.12	R	S	R	S	S	R	1	S	S	R		IV FOF, MEM	GyrB S466Y (CIPi); ParE A473V (CIPi); MexE R229fs (CIPs)	MexE R229fs (100%)

	SCHI0018 (Day 8)	SCH 0018.S.11	S	R	R	1	R	I	S	S	S	S		IV CAZ, TZP, TOB	Not sequenced	ND
	SCHI0030 (Day 0)	SCHI0030.S.1	S	S	S	S	S	I	S	S	S	S	S	Nil	None	ND
	SCHI0030 (Day 6)	SCHI0030.S.2	R	R	R	R	R	R	-	S	S	R	R	IV ATM, TOB	PA1821 loss (PIPr, TZPr); MexF Y37Ter (CIPs); AmpD P42fs (CAZi, PIPi, TZPi, FEPi, IPMi, MEMi); Ftsl R504C (MEMr, IPMr, CAZr, FEPr, TZPr, PIPr); GyrA D87H (CIPr)	ND
	SCHI0030 (Day 13)	SCHI0030.S.3	R	Ι	R	R	R	R	R	S	S	R	R	IV ATM, TOB	AmpD P42fs (CAZi, PIPi, TZPi, FEPi, MEMi, IPMi); OprD G193fs (MEMr, IPMr); MexF Y37Ter (CIPs); Ftsl R504C (MEMr, IPMr, CAZr, FEPr, TZPr, PIPr); GyrA D87H (CIPr)	ND
		SCH10030.S.4	R	R	R	R	R	R	R	S	S	R	R	Nil	NfxB F126fs(CIPr, FEPr)	ND
	3CH10030 (Day 50)	SCHI0030.S.5	S	S	S	S	S	S	S	S	S	S	S	Nil	None	
	SCH10038*	SCHI0038.S.2	—	R	S	S	S	S	S	S	S	S	S	Nil	Not sequenced	AmpG E592fs (100%)
		SCHI0038.S.3	S	S	S	S	S	S	S	S	S	S	S	Nil	AmpG E592fs (CAZs, FEPs, PIPs, TZPs)	
		SCH10038.S.4	S	I	S	S	S	S	S	S	S	S	S	Nil	Not sequenced	
COPD	SCH 0039*	SCHI0039.S.1	S	S	S	S	S	S	S	S	S	S	S	Nil	PA0090 R532_E535delinsQ (TZPr, FEPr, PIPr)	None
	SCHI0050 (Day 3)	SCH 0050.S.1	S	S	S	S	S	S	S	S	S	S	S	Oral CIP	ParC Q405R (precursor; causes CIPr in combination with a <i>gyrA</i> mutation)	ParC Q405R (100%)
	SCH 0065*	SCH10065.S.1	S	S	S	S	S	S	S	S	S	S	S	Oral AZM	None	ND
	SCHI0070 (Day 2)*	SCH 0070.S.1	S	S	S	S	S	S	S	S	S	S	S	Oral AMC	None	ND
	SCHI0109	Not retrieved												Oral CIP and AZM; azathioprine		ND
Control		PAO1	S	S	S	S	S	S	S	S	S	S	S		None	NA

800 Abbreviations: AMK, amikacin; AMR, antimicrobial resistance; ATM, aztreonam; AZM, azithromycin; CAZ, ceftazidime; cDNA, complementary DNA; CF,

801 cystic fibrosis; CIP, ciprofloxacin; CST, colistin; COPD, chronic obstructive pulmonary disease; FEP, cefepime; FOF, fosfomycin; FQ, fluoroquinolones; fs,

- 802 frameshift; I or i, intermediate resistance; IPM, imipenem; MEM, meropenem; PMB, polymyxin B; PIP, piperacillin; R or r, antimicrobial resistant; S or s,
- 803 antimicrobial sensitive; TZP, piperacillin/tazobactam; TOB, tobramycin; AZM, azithromycin; AMC, amoxicillin/clavulanic acid
- 804 [†]Days since commencing antibiotics
- 805 *Not receiving anti-pseudomonal antibiotics at time of sputum collection
- 806 [#]MEM antibiotic resistance profiles were determined using E-TESTs

807

Multiplex	Gene target	AMR target	Fluorophore	Oligo name	Oligo sequence (5'-3')	Optimised concentration (µM)
		DND offlux		mexY-For	AAGAGGACCAGGGCGACTTC	0.20
	mexY	RIND efflux	HEX	mexY-Rev	CTTCAGGGTGGCGAAGATCAT	0.20
		pump		mexY-Probe	TGAAGCCGCCGACCGCA	0.20
		DND offlux		mexB-For	ACCGTGGTCCAGGTGATCG	0.15
	техВ		FAM	mexB-Rev	AGTTACTCTCCGAGGAGATGTAGCG	0.15
1		pump		mexB-Probe	CAGCAGATGAACGGGATCG	0.20
Ŧ				ampC-For	CTTCGACGGCATCAGCCT	0.45
	ampC	β-lactamase	Texas Red	ampC-Rev	CCGATGCTCGGGTTGGA	0.45
				ampC-Probe	CAGATCCGCGACTACTACCGCCAGTG	0.20
		Heusekeesing		rpsL-For	CGACAAGAGCGACGTGCC	0.25
	r psL	ноизекееріпд	Cy5	rpsL-Rev	TTACGCAGTGCCGAGTTCG	0.25
		gene		rpsL-Probe	CATACGCCACGACGTTGCG	0.20
				mexC-For	GTGCTGTTCGAGGCGCAG	0.20
	техС	RND efflux	HEX	mexC-Rev	TCCTGCTGGCTGACCGC	0.20
		pump		mexC-Probe	CTGGATCTTCACCAGCGGCT	0.25
				oprD-For	AAGTGGAGCGCCATTGCA	0.20
2	oprD	Porin	FAM	oprD-Rev	TAGTAGTTGCGGAGCAGCAGGT	0.20
				oprD-Probe	CTGCTGTCTTCGATGAACC	0.20
		DND offlux		mexE-For	TACCTCGGCCTGAGCAGC	0.25
	mexE		Texas Red	mexE-Rev	GTTGACCTGGTTGTCGAGGAAG	0.25
		pump		mexE-Probe	ACGGCAACCCGCACCTG	0.30

808 **Table 2.** Primers and probes designed in this study.

809 Abbreviations: AMR, antimicrobial resistant (allele); cDNA, complementary DNA; RND, resistance-

810 nodulation-division; SNP, single-nucleotide polymorphism; WT, wild-type (allele)

811 *Bolded nucleotides indicate the SNP; underlined nucleotides indicate deliberately incorporated

812 antepenultimate/penultimate mismatches to enhance allele specificity