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 19 

Abstract 20 

Hospitals are burdened with predicting, calculating and managing various cost-affecting 21 

parameters regarding patients and their treatments. Accuracy in cost prediction is further affected 22 

if a patient suffers from other health issues which hinder the traditional prognosis. This can lead 23 

to an unavoidable deficit in the final revenue of medical centers. This study aims to determine 24 

whether machine learning (ML) algorithms can predict cost factors based on patients undergoing 25 

colon surgery. For the forecasting, multiple predictors will be taken into the model to provide a 26 

tool that can be helpful for hospitals to manage their costs which ultimately will lead to operating 27 

more cost-efficiently. . This proof of principle will lay the groundwork for an efficient ML-based 28 

prediction tool based on multicenter data from a range of international centers in the subsequent 29 

phases of the study. With a % MAPE result of 18 – 25.6, our model's prediction showed decent 30 

results to forecast the costs regarding various diagnosed factors and surgical approaches. There 31 

is an urgent need for further studies on predicting cost factors, especially for cases with 32 

anastomotic leakage, to minimize unnecessary costs for hospitals. 33 

 34 

1. Introduction  35 

1.1 Background  36 

Colorectal cancer (CRC)is one of the most prevalent cancers in the world today based on 37 

diagnoses, with about 1.8 million cases being diagnosed and about 0.7 million related deaths 38 

occurring annually. In addition, CRC accounts for 10 % of all newly diagnosed cancers, a 39 

considerable social and economic burden for many nations worldwide (1). One of the treatment 40 

modalities for colorectal cancer is surgery. Surgery is aimed at obtaining an adequate oncologic 41 

resection while re-establishing intestinal continuity. Over time, there have been improvements in 42 

the way the disease is treated. But existing patien comorbidities can limit the surgical procedures. 43 

The time required to prepare patients for surgery and address their comorbidities contribute to 44 

increased surgical costs. However, despite many improvements, significant other complications 45 

still occur during, and especially after, a surgical procedure. To avoid this, the patient is placed 46 

in necessary post-operative care, generally for 5 and 7 days after a surgical operation. Other post-47 

operative risk factors will further add to the surgical cost, but their prediction is very vague due 48 

to the absence of sufficient datasets. These involve performing a colorectal anastomosis, 49 

anastomotic leak, (2), delirium or prolonged ileus (3), other emergency surgeries, longer intra-50 

operative time, and peritoneal contamination  51 

The comorbidities and longer stays result in a cost burden for patients and hospitals. This 52 

is why prediction models are now being updated to determine the costs for anastomotic 53 

insufficiency. Prediction models are normally used to estimate the probability of achieving a 54 

particular outcome (4). A large number of prediction models have been developed, but only a 55 

small number are used because not all models accurately predict the desired outcome (5). This 56 
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study focuses on developing and validating a multivariable prediction model to predict costs for 57 

patients undergoing colon surgery while considering their stay in the hospital. This will help 58 

determine the cost burden due to variable hospital length of stay (LOS) as well as days spent in 59 

intensive care units (ICU).  The medical context is prognostic in that it is focused on predicting 60 

the cost of overall expenditure involved in colon surgery for the clinical center and the patient.  61 

1.2 Rationale  62 

The rationale for developing and validating the multivariable model is that it will help 63 

accurately predict the costs associated with colon surgery. Accurate prediction will help patients 64 

and practices employeed by the hospital make more informed decisions, as well as aid in policies 65 

enacted by the government. The results that come with the use of the model will also aid in 66 

surgical planning. In short, developing and validating the multivariable model will provide 67 

insight into costs involved in colon surgery. In turn, it will allow revisions in care and help 68 

develop strategies for improved management. Similar studies for prediction purposes have been 69 

conducted in the field of medicine. For example, Musunuri et al. have used machine learning in 70 

the form of artificial intelligence to predict 90-day liver disease mortality. Focused on acute-on-71 

chronic liver failure, they achieved a model with an accuracy of 94.12% and an area under the 72 

