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Abstract 17 
Genome-wide association studies (GWAS) have linked hundreds of loci to cardiac diseases. 18 

However, in most loci the causal variants and their target genes remain unknown. We developed 19 

a combined experimental and analytical approach that integrates single cell epigenomics with 20 

GWAS to prioritize risk variants and genes. We profiled accessible chromatin in single cells 21 

obtained from human hearts and leveraged the data to study genetics of Atrial Fibrillation (AF), 22 

the most common cardiac arrhythmia. Enrichment analysis of AF risk variants using cell-type-23 

resolved open chromatin regions (OCRs) implicated cardiomyocytes as the main mediator of AF 24 

risk. We then performed statistical fine-mapping, leveraging the information in OCRs, and 25 

identified putative causal variants in 122 AF-associated loci. Taking advantage of the fine-26 

mapping results, our novel statistical procedure for gene discovery prioritized 45 high-confidence 27 

risk genes, highlighting transcription factors and signal transduction pathways important for heart 28 

development. We further leveraged our single-cell data to study genetics of gene expression. An 29 

unexpected finding from earlier studies is that expression QTLs (eQTLs) are often shared across 30 

tissues even though most regulatory elements are cell-type specific. We found that this sharing is 31 

largely driven by the limited power of eQTL studies using bulk tissues to detect cell-type-specific 32 

regulatory variants. This finding points to an important limitation of using eQTLs to interpret 33 

GWAS of complex traits. In summary, our analysis provides a comprehensive map of AF risk 34 

variants and genes, and a general framework to integrate single-cell genomics with genetic studies 35 

of complex traits. 36 

 37 
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Introduction 38 

Cardiac diseases are a leading cause of mortality across the world1,2. GWAS of cardiac traits have 39 

uncovered a large number of associations, such as >100 loci linked to atrial fibrillation (AF)3–7. 40 

However, in most loci the disease-driving causal variants and risk genes remain unknown due to 41 

several common challenges. Most trait-associated variants are located in non-coding regions with 42 

possible regulatory effects8 and studies have highlighted enrichment of risk variants in cis-43 

regulatory elements (CREs) in trait-related cell and tissue types8–10. Existing disease-related 44 

regulatory and epigenomic datasets, however, were often collected from bulk tissue samples that 45 

represent complex mixtures of cell types11,12. A lack of cell type-resolved epigenomic data thus 46 

limits our ability to interpret regulatory effects of variants. Even with comprehensive epigenomic 47 

maps, extensive linkage disequilibrium (LD) in the human genome hinders identification of causal 48 

variants in trait-associated loci. Additionally, non-coding variants are not easily associated with 49 

their target genes because of pervasive long-range gene regulation. Together, these challenges 50 

make it difficult to translate GWAS associations into molecular mechanisms.  51 

    To address these challenges in the context of heart diseases, we developed an integrated 52 

framework that unifies advances in single cell epigenomics, computational fine-mapping and a 53 

novel procedure for risk gene discovery. Specifically, we performed single-cell chromatin 54 

accessibility profiling to map CREs across major cell types in the heart. Our statistical fine-55 

mapping method utilizes the CRE maps to infer disease-relevant cell types and takes advantage of 56 

such information to identify putative causal variants. Our novel gene-mapping approach then 57 

aggregates information of all fine-mapped SNPs to predict the risk genes, considering multiple 58 

sources of information such as distance and chromatin loops between enhancers and promoters. 59 

Application of this framework to AF revealed a number of putative risk variants and genes, 60 

highlighting biological processes important to the genetics of AF.  61 

    Motivated by our success in studying genetics of heart diseases, we took advantage of our single-62 

cell genomics data to study genetics of gene expression, i.e., expression QTLs (eQTLs). By linking 63 

genetic variants with gene expression, eQTLs help annotate the regulatory effects of variants and 64 

have been used as key resources for interpreting GWAS findings13,14. An unexpected finding from 65 

eQTL studies is that eQTLs from diverse tissues show a high degree of sharing15,16, despite cell 66 

type specificity of most CREs17. This finding is important, as it suggests the possibility that current 67 

eQTL studies may provide limited information for studying diseases, which are generally specific 68 
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to certain tissues or organs. Indeed, it was estimated that eQTLs from bulk gene expression may 69 

explain only 10-20% of disease heritability18. It has been difficult to resolve the puzzle of eQTL 70 

tissue sharing, largely due to the lack of cell-type information for identified eQTLs from bulk 71 

tissue samples. Taking advantage of our data, we were able to assign cell types to many heart 72 

eQTLs. Our analysis suggests two key factors for explaining high tissue-sharing of eQTLs, the 73 

sharing of cell types across tissues and the low sensitivity of bulk eQTL studies in detecting cell-74 

type specific regulatory effects.   75 

 76 

Results 77 

Overview of the experimental and computational approach. Our approach combines single-78 

cell genomics with novel computational procedures to study genetics of cardiac traits (Fig. 1). 79 

Using single nucleus RNA-sequencing19–21 (snRNA-seq) and single cell ATAC-seq (scATAC-80 

seq)22,23, we obtained transcriptome and open chromatin regions (OCRs) across all major cell types 81 

in the adult human heart (Fig. 1, step 1). These OCR profiles allow us to discover cell types 82 

enriched with the genetic risks of traits of interest. To identify specific causal variants in trait-83 

associated loci, we performed Bayesian statistical fine-mapping, a common strategy that uses 84 

GWAS statistics as well as LD patterns to infer likely causal variants driving association signals24. 85 