curve of 0.915 (6). Hameed et al. wrote about the impact of artificial intelligence on urological 73 

diseases. In their literature review, they have pointed to multiple publications using various 74 

models like support vector machine, nearest neighbour, random forrest, convolutional neural 75 

network or artificial neural networks to predict and classify diseases like prostate cancer, 76 

urothelial cancer, renal cancer or urolithiasis. What differs from those publications and their work 77 

from ours is, that they use a classification model instead of a regression model. The most 78 

important benefit of using a regression model compared to a classification model is that it helps 79 

predict continuous values, whereas classification models try to predict discrete class labels. To 80 

predict the costs associated with colon surgery in an accurate way, a machine learning regression 81 

model is used. Using this approach. We aim to contribute to an existing gap in this field (7). 82 

1.3 Objectives  83 

• To develop prediction models for the final costs in patients based on multiple predictors. 84 

• To test the models in terms of their ability to accurately predict the final costs associated 85 

with colon surgery in patients. 86 

2. Methods  87 

2.1 Overview and Data Collection 88 

Data was extracted from a registry of patients who underwent colonic anastomosis for 89 

various reasons such as tumors, diverticulitis, mesenterial ischemia, iatrogenic or traumatic 90 

perforation, or inflammatory bowel disease (aggregated as “non-tumor”) at the Hospital of 91 

Wetzikon from 1st January 2013 to the 31st December of 2019. No patients were excluded from 92 

the initial data collection. Furthermore, this study was completed based on the transparent 93 

reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) 94 
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statement checklist for prediction model development (8). 95 

Utilizing this data, we developed a machine learning model to predict the costs of colon 96 

surgery. 97 

2.2 Ethical Considerations 98 

The registry data was approved by an institutional review board, where the patients’ 99 

informed consent was waived. The study was registered at [Req 2021-01107]. 100 

2.3 Predictors and Outcome Measures 101 

Recorded variables include Insurance (general/semi-private/private), age, surgical 102 

procedure (Hartmann/left sided hemicolectomy and extended left sided hemicolectomy/ right 103 

sided hemicolectomy and extended right sided hemicolectomy/sigmoid resection), surgical 104 

approach (open/laparoscopic), diagnosis (tumor/non-tumor), final costs (the sum of all cost 105 

factors), length of stay (in days), Intensive care stay (in days), operation time (in minutes), 106 

anaesthesia time (in minutes), ASA-Score (I,II,III,IV), gender (male/female), CCI (Charlson 107 

Comorbidity Index), anastomotic insufficiency and emergent/non-emergent.  The data on the 108 

final cost, which is the sum of all the costs incurred during the stay in hospital for surgery, were 109 

collected in CHF (Swiss Francs). Other cost factors not incorporated since they add up to the final 110 

costs include administrative costs, costs of hospitality, nurse costs, costs of infrastructure, doctor 111 

costs, medical costs, operational costs, anesthesia costs and care costs. 112 

2.4 Model Development 113 

Data was randomly split into two sets, 80% of the data was put into a training set to build 114 

the models and 20% was utilized for a test set to validate the models and assess their performance 115 

internally. The two sets had approximately the same class distribution (Gaussian). The following 116 

14 predictors were chosen to predict the final costs based on regression and clinical insights: age, 117 

gender, insurance, diagnosis, operation, surgical approach, hospitalization, intensive care, 118 

surgical procedure and anaesthesia time, CCI, ASA-Score, anastomotic insufficiency and 119 

emergency surgery (9). 120 

By having variables included, such as the CCI and the ASA-Score, we are able to cover a 121 

large number of diseases that are included in the comorbidity index.  122 

A variety of machine learning models were developed, including generalized boosted 123 

regression, random forest, and decision trees. An interaction depth of 3 and a total number of 500 124 

trees were chosen, as was the type of the random forest and the regression model. The 125 

classification/predictive performance was measured using the mean absolute percentage error 126 

(MAPE), where a result of < 10% is classified as highly accurate, <20% denotes as a good forecast 127 