Compared to standard fine-mapping, our method assigns prior probabilities to favor variants 86 

located in OCRs of enriched cell types (Fig. 1, step 2). The use of functionally informed prior has 87 

been shown to improve the accuracy of fine-mapping9,25,26. We believe this is particularly 88 

advantageous with single-cell data. Indeed, compared to OCRs from bulk tissues which include a 89 

mixture of all cell types, the OCRs in disease-relevant cell types would be particularly enriched 90 

with genetic signals. After fine-mapping, the candidate SNPs and their associated cell-type 91 

information allow us to assign the cell type(s) through which the causal variants are likely to act 92 

across disease-associated loci.  93 

    Finally, we developed a procedure to infer causal genes at each locus (Fig. 1, step 3), addressing 94 

some common challenges. In “gene association tests”, researchers test if the set of SNPs near a 95 

gene collectively show disease association27,28. These types of methods, however, cannot 96 

distinguish between multiple genes close to disease-associated variants. Alternatively, researchers 97 

may perform fine-mapping first, then link the high-confidence SNPs to target genes using 98 

additional information. However, fine-mapping alone rarely leads to a single, or even a few, high 99 
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confidence SNPs at associated loci29, therefore this approach also has limited utility. In contrast, 100 

our procedure is directly informed by variant fine-mapping, but instead of considering only high-101 

confidence SNPs, it aggregates information of all fine-mapped ones in a locus. To see its benefit, 102 

suppose fine-mapping in a locus implicates 10 putative causal variants without any single one 103 

reaching high confidence; however, if all 10 SNPs likely target the same gene, we still achieve 104 

high-confidence at the gene level. To implement this idea, our procedure partitions the evidence 105 

of a SNP being causal variant into nearby genes, with its likely target genes receiving larger 106 

evidence. The information is then aggregated across all SNPs to produce gene level evidence. The 107 

details are described below (Fig. 5a) and in Methods.  108 

 109 

Single-cell transcriptome and chromatin accessibility profiling reveals multiple cell types in 110 

the human heart. We performed snRNA-seq and scATAC-seq using the Chromium platform 111 

(10x Genomics) (Fig. 1, step 1). The heart samples were obtained from the left and right ventricles 112 

(LV and RV), the interventricular septum, and the apex of three adult male donors (Supplementary 113 

Table 1). After quality control, we retained data of 49,359 cells in snRNA-seq and 26,714 cells in 114 

scATAC-seq, respectively (Extended Data Fig. 1 and 2).  115 

     We characterized cell populations with clustering analysis in both snRNA-seq and scATAC-116 

seq datasets. From snRNA-seq30, we identified eight major cell types based on marker genes and 117 

comparison to published single-cell heart atlas data20 (Fig. 2a, left), with ~70% of cells from 118 

cardiomyocytes (CMs), fibroblasts, and endothelial cells. Clustering based on scATAC-seq data31 119 

revealed similar cell populations (Fig. 2a, right). To match the clusters identified by both 120 

technologies, we computationally transferred cluster labels from snRNA-seq onto scATAC-seq 121 

clusters30 (Methods) and unambiguously identified matching cell types (Extended Data Fig. 3a, b). 122 

Indeed, expression and chromatin accessibility near marker genes showed high cell-type 123 

specificity (Fig. 2b, c). Across the eight clusters, gene scores inferred from scATAC-seq, a metric 124 

that summarizes the chromatin accessibility near a gene31 (Methods), were highly correlated with 125 

transcript levels in the matched clusters (Extended Data Fig. 3c). These results supported the cell-126 

type assignments in both modalities.  127 

 128 

Analysis of scATAC-seq data identifies cell-type-specific regulatory elements and their 129 

regulators. We pooled cells of the same cell type and identified OCRs separately in each cell type. 130 
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Combining samples of the same cell type (Extended Data Fig. 4a, b), we detected 45,000-150,000 131 

OCRs per cell type (Extended Data Fig. 4c) yielding a union set of 352,904 OCRs. K-means 132 

clustering of these regions based on their accessibility suggested that most OCRs are active in 133 

specific cell types (Fig. 3a). Using differential accessibility (DA) analysis, we identified 173,782 134 

(49%) OCRs with cell-type-specific accessibility (Methods). We divided the remaining 179,122 135 

(51%) OCRs into three categories based on their detection across cell types: shared in 2-3 cell 136 

types, shared in >=4 cell types (denoted as Shared 2-3 and Shared 4), and remaining ones, denoted 137 

as “non-DA OCRs”, which mostly comprise peaks with low read counts (Methods). In agreement 138 

with previous observations, shared OCRs were enriched in promoter regions32 (Fig. 3b, c). 139 

    We compared our OCRs to regulatory regions identified in bulk samples from multiple tissues 140 

in ENCODE12. As expected, a large fraction of OCRs from major heart cell types (e.g., CMs, 141 

endothelial, fibroblasts) overlapped with DNase Hypersensitive sites (DHS) from the ventricles 142 

(Fig. 3d, top). In contrast, smaller proportions of OCRs from rare cell types (e.g., myeloid) 143 

overlapped with bulk DHS, suggesting higher sensitivity of detecting regulatory elements in rare 144 

cell types by scATAC-seq (Fig. 3d, top, Extended Data Fig. 4d). Additionally, 60-80% of OCRs 145 

from major cell types overlapped with H3K27ac regions from LV and RV, suggesting enhancer 146 

activity (Fig. 3d, bottom). Together, these results showed that scATAC-seq identified cell-type 147 

specific regulatory elements.  148 

    Chromatin accessibility is largely controlled by lineage-specific transcription factors (TFs)33. 149 

To identify these TFs, we assessed the enrichment of TF motifs in OCRs specific to each cell type 150 

and identified 260 significantly enriched motifs (Methods). Because TFs of the same family may 151 

share similar motifs, we performed additional analysis to infer the exact TFs driving the 152 

enrichment, assuming that for these TFs, their motif enrichment should correlate with gene 153 

expression across cells. To test this, we correlated motif accessibility scores of TFs calculated by 154 

chromVar34 with their accessibility-derived gene scores, a proxy of gene expression31 (Methods). 155 

This analysis yielded 76 TFs with enriched motifs and correlation > 0.5 (Fig. 3e, Supplementary 156 