20%-50% as a reasonable forecast and everything >50% as an inaccurate forecast (10). The MAPE 128 

factor, also known as mean absolute percentage deviation (MAPD), is used for accuracy of a 129 

forecasting prediction. Continuous data are reported as mean ± standard deviation (SD) or 130 

median (interquartile range (IQR)) and categorical data as numbers (percentages). 131 

Hyperparameters were tuned, and the final model was selected based on the MAPE. The final 132 

model chosen was the random forest model based on its superior performance. 133 
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The analysis was carried out using R version 4.0.4. The random forest library was used for 134 

the random forest models, the metrics library used for the calculation of the performance 135 

measurements, the gbm library for the generalized boosted regression models and the rpart 136 

library was used for the other models. 137 

2.5 Deployment 138 

The best performing model will be deployed as a web-based, user-friendly application using 139 

RShiny to predict the final costs, that considers the different cost factors. 140 

 (Accessible via : https://colonsurgerycost.shinyapps.io/Final_Cost/ ). 141 

 142 

3. Results  143 

3.1 Cohort 144 

A total of 347 patients were included in our study. This number consists of all patients from 145 

the center who suffered from the diagnosed factors of section 3 and had to undergo the type of 146 

operations mentioned. The mean age was 67 ± 14 years (range 28-94).  162 (47%) patients were 147 

male and 185 (53%) were female. Tables 1 and 2 provide all baseline variables and their 148 

descriptive statistics. Continuous variables were recorded as mean ± SD (range) in Table 1. 149 

Categorical variables were recorded as numbers (percentage) on Table 2. No missing 150 

values were detected. Table 3 provides the variables' characteristics and descriptive statistics that 151 

are not mentioned in Table 1 or Table 2 and are based on their impact on the final costs.  152 

 153 

Variable Overall (n) Mean (SD) Min Max Range Median (IQR) 
Age 347 67 (14) 28 94 66 68 

Hospital days 347 9 (10) 1 84 83 5 
ICU days 347 1 (5) 0 70 70 0 

Operation time 347 175 (102) 23 1.280 1.257 154 

Anesthesia time 347 119 (90) 45 1.020 997 95 

Final Cost 347 -32.502 (45.650) -52.0591 -7.485 52.8076 -20.011 

CCI 347 4 (3) 0 16 16 3 

Table 1. Variable characteristics for continuous values. 154 

 155 

 156 

 157 

Variable n (%) 
Gender   
Male 162 (47%) 
Female 185 (53%) 
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Insurance  
General 283 (82%) 
Semi-Private 49 (14%) 
Private 15 (4%) 
Diagnosis  
Tumor 162 (47%) 
Non-Tumor 185 (53%) 
Emergency Surgery  
No 331 (95%) 
Yes 16 (5%) 
Operation  
Hartmann`s procedure 19 (5%) 
Hemicolectomy left 16 (4%) 

Extended Hemicolectomy left 6 (2%) 

Hemicolectomy right 82 (24%) 

Extended Hemicolectomy right 6 (2%) 

Sigmoid resection 218 (63%) 
Surgery approach  
Open 153 (44%) 
Laparoscopic 194 (56%) 
Anastomotic insufficiency  
No 331 (95%) 
Yes 16 (5%) 
ASA Score  
I 12 (4%) 
II 184 (53%) 
III 137 (39%) 
IV 14 (4%) 

Table 2. Variable characteristics for categorical values.  158 

 159 

Variable Overall (n) Mean (SD) Min Max Median (Q1, Q3) P-Value 
Insurance 347 -32.502 (45.650) -520.591 -7.485 -20.011 (-28.828, -15.332) 0.643 

General 283 -31.773 (47.490) -520.591 -7.485 -18.433 (-27.464, -14.823)  
Semi-Private 49 -33.495 (27.892) -192.811 -10.919 -22.645 (-40.043, -19.795)  
Private 15 -42.996 (57.232) -241.331 -13.915 -23.979 (-39.017, -18.426)  
Diagnosis 347 -32.502 (45.650) -520.591 -7.485 -20.011 (-28.828, -15.332) 0.842 