Table 2). Many of these TFs are cell type-specific (Fig. 3e) and include known CM regulators, 157 

such as TBX5, GATA4, and MEF2A35 (Fig. 3f). These results provided a compendium of putative 158 

transcriptional regulators across major cell types in the human heart.  159 

 160 
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Open chromatin regions in CMs are enriched with risk variants of heart diseases and inform 161 

statistical fine-mapping. Using our cell-type-resolved OCRs, we assessed the contribution of 162 

different cell types to genetics of heart-related traits36. Risk variants from GWAS of two cardiac 163 

traits, AF and PR interval, were almost exclusively enriched (>10-fold) in OCRs from CMs (Fig. 164 

4a). In contrast, variants of cardiovascular traits, CAD and blood pressure, were enriched across 165 

multiple cell types (Fig. 4a). As control, non-cardiovascular traits showed little or no enrichment 166 

in heart cell types (Fig. 4a). These results suggested distinct cell type origins of different heart-167 

related traits, highlighting CMs as the main cell type underlying AF and PR interval.  168 

    This observation motivated us to statistically fine-map causal variants in 122 approximately 169 

independent AF-associated loci37. Our procedure favors putatively functional variants in protein-170 

coding regions, conserved sequences, and OCRs in CMs (Extended Data Fig. 5a, Methods)38. 171 

Compared to fine-mapping that treats all variants equally (uniform prior), this procedure increased 172 

the number of high-confidence risk variants. In total, we identified 54 variants whose probabilities 173 

of being causal variants, denoted as Posterior Inclusion Probabilities (PIP), are 0.5 or higher, 174 

compared with 39 at PIP >= 0.5 under the uniform prior (Fig. 4bc, Supplementary Table 3). Across 175 

122 loci, our procedure narrowed down putative causal variants to 5 or fewer SNPs in 48 loci (Fig. 176 

4d).  177 

     The fine-mapping results inform how the risk variants are partitioned into various functional 178 

categories, such as exons and OCRs in different cell types. The sum of PIPs of all SNPs assigned 179 

to a category can be interpreted as the expected number of causal variants in that category. We 180 

found that >40% of causal signals are from OCRs and 25% of signals from CM-specific OCRs, 181 

highlighting the key role of CMs in AF (Fig. 4e). As expected, exons and UTRs explain only 4% 182 

of causal signals.  183 

    The same PIP summation approach can also be applied to each locus, with the PIP sum of a 184 

functional category, e.g., OCRs or exons, now interpreted as the probability that the causal variant 185 

in that locus falls into that category. Using this approach, we estimate that at nearly half of all loci, 186 

causal variants have >50% probability to localize to OCRs (Fig. 4f). Further partitioning of OCRs 187 

into cell-type-level categories (Fig. 3b), we identified 31 loci where the causal signals almost 188 

entirely (>90%) come from CM-OCRs (Fig. 4g). Interestingly, in three loci, the most likely cell 189 

types are fibroblast or immune cells, respectively, based on OCR annotations (Fig. 4g, 190 

Supplementary Table 4). For example, at one locus (chr17:36809344-38877404), lymphoid OCRs 191 
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explain 56% causal signal and the most likely target gene is IKZF3 (see our gene mapping results 192 

below), a TF involved in the regulation of lymphocyte development39. In another locus 193 

(chr17:7317398-8306425), myeloid OCRs explain 53% causal signal, with the most likely gene 194 

being TNFSF13, another gene with immune functions40. Together these results highlighted that 195 

our approach can identify cell type contexts of individual loci, including the cell types missed by 196 

enrichment analysis.           197 

     198 

Fine-mapped variants are supported by regulatory annotations and experimental validation. 199 

We characterized the regulatory functions of 54 specific variants at PIP >= 0.5. The majority 200 

(31/54) were located in CM-OCRs (Fig. 4h, Supplementary Table 3). 57% (31/54) of all variants 201 

and 87% (27/31) of variants in CM-OCRs overlapped H3K27ac marks in the heart, suggesting 202 

enhancer activities (Fig. 4h). 37% of variants (20/54) overlapped with fetal DHS12, suggesting that 203 

these variants may act across fetal and adult stages (Fig. 4h). Additionally, 24% of variants were 204 

linked to promoters through chromatin loops in Promoter-capture HiC (PC-HiC) from iPSC 205 

derived CMs41 (Fig. 4h). Using mouse ChIP-seq datasets of three key cardiac TFs (GATA4, TBX5, 206 

NKX2-5)35, we found that five candidate variants are located in human orthologous regions of TF 207 

binding sites, representing 7-fold enrichment over expectation by chance (Extended Data Fig. 5b). 208 

We also found that 22% (12/54) SNPs alter binding motifs (Fig. 4h) of one of the 76 TFs we 209 

identified as likely transcriptional regulators in heart cell types (Fig. 3e). Together, these results 210 

supported regulatory functions of many fine-mapped variants.  211 

    We experimentally tested six non-exonic variants with PIP > 0.95 that were located inside CM-212 

OCRs and overlapped with putative enhancers marked by H3K27ac or H3K4me1/3 (Fig. 4i, 213 

Supplementary Table 5). Four out of six variant-containing OCRs induced reporter gene 214 

expression in mouse HL-1 cells42,43 (Extended Data Fig. 6a, Methods), but not  in a fibroblast line 215 

(3T3), suggesting cell-type-specific activity of the four OCRs (Extended Data Fig. 6b). Three out 216 

of these four variants showed allelic changes of reporter activities in HL-1 cells, for at least one 217 

alternative allele (Fig. 4i). The most striking effect was observed for rs7172038. Two alternative 218 

alleles of this SNP (A and G) strongly reduced activation. The enhancer containing this SNP 219 

interacts with the promoter of HCN4 located about 5 kb away, according to Activity-by-Contact 220 

(ABC) score44 (Supplementary Table 3). HCN4 is a well-known AF risk gene and is 221 

physiologically implicated in cardiac rhythm control45. Consistent with these results, deletion of a 222 
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syntenic 20 kb region in mice containing this enhancer significantly reduced the expression of 223 