Tumor 162 -33.025 (40.120) -298.957 -7.485 -21.129 (-28.294, -15.790)  
Non-Tumor 185 -32.043 (50.098) -52.059 -9.929 -19.155 (-29.688, -14.859)  
Operation 347 -32.502 (45.650) -52.0591 -7.485 -20.011 (-28.828, -15.332) <0.001 

Hartmann 19 -25.479 (20.230) -75.676 -7.485 -18.433 (-24.551, -14.053)  
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Hemicolectomy left 16 -65.777 (91.964) -38.419 -15.045 -32.297 (-70.713, -18.876)  

Extended 

Hemicolectomy left 

6 -11.0698 (20122) -520.591 -13.915 -28.751 (-46.173, -22.338)  

Hemicolectomy right 82 -35135 (39.474) -241.331 -10.665 -22.469 (-35.663, -16.468)  

Extended 

Hemicolectomy right 

6 -65.768 (114.464) -298.957 -13.086 -17.726 (-29.401, -14.799)  

Sigmoid resection 218 -26.613 (23.764) -192.811 -9.379 -18.684 (-25.538, -15.180)  
Surgery approach 347 -32.502 (45.650) -520.591 -7.485 -20.011 (-28.828, -15.332) <0.001 

Open 153 -46.531 (64.486) -520.591 -7.485 -25.989 (-45.758, -18.708)  
Laparoscopic 194 -21.437 (13.486) -91.098 -9.379 -17.275 (-21.765, -14.685)  
Anastomotic 

insufficiency 
347 -32.502 (45.650) -520.591 -7.485 -20.011 (-28.828, -15.332) <0.001 

No 331 -26.051 (20.763) -192.811 -7.485 -19.472 (-27.204, -15.121)  
Yes 16 -165.941 (136.653) -520.591 -27.444 114.158 (225.666, -78.015)  
ASA Score 347 -32.502 (45.650) -520.591 -7.485 -20.011 (-28.828, -15.332) <0.001 

I 12 -20.626 (5.177) -30.208 -14.035 -20.982 (-23.627, -16.212)  
II 184 -23.129 (21.680) -241.331 -7.485 -17.938 (-22.591, -14.515)  
III 137 -38.328 (44.857) -384.159 -10.665 -22.645 (-43.274, -16.997)  
IV 14 -108.844 (140.598) -520.591 -20.280 -53.515 (-79.035, -33.144)  

Table 3. Descriptive statistics based on final costs. 160 

 161 

 162 

3.2 Model Performance 163 

During internal validation, the performance of all three models was tested and stated with 164 

their mean value and their 95% confidence intervals (Table 3). The random forest classifier 165 

provided the highest MAPE for predicting the final costs (21.4). Thus, it was the model with the 166 

best internal validation performance and was subsequently used for predicting costs (11). In 167 

comparison, the decision tree and general boosted regression model displayed results for MAPE 168 

of only 25.5 and 29.7, respectively. Therefore, the average of the MAPE for the final costs is around 169 

21.4 which means that on average, the forecast of this prediction model regarding the final costs 170 

are off by 21.4%. Since a MAPE value of <20% is considered as being “good”, our result is showing 171 

decent results. The percentage of the random forest classifier's variance, which was explained in 172 

the models, varied from 73.81% to 81.05%. Specific feature importance according to the random 173 

forest classifier is displayed as Gini Index in Figure 1, while Figure 2 shows the prediction of the 174 

Random Forest Classifier compared to the actual observed values from the test data set for the 175 

final cost factor.  176 

 177 
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 178 

 179 

Figure 1. Total decrease in node impurities, measured by the Gini index from splitting on the 180 

variable, averaged over all trees.  181 

 182 

In Figure 1, one can see those factors such as LOS and anastomotic insufficiency as well as 183 

intensive care unit stay are the best predictors in our model, which could be explained as being 184 

variables that are often correlated with post-operative complications and thus being more costly. 185 

The factor of hospitalization can be explained as being a good predictor of cost because the overall 186 

costs for a hospital will increase if the patient is not progressing after surgery. The same can be 187 

said about the intensive care unit. For the anastomotic insufficiency cases, it is evident as well 188 

that these complications bare a higher burden on the final costs. Mean decrease in Gini is the 189 

mean of a variable's total decrease in node impurity, weighted by the proportion of samples 190 

reaching that node in each individual decision tree in the random forest. A higher mean decrease 191 

in Gini indicates higher variable importance. In other words, a node impurity is a measure of how 192 

much the model error increases when a particular variable is randomly permuted or shuffled. 193 

Figure 2 indicates that the predicted values are not far off the actual observed values based 194 

on our data set. For most of the observations, our model was able to perform decently in 195 

predicting the final costs. 196 

Figure 3 displays the Bland-Altman plot. The following information can be derived 197 

visually from the diagram: (1) an estimate of the true value on the x-axis (mean) (2) standard 198 

deviation (3) whether and to what extent systematic measurement errors (bias) lead to the 199 

deviations (variability was eliminated by difference formation on y-axis) (4) whether the 200 

deviation of the methods or the dispersion of the deviation depends on the level of the measured 201 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.02.02.22270329doi: medRxiv preprint 

http://en.wikipedia.org/wiki/Gini_coefficient
https://doi.org/10.1101/2022.02.02.22270329


values (5) and whether outliers are present. Based on the plot one can imply that the values are 202 

mostly well distributed and not many outliers occur.  203 

 204 

 205 

Figure 2. Predicted vs. Real observations of the model (Ground Truth). 206 

 207 
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 208 

 209 

Figure 3. Bland-Altman Plot, measured by the difference of both measured values (S1 - S2) plotted on the 210 

Y-axis against the mean value (S1 + S2 /2) on the X-axis. 211 

 212 

 213 

 214 

4. Discussion  215 

 Cost and finances play an increasingly important role in today's healthcare system. It is 216 

imperative that hospitals control their costs more accurately beforehand and estimate the 217 

expenditure so that they do not get into financial difficulties. 218 

Especially in surgery, and specifically colon surgery, this predictive model allows us to better 219 

manage and optimize the process in front of the surgeon and hospital. 220 

 221 

4.1 Interpretation of results  222 

As indicated, in this study, three models were developed and tested. The results show that 223 

random forest has the lowest percentage for all the costs examined on MAPE.  224 

The lowest MAPE percentage for the random forest model indicates that this model is the 225 

most accurate at predicting costs associated with surgeries compared to the other two models 226 
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examined. Typically, MAPE is a measure of error. It is used to measure the accuracy of a forecast 227 

(12). In calculating MAPE, the difference between the actual value and the forecast value is 228 

determined and expressed as a percentage. This means that if the difference between the actual 229 

value and the forecast value is small, the percentage is small (13). On the other hand, if the 230 

difference between the actual value and the forecast value is large, MAPE percentage is large. 231 

This implies that a small MAPE percent is an indication of the forecast value being near the actual 232 

value. In other words, the forecast value is more accurate (14). In the case of the three models, 233 

since the random forest model had the lowest MAPE percent value for all the costs compared to 234 

the other models considered, it is the most effective model in predicting the cost.  235 

Why is Random Forest the most effective predictive model compared to the decision tree 236 

and generalized boosted regression models? This question can be answered by examining the 237 

model. The random forest model is a machine learning technique that is used to solve 238 

classification and regression problems (15). This model uses ensemble learning, a technique that 239 

combines many classifiers to obtain solutions to complex problems. A random forest algorithm 240 

comprises of multiple decision trees. The forest that is generated by the algorithm is trained 241 

through bootstrap aggregating or bagging (16). Bagging is a meta-algorithm that improves the 242 

machine learning algorithms’ accuracy.  243 

The random forest algorithm establishes the result from the predictions of decision trees. 244 

It predicts by taking the mean of the prediction output of the various trees (17). This implies that 245 

the predicted outcome by the algorithm becomes more accurate when the number of decision 246 

trees is increased.  247 

One of the features of the random forest model that makes it more accurate in predicting 248 

cost outcomes, is it reduces the overfitting problem normally experienced when using the 249 

decision tree model. As indicated, the model uses an ensemble learning method based on bagging 250 

(15, 18). In other words, the model creates many decision trees and then considers the outcomes 251 

of all the trees in its final prediction, enhancing the accuracy of the prediction by the model.  252 

However, despite the higher accuracy of the random forest model when compared to the 253 

decision tree and generalized boosted regression models, the model does not have the highest 254 

possible accuracy when considered alone. Normally, when examining the accuracy of a 255 

prediction using MAPE, the result of less than 10% is considered highly accurate. A MAPE score 256 

of less than 20% denotes a good forecast, while that between 20 and 50% is considered a 257 

reasonable forecast (12). Looking at the results, it shows that the random forest model gives 258 

mostly reasonable forecasts rather than accurate forecasts. The model gave an outcome of over 259 

20% when analyzed using the MAPE. This means that while it is the most accurate model when 260 

compared to the other models, when considered alone, it has only considerable accuracy and it 261 

does not accurately predict the cost incurred. 262 

A number of similar studies have been carried out on the random forest model in terms of 263 

its accuracy in predicting outcomes. For example, Mei et al. (2014) examined the prediction 264 

accuracy of the random forest model when applying real-time forecasting of the New York 265 

electricity market (18). In reviewing the model's prediction accuracy, its results were compared 266 
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to that of the auto-regressive-moving-average model and an artificial neural network model. It 267 

was established that the random forest model exhibited a lower MAPE value. The results in the 268 

study by Mei et al. (2014) are similar to those of this study which also show that the random forest 269 

model has a higher level of making fewer mistakes by predicting when compared to other studies 270 

(18). However, the shortcoming of the study by Mei et al. (2014) is it compares the random forest 271 

model to only two other models. This does not provide adequate insight into the model's 272 

prediction accuracy (18). A comparison with additional models would have helped determine 273 

whether the random forest model was the most accurate prediction model or if others were more 274 

accurate.  275 

Another similar approach to comparing algorithms was made by Xu et al. (2021), which 276 

developed and tested an accurate prediction model based on the random forest classification 277 

algorithm (19). They evaluated the prediction for inland water quality. To evaluate the 278 

performance of the model, the researchers compared it to other models: multilayer perceptron, 279 

SVR (support vector regression), KNN (K-Nearest Neighbor), ridge regression, gradient boosting 280 

regression, bagging and decision tree. It was established that the random forest-based prediction 281 

model had the highest level of accuracy when compared to all the other prediction models 282 

examined. This implies that random forest provides the most accurate outcomes when used for 283 

prediction. The results in the study by Wang et al. (2020) align with those of this study since it 284 

was also established that the random forest model is the most accurate compared to other models. 285 

The study by Wang et al. (2020) provides better insight into the accuracy of the random forest 286 

model because it compared it to multiple models (19). It is an indication that the random forest 287 

model is one of the most accurate prediction models that can be used to predict costs for surgery.  288 

Lastly, the results are in line with those of Toqué et al. (2020), who also established that the 289 

random forest model has a higher accuracy compared to other models (20). In the study, Toqué 290 

et al. (2020) built and tested machine learning models for forecasting the Montreal subway smart 291 

card entry logs using event data to find an optimal model that accurately predicts the number of 292 

incoming passengers at each station of a transportation network (20). The prediction models were 293 

random forest, gradient boosting decision trees, artificial neural networks and kernel-based 294 

models, including a support vector regressor and a gaussian process (20). The results showed that 295 

all the random forest models performed best using RMSE for the evaluation, and did decent using 296 