HCN446. Notably, in two out of three SNPs with allelic effects, the use of functional information 224 

in fine-mapping significantly boosted their PIPs to >= 0.95 (PIP = 0.36 for rs7172038 and 0.39 for 225 

rs1152591 under the uniform prior). These experimental results supported regulatory functions of 226 

our high confidence variants.  227 

    In principle, we expect regulatory variants to affect transcript levels of target genes. Using GTEx 228 

eQTL data from the left ventricle (LV), we found that only 29% (16/54) variants are eQTLs 229 

(Supplementary Table 6). And only in three cases, the eQTLs showed plausible evidence of 230 

colocalization (PP4 > 0.2 using coloc47) with the AF risk (Supplementary Table 6). The small 231 

overlap of fine-mapped variants with heart eQTLs suggests a limitation of bulk eQTL data to 232 

identify regulatory variants, an issue we will address in more detail below.  233 

 234 

A novel computational procedure utilizes fine-mapping results to identify AF risk genes. 235 

Despite our fine-mapping efforts, there remained considerable uncertainty of causal variants in 236 

most loci (Fig. 4d). Even if the causal variants are known, assigning target genes can be difficult 237 

due to long-range regulation of enhancers48. We developed a novel procedure, called Mapgen, to 238 

address these problems (Fig. 5a): (1) For every putative causal SNP, we assign a weight to each 239 

nearby gene, considering multiple ways a SNP may affect a gene. The weight of a gene can be 240 

viewed as the probability with which a particular SNP affects that gene. For a SNP in an exon or 241 

in a regulatory region linked to a particular gene, we assign a weight of 1 to that gene. When a 242 

SNP cannot be linked to any gene in these ways, its target genes are assigned using a distance 243 

weighted function (Fig. 5a, Methods). (2) The PIP of each SNP is then distributed among all 244 

potential target genes according to the weights of these genes. The “fractional PIP” a gene receives 245 

from a SNP can be viewed as the support the SNP provides to that gene. (3) For each gene, we 246 

then sum over the fractional PIPs it receives from all candidate SNPs in the region. The resulting 247 

“gene PIP” approximates the probability of a gene being causal (Methods). Similar to variant-level 248 

fine-mapping, we also define a “credible gene set”, the set of genes that capture the causal signal 249 

at a locus with high probability (Methods).  250 

    We identified 45 genes with gene PIP >= 0.8, and 88 with gene PIP >= 0.5 (Fig. 5b, 251 

Supplementary Table 7, and Table 1 for top prioritized genes). At each locus, we obtained credible 252 

gene sets that captured at least 80% of the causal signal. These credible gene sets contained a single 253 
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gene in 41 out of 122 blocks, and two genes in 32 blocks (Fig. 5c, Supplementary Table 8). The 254 

genes at PIP >= 0.8 included many known AF risk genes such as TFs involved in cardiac 255 

development and atrial rhythm control (e.g. TBX549 and PITX250), ion channels (e.g. KCND251 and 256 

KCNN352), and genes involved in muscle contraction (e.g. TTN).  257 

    We note that a key benefit of Mapgen is that even in the absence of high-confidence causal 258 

variants, it may still identify putative risk genes. In 20 out of 45 genes at PIP >= 0.8, the SNP level 259 

PIPs were diffused, i.e., no single SNP reached PIP >= 0.5 (Supplementary Table 7). As an 260 

example, CAMK2D, an ion channel gene implicated in AF53, was supported by eight SNPs (highest 261 

PIP = 0.43), all likely targeting CAMK2D. This led to a gene level PIP = 0.996 (Extended Data 262 

Fig. 7a, Supplementary Table 3). This observation thus highlighted the advantage of aggregating 263 

information from all putative causal variants. 264 

    We compared the Mapgen results with those of three common approaches for nominating target 265 

genes: closest proximity to risk SNPs, chromatin conformation that links variant-containing 266 

enhancers to target promoters, and eQTL analysis. 267 

    We first assessed the distance between supporting SNPs and their predicted target genes. Among 268 

the 45 genes at PIP >= 0.8, six (15%) were not the nearest genes to the top GWAS SNPs: ETV1, 269 

TAB254, FGF9, PLN55,56, CALU57 and DBX1. All except DBX1 have previously described impact 270 

on cardiovascular physiology or rhythm (Supplementary Table 9). For example, ETV158,59, a TF 271 

important in heart development60 has been recently implicated in atrial remodeling and AF59. 272 

FGF9 is supported by rs9506925 (SNP PIP 0.76) which is linked, via PC-HiC, to the FGF9 273 

promoter 1 Mb away (Fig. 5d). FGF signaling and specifically FGF9 have been implicated in 274 

muscle/heart development and diseases61,62. Another important difference between Mapgen and 275 

the common practice of choosing the nearest genes is that the latter always chooses a single 276 

candidate in a locus but does not quantify the uncertainty. For instance, rs1152591 had a PIP of 277 

0.96, yet it contacts the promoters of four genes in PC-HiC. Two of these genes appear plausible 278 

from external evidence (SYNE263,64 and AKAP565,66), but neither is nearest to the SNP (Extended 279 

Data Fig. 7b, Supplementary Table 3). Our gene PIPs reflect this uncertainty: all four genes had 280 

gene PIP ~0.25. Together, these results show the limitations of assigning nearest genes as targets 281 

and suggest that a probabilistic approach incorporating multiple sources of information is 282 

preferable.   283 
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    We also considered the use of chromatin conformation in resolving target genes of high PIP 284 

SNPs. We found that while chromatin looping data were useful, as shown in the FGF9 example 285 

above, using such information alone may miss many potential risk genes. Among 54 SNPs at 286 

PIP >= 0.5, only three showed chromatin interactions with promoters based on ABC scores67, and 287 