MAPE and MAE. 297 

The results in this study show that all the models have reasonable accuracy as the MAPE 298 

for each of all the costs highlighted is below 50%. This means that all of the models can be used 299 

to predict the costs to some level of accuracy. However, when compared it can be seen that the 300 

random forest model is a more accurate predictor. These results are evident in similar studies 301 

showing that the random forest model is a more accurate prediction model.  302 

4.2 Implications  303 

One of the implications of the results is that hospitals and other concerned parties can 304 

employ the random forest model to forecast costs not only for colon surgery but also the costs of 305 

other risks and conditions mentioned previously. This work lays the foundation for further work 306 
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and research in this area. This will allow for better financial calculations for hospitals. Through 307 

such a predictive model, it is possible to better estimate medical costs, which is especially 308 

important when factors such as LOS in the hospital and ICU as well as complications such as 309 

anastomotic insufficiency can have a large financial impact on the high cost. The results show 310 

that the random forest model provides more accurate predictions compared to other models like 311 

generalized boosted regression and decision tree models. It means that for concerned parties to 312 

achieve more accurate results when predicting the costs of conditions or any other outcome, the 313 

random forest model should be employed.  314 

Another implication is that there is a need for further research about the model in terms of 315 

enhancing the accuracy of the random forest model. The results show that for the final costs 316 

examined, the accuracy is more than 20%. This is only reasonable accuracy. However, it is way 317 

before the desired value. As indicated, the MAPE value of less than 20% is an indication of a good 318 

forecast, while that of less than 10% shows that the forecast is highly accurate. While achieving a 319 

highly accurate forecast is unlikely, any good prediction model should give a good forecast. With 320 

the random forest model being the most accurate model, this implies that it should be developed 321 

further to improve accuracy as to give more credible results when used to predict outcomes, 322 

meaning further research is needed on the model.  323 

Despite the good implications and the wide range of applications, the ethical aspect should 324 

not be ignored. Naik et al. have shown in their work that there are currently no well-defined 325 

guidelines when it comes to treating people with an application such as this. They mention that 326 

transparency must be created when working with such algorithms. Furthermore, weaknesses 327 

such as cyberattacks and privacy invasion should not be ignored if you want to advance this field 328 

and research (21). 329 

4.3 Limitations of the study  330 

The main limitation of the study is a lack of a representative sample. In this case, the focus 331 

was on patients undergoing colon surgery. However, in the sample dataset, only 347 individuals 332 

met this criterion. This implies that the sample was not selected in the manner that made it 333 

representative of patients undergoing colon surgery. The larger the dataset, the more accurate the 334 

results are. However, the limited number of individuals with common reasons for higher costs 335 

implies that it was not possible to effectively test the developed models in terms of their ability 336 

to predict costs associated with the disease. For such models, there is a need for adequate and 337 

detailed data to ensure they are tested thoroughly. Additionally, an overall increase in the sample 338 

size could result in more precise models by looking at the values in Table 4. Especially the events 339 

per predictor should be bigger. 340 

 Table 4. Internal validation performance for the 3 developed models 341 

Classifier MAPE (%) Final Costs 

Random Forest 21.4 (17.2-26.8) 
Decision Tree 25.2 (21.4-26.3) 

Generalized Boosted Regression 29.7 (25.2-34.2) 
Note: Scores Reported as Mean (95% Confidence Interval)  342 
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5. Conclusion 343 

 Post-operative complications such as anastomotic insufficiency, ICU or hospital LOS 344 

increase the cost burden for patients and hospitals. Also, preoperative conditions like CCI 345 

increase cost.  However, there is no way of predicting these costs so that a patient or healthcare 346 

system can prepare adequately to handle the condition. This study thereby aimed to develop and 347 

validate a prediction model to accurately predict cost and develop strategies to eliminate or cover 348 

them. Out of the three tested models, the results obtained based on MAPE analysis showed that 349 

the random forest model is the most accurate. Therefore, the results imply this model should be 350 

adopted for prediction. However, the fact that MAPE results were mostly over 20% means that 351 

further research should be undertake on improving its accuracy.  352 

  353 
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