14 if we included both ABC and PC-HiC data. Additionally, it is common to observe multiple 288 

chromatin loops at a single SNP. Among the 14 SNPs with chromatin interactions, 64% (9/14) 289 

contact more than one promoter (Supplementary Table 3), highlighting the uncertainty of target 290 

genes from chromatin looping data.  291 

    Use of expression QTLs is another common strategy for linking SNPs to genes. However, as 292 

reported above, few fine-mapped variants colocalized with eQTLs. Even if a GWAS SNP is also 293 

an eQTL, it may not identify the correct target gene. For example, in the TTN locus, the top SNP 294 

(rs3731746) is an eQTL of FKBP7, but the true risk gene is very likely TTN68,69. 295 

    Altogether, these results demonstrated the improved ability of Mapgen to nominate plausible 296 

candidate genes compared to alternative approaches linking SNPs to genes.    297 

 298 

Putative AF risk genes are supported by multiple lines of evidence. We evaluated our candidate 299 

genes using multiple sources of data. Consistent with enrichment of AF variants in CM-OCRs, 300 

candidate genes (PIP >= 0.8) tended to have higher expression in CMs, compared with other genes 301 

in the AF-associated loci (Fig. 5e). Additionally, high PIP genes were enriched in AF-related 302 

Mendelian disorders (Supplementary Table 10) (Fig. 5f). We also compared our genes with those 303 

prioritized by earlier work that used additional functional data such as AF-related gene ontology 304 

and heart gene expression5,70. While such functional data was not used in our analysis, the genes 305 

at PIP >= 0.8 scored on average substantially higher in two earlier studies than low PIP genes 306 

(Extended Data Fig. 8), and 32 of them (71%) were supported by at least one study (Supplementary 307 

Table 7).  308 

    We next assessed the functions of candidate genes using Gene Ontology (GO) and gene 309 

networks71. GO analysis showed enrichment of Biological Processes related to heart development 310 

and cardiac function, and of Molecular Functions such as ion channels, hormone binding and 311 

protein tyrosine kinase (Fig. 5g, Supplementary Table 11). For network analysis, we used the 312 

STRING gene network built with genes at a relaxed PIP threshold of 0.5 (88 genes) to increase the 313 

number of interactions. This analysis highlighted some well-known processes in AF, such as ion 314 
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channels, and structure components of heart muscle (Fig. 5h). A prominent subnetwork consisted 315 

of key TFs, including GATA4, TBX5, NKX2-5 and HAND2, implicated previously in AF genetics 316 

and/or heart development49,72–74 (Fig. 5h). Two other TFs in the network, PITX2 and ZFHX3, are 317 

also well-known AF genes49. Combined with the fact that putative causal variants were enriched 318 

in binding sites of TBX5, NKX2-5 and GATA4 (Fig. 4h, Extended Data Fig. 5b), these results 319 

suggested that perturbation of transcriptional regulatory networks consisting of TFs and their 320 

targets, plays a critical role in the genetics of AF. Additionally, the interaction network highlighted 321 

signal transduction pathways, including MAPK signaling and Ephrin signaling (Fig. 5h). Both 322 

processes are important in heart development75–78. Indeed, 19 out of 88 genes at PIP >= 0.5 were 323 

annotated by the GO term “regulation of intracellular signal transduction” (FDR < 0.02) 324 

(Supplementary Table 12).  325 

    Finally, we found additional literature support for the candidate genes. 37 out of 45 (82%) genes 326 

at PIP >= 0.8 have reported roles in cardiac processes and/or diseases from literature 327 

(Supplementary Table 9). The subset of genes at PIP >= 0.95 with literature support, as well as 328 

their supporting SNPs, were shown in Table 1. The majority of these genes have not been 329 

established as AF risk genes through functional studies, representing novel yet biologically 330 

plausible risk genes.  331 

 332 

Cell-type-specific epigenomes reveal insights to extensive tissue-sharing of bulk eQTLs. 333 

While a large fraction of fine-mapped AF SNPs fell inside CM-specific OCRs (Fig. 4e), most of 334 

them did not colocalize with heart eQTLs (Supplementary Table 6). This observation is consistent 335 

with previous findings that only a small proportion of GWAS variants or heritability are explained 336 

by eQTLs18,79. We hypothesized that bulk eQTL studies, which are conducted on bulk tissues 337 

consisting of multiple cell types, may miss the gene regulatory effects of causative variants because 338 

of limited power to detect eQTLs with effects restricted to certain cell types. This hypothesis may 339 

also help explain the puzzling observation that despite the cell-type-specific nature of regulatory 340 

elements, discovered cis-eQTLs are highly shared across tissues16. Cell-type-resolved chromatin 341 

accessibility and transcriptome data allowed us to infer cell-type origins of bulk eQTLs and 342 

provided an opportunity to investigate eQTL tissue-sharing patterns. 343 

    We focused our analysis on 1,216 heart (LV) eQTLs from GTEx where the causal variants have 344 

been fine-mapped to single variants with high confidence (PIP >= 0.8) by the GTEx consortium 345 
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(Supplementary Table 13). We divided these eQTLs into disjoint classes based on eQTL locations, 346 

including exons, UTRs, introns, OCRs in specific cell types, and OCRs shared with varying 347 

numbers of cell types. These categories suggested possible cell-type origins of eQTLs and allowed 348 

us to compare tissue sharing patterns of different categories, e.g., eQTLs in cell-type-specific 349 

OCRs vs. those in shared OCRs across cell types (see Methods).  350 

    We first confirmed that the majority of eQTLs were highly shared, i.e., found in >30 tissues in 351 

GTEx (Fig. 6a). This high degree of sharing, however, masked heterogeneity across different 352 

categories. While eQTLs falling into OCRs shared in multiple cell types were extensively shared 353 

across tissues (Fig. 6b), eQTLs in cell-type-specific OCRs showed variable levels of sharing. 354 

Fibroblast-eQTLs (eQTLs in fibroblast-specific OCRs) and myeloid-eQTLs were highly shared 355 

(median 25 and 38 tissues, respectively), but most CM-eQTLs were found in <10 tissues (Fig. 6b). 356 

We hypothesized that this variability reflected different degrees of cell type sharing between the 357 

heart and other tissues, with fibroblasts and myeloid cells shared in more tissues and CMs shared 358 

in fewer. To test this, we compared heart eQTLs with those from the brain and whole blood. As 359 

expected, heart eQTLs from immune cell OCRs had the highest sharing with whole blood, while 360 

eQTLs of all heart cell types have low sharing with the brain (Fig. 6c). Together, our results 361 

highlighted considerable variability of tissue sharing patterns of heart eQTLs, depending on their 362 

likely cell-type origins.  363 

    This finding appeared contradictory to the overall high level of tissue sharing of eQTLs. To 364 

understand to understand the basis for this observation, we assessed the proportions of heart eQTLs 365 

in functional categories, focusing on eQTLs in OCRs, whose cell type origins could be inferred. 366 

Unexpectedly, a large proportion of those eQTLs were from OCRs shared in multiple cell types 367 

(Fig. 6d), even though more than half of all OCRs were cell-type-specific (Fig. 3a). To better 368 

understand these results, we compared the proportions of eQTLs in each category with the 369 

proportions of matched random control SNPs (Methods). While eQTLs in OCRs from single cell 370 

types showed 2-9 fold enrichment, those shared with 4 or more cell types showed 26-fold 371 

enrichment (Fig. 6d). Indeed, the enrichment is highly correlated with the number of cell types in 372 

which an OCR is detected (Fig. 6e). We thus concluded that discovered eQTLs are biased towards 373 

those with broad effects across multiple cell types, explaining the overall high tissue-sharing across 374 

eQTLs.  375 
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    We reasoned that this bias towards eQTLs with shared effects, or equivalently, the depletion of 376 

cell-type-specific eQTLs, can be explained by the nature of bulk eQTL studies. When the effect 377 

of an eQTL on a gene is limited to a single cell type, but the gene is expressed in other cell types, 378 

the effect of the variant on the bulk gene expression would be diluted, leading to lower power of 379 

detecting this eQTL. This argument was supported by the observation that gene expression was 380 

less cell-type-specific than accessibility of regulatory elements. In heart eQTLs localized to CM-381 

specific OCRs, the expression of corresponding genes in CMs were only modestly higher than 382 

their expression in other cell types (Extended Data Fig. 9a).   383 

    We performed simulations to investigate the power loss in detecting cell-type-specific eQTLs. 384 

We considered a variant that is an eQTL of a gene in one cell type (“focal” cells). Mathematical 385 

analysis showed that the power of detecting association of this variant with bulk expression 386 

depends on effect sizes of the variant in all cell types, the cell type proportions, and the variance 387 

as well as correlations of gene expression across cell types (Supplementary Notes). Under 388 

simplified assumptions about the variance and correlation of expressions across cell types, and a 389 

cell type mix similar to our heart data, we estimated that, when the focal cells are 30% of the 390 

sample, the power of detecting the eQTL, at sample size 500 and p-value < 1e-3, is about 26-88% 391 

(depending on effect size) of the maximum power; and when focal cell proportion is 20%, reduces 392 

to only 8-40% (Extended Data Fig. 9b, Supplementary Notes).  393 

    In conclusion, our empirical study and power analysis together showed that sharing of cell types 394 

across tissues, and the under-detection of cell-type-specific regulatory variants are two factors 395 

explaining high level of tissue-sharing of bulk eQTLs. The latter factor may also explain the 396 

finding that cis-eQTLs from bulk tissues only mediate 10-20% of disease heritability. Together 397 

our finding points out limitations of current eQTL studies and highlights the need of other 398 

strategies such as single-cell eQTL mapping81. 399 

  400 

Discussion 401 

While GWAS have been successful in a range of complex traits, the causal variants,  their target 402 

genes, and their mechanisms in disease-related cell types have been elucidated in few cases48. In 403 

this work, we established a cell-type-resolved atlas of chromatin accessibility and transcription of 404 

the human heart to study the genetics of heart-related traits, focusing on AF3–5. We statistically 405 

fine-mapped AF-associated loci, and experimentally validated some of the candidate variants. 406 
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Using a novel computational procedure, we identified 45 high confidence genes, implicating key 407 

biological processes, in particular TFs and signaling pathways important for heart development. 408 

Motivated by our observation that the putative AF variants often were not colocalized with eQTLs, 409 

we investigated how heart eQTLs are shared across tissue types. Our analysis suggests that eQTLs 410 

with cell-type-specific effects are under-detected and that this is likely a factor explaining both 411 

high tissue-sharing of eQTLs and the lack of eQTLs in GWAS variants.  412 

    Single-cell epigenomics has been used to aid the genetic studies of several common diseases, 413 

including AF82–85. These studies, however, often aimed to assess the key cell types of diseases of 414 

interest and fell short of comprehensive discovery of disease-causing variants and genes. A unique 415 

strength of our work is that it takes full advantage of the single-cell data to identify candidate risk 416 

variants and genes. Our computational procedure leverages strong enrichment of genetic signals 417 

in CM-specific OCRs to fine-map causal variants, greatly increasing the number of high 418 

confidence SNPs82 (Fig. 4b). Our gene-mapping procedure effectively leverages fine-mapping 419 

results and multiple sources of information linking SNPs to putative targets. This avoids the bias 420 

of previous work that only considers one metric, e.g., distance, to link SNPs to genes, and increases 421 

the sensitivity of detecting risk genes. As a result, we found high confidence genes (PIP >= 0.8) in 422 

more than 1/3 of known AF-associated loci.    423 

    Our set of 45 candidate genes shed light on the genetics of AF. Earlier linkage studies implicated 424 

ion channels and structural proteins, as well as a few TFs86. Our results confirmed these earlier 425 

findings and showed an even larger role of regulatory genes, including TFs and signaling proteins. 426 

In total, we identified 7 TFs with PIP >= 0.8 (Supplementary Table 7), and 18 at PIP >= 0.5. These 427 

included known AF genes, TBX5 (PIP 0.99), NKX2-5 (0.99), PITX2 (0.9), ZFHX3 (0.84) and 428 

GATA4 (0.57), as well as TFs with roles in heart development such as HAND2 (0.87), ZEB2 (0.98), 429 

and PRRX1 (0.74). Our results also highlighted signal transduction pathways, including MAPK 430 

signaling75, Ephrin signaling76–78 (Fig. 5h), G-protein coupled receptor signaling87, Wnt signaling88 431 

(Supplementary Table 11) and FGF signaling61,62 (FGF9, PIP = 0.94 and FGF5 PIP = 0.53), all 432 

previously implicated in heart development.  433 

    Despite the advances described above, our study has a few limitations. Our experimental data 434 

were limited to four anatomical locations of the ventricles, while some AF risk variants might act 435 

through atrial-specific CMs. However, it is worth noting that a recent study, using scRNA-seq 436 

based cellular atlas of the heart including all anatomic locations, found that AF candidate genes 437 
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were strongly enriched in ventricular CMs20. Additionally, our fine-mapping leveraged the almost 438 

exclusive enrichment in CM-specific OCRs (Fig. 4a), and thus may miss variants acting on the AF 439 

risk through other cell types. This possibility is suggested by a small number of candidate variants 440 

showing accessibility specific to fibroblasts (Fig. 4g), known contributors to AF etiology89. 441 

Finally, some disease variants potentially act transiently during development and might be missed 442 

using adult heart samples.  443 

    Our investigation of tissue-sharing patterns of cis-eQTLs found that heart eQTLs located in 444 

OCRs were dominated by those with likely broad effects across cell types (Fig. 6de). This result 445 

may reflect the limited power of bulk eQTLs in detecting eQTLs acting on a low proportion of 446 

cells, a finding supported by our power analysis. As additional support, studies using both sorted 447 

cell types90 and single-cell technology91,92 have shown that cell-type-specific eQTLs are common.  448 

    There are some caveats to our eQTL study. We interpreted the higher enrichment of heart eQTLs 449 

in shared OCRs compared to cell-type specific OCRs (Fig. 6de) as the difference of detection 450 

power. The assumption was that eQTLs from the two groups have similar effect sizes. However, 451 

this assumption could be violated. Another caveat is that in our power analysis we assumed that 452 

the variance of gene expression across samples is identical across cell types. This reflects the 453 

limitation of our knowledge. Further work using single-cell RNA-seq or sorted cell populations 454 

may better inform the power analysis.  455 

    In conclusion, by combining novel experimental and computational approaches, our study 456 

identified a number of risk variants and genes and revealed key insights of the genetics of AF. 457 

These data provide a rich resource for future functional studies. Importantly, our analytic 458 

framework, including the software for fine-mapping and risk gene identification, may provide a 459 

general model for the study of other complex phenotypes.  460 

 461 

 462 

 463 

 464 

 465 

 466 

Methods 467 

 468 
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Data collection. Nuclei isolation from adult heart tissue. Heart tissue samples were obtained from 469 

National Disease Research Interchange (NDRI) without identifying information. The work with 470 

these samples was determined to be Non-Human subject research and approved by the IRB 471 

committee of the University of Chicago (IRB19-1429). Samples were stored at -80ºC and kept on 472 

dry ice whenever outside of the freezer. We included samples from 4 regions (left and right 473 

ventricles, interventricular septum, apex) from 3 male individuals (Supplementary Table 1). 474 

Aliquots of each heart sample were prepared from frozen heart tissue using a tissue pulverizer, 475 

which was cooled prior to pulverization for 20 minutes over dry ice. Aliquots assayed in this study 476 

ranged from 86.7 mg to 141.6 mg. Prior to library preparation, we purified nuclei using 477 

fluorescence-activated cell sorting (FACS) to remove debris and minimize contamination from 478 

ambient RNA.  479 

    Single nuclei isolation was performed on the heart tissue aliquots as described in Litvinukova 480 

et al. 202020, with some modifications. Single heart aliquots were kept on dry ice until being 481 

transferred into a precooled 2 mL dounce homogenizer (Sigma) with 2 mL homogenization buffer 482 

(250 mM sucrose, 25 mM KCl, 5 mM MgCl2, 10 mM Tris-HCl, 1 mM dithiothreitol (DTT), 1x 483 

protease inhibitor, 0.4 U/µl, RNaseIn, 0.2 U/µl SUPERaseIn, 0.1% Triton X-100 in nuclease-free 484 

water). Samples were dounced 25 times with pestle A (loose) and 15 times with pestle B (tight), 485 

filtered through a 40-µm cell strainer, and centrifuged (500g, 5 minutes, 4ºC). Supernatant was 486 

discarded and the nuclei pellet was suspended in nuclei resuspension buffer (1x PBS, 1% BSA, 487 

0.2 U/µL RNaseIn) and stained with NucBlue Live ReadyProbes Reagents (ThermoFisher). 488 

Hoechst-positive nuclei were enriched using fluorescence-activated cell sorting (FACS) on the 489 

FACSAria (BD Biosciences), obtaining between 172,500 and 350,000 nuclei while targeting a 490 

maximum of 350,000. Nuclei were sorted into 0.75 ml of resuspension buffer. Flow-sorted nuclei 491 

were counted in a C-Chip Disposable Hemocytometer, Neubauer Improved (INCYTO) before 492 

commencing with library preparation. 493 

 494 

snRNA-seq library preparation and sequencing. A portion of the sorted nuclei suspension was 495 

removed and brought to a concentration of between 700 and 1,200 nuclei per microliter. An 496 

appropriate number of nuclei were loaded on the Chromium controller (10X genomics) in order to 497 

target between 6,000-8,000 nuclei, according to V3 of the manufacturer’s instructions for the 498 

Chromium Next GEM Single Cell 3ʹ Reagent Kits (10X Genomics)93. 3’ gene expression libraries 499 
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were amplified with 15 cycles during sample index PCR. QC was performed on 3’ gene expression 500 

cDNA and final libraries using a Qubit Fluorometer (ThermoFisher) and an Agilent 2100 501 

Bioanalyzer (Agilent). Libraries were sequenced on the NovaSeq 6000 (Illumina) or the NextSeq 502 

500 (Illumina) at the University of Chicago’s Genomics Facility using paired-end sequencing. 503 

 504 

scATAC-seq library preparation and sequencing. scATAC-seq libraries were prepared according 505 

to v1 of the manufacturer’s guidelines for the Chromium Next GEM Single Cell ATAC Reagent 506 

Kits (10X Genomics), with the modification that we started from nuclei that were isolated as 507 

described above. Between 9,300 and 25,000 nuclei were tagmented using Transposition Mix (10X 508 

Genomics) at 37°C for 1 h and loaded on the Chromium controller. We targeted between 6,000 509 

and 10,000 nuclei for library preparation. QC was performed on final ATAC-seq libraries using a 510 

Qubit Fluorometer and an Agilent 2100 Bioanalyzer. Libraries were sequenced on the 511 

NovaSeq6000 or the NextSeq500 at the University of Chicago’s Genomics Facility using paired-512 

end sequencing. 513 

 514 

Single-cell genomic data analysis. snRNA-seq pre-processing. FastQ files from 12 sequencing 515 

experiments were individually processed using an in-house scRNA-seq pipeline dropRunner94. 516 

Briefly, dropRunner utilizes FastQC95,96 to obtain quality control metrics followed by fast and 517 

efficient alignment to human reference genome hg38 using STARsolo 2.6.197 in GeneFull mode 518 

with other parameters set to default. STARsolo performs alignment and quantification of gene 519 

expression in one package. We quantified expression at the gene level using Gencode v29 gene 520 

annotations98 utilizing both intronic and exonic reads to improve clustering and downstream 521 

analyses of the snRNA-seq data. We extracted the raw gene-by-barcode expression matrices output 522 

by STARsolo for downstream analyses. We used Seurat 3.2.199 in R 3.6.3 to analyze the snRNA-523 

seq data. We combined all 12 expression matrices into a single Seurat object together with the 524 

corresponding metadata such as donor and anatomical region. To filter low-quality nuclei, we 525 

removed barcodes that contained less than 1000 UMI. We also used DoubletFinder 2.0.3100 with 526 

pN = 0.015 and pK = 0.005 to account for doublets, which works by generating in-silico doublets 527 

and performs clustering to identify nuclei that fall in the neighborhood of the generated doublets. 528 

After quality control, we retained a total of 49,359 nuclei.  529 

 530 
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scATAC-seq pre-processing. FastQ files from 12 sequencing experiments were individually 531 

processed using 10x Genomics CellRanger-atac 1.2.0101. We used the command cellranger-atac 532 

count to align the fastq files to human reference genome hg38, followed by marking and removing 533 

duplicate reads, and producing a fragment file containing the mapped location of each unique 534 

fragment in each nucleus. We used ArchR 0.9.531 to further pre-process the data and perform 535 

downstream analyses of the scATAC-seq data. Using ArchR, we converted the fragments file into 536 

a tile matrix, which is a bin-by-barcode Tn5 insertion count matrix, using a bin-size of 500 bp. We 537 

also generated a gene score count matrix using the "model 42” from ArchR, which aggregates Tn5 538 

insertion signals from the entire gene body, scales signals with bi-directional exponential decays 539 

from the TSS (extended upstream by 5 kb) and the transcription termination site, and accounts for 540 

neighboring gene boundaries. Gene annotations were obtained from Gencode v29. To filter low 541 

quality nuclei, we kept nuclei with at least 5,000 unique fragments and a TSS enrichment score of 542 

6. We also used ArchR’s doublet removal approach with default parameters, which is based on in-543 

silico doublet generation. We removed nuclei with a doublet enrichment score greater than 1. After 544 

quality control, we retained a total of 26,714 nuclei.  545 

 546 

Cell-type identification from snRNA-seq and scATAC-seq. We performed normalization, 547 

dimensionality reduction, and unsupervised clustering on snRNA-seq and scATAC-seq data in 548 

order to identify cell-types. For snRNA-seq, we used Seurat’s workflow which begins with 549 

converting counts to log2 TP10k values using the NormalizeData function. Next, we found the top 550 

2000 variable genes using FindVariableGenes and used these genes as input features for Principal 551 

Component Analysis (PCA). We computed the top 30 principal components (PCs) for each cell 552 

and used these for downstream analyses. We observed batch effects due to different donors, and 553 

corrected this batch effect. This was done using the RunHarmony function from the Harmony 554 

1.0102 package with default parameters to regress out the donor variable from the PCs. Next, we 555 

used the FindClusters in Seurat with a resolution of 0.2 on the harmony-corrected PCs to define 556 

clusters. We also computed the corresponding UMAP to visualize the harmony-corrected PCs in 557 

two dimensions. We used previously established cell-type markers in order to map clusters to cell 558 

types20,21. 559 

    We performed cell-type mapping for scATAC-seq using the ArchR package. We performed 560 

dimensionality reduction on the tile matrix using the top 20,000 bins in terms of count across all 561 
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cells. We used the function addIterativeLSI with 2 iterations in order to perform latent semantic 562 

indexing (LSI) on the scATAC-seq tile matrix and retained the top 50 LSI vectors. Similar to 563 

snRNA-seq, we observed batch effects across different donors, and removed this effect using the 564 

RunHarmony function. We used addClusters with resolution = 0.2 in order to cluster nuclei based 565 

on the harmony-corrected LSI vectors. addUMAP with min.dist = 0.4 was used to compute a 2-566 

dimensional representation of the harmony-corrected LSI vectors. We visualized gene activity 567 

scores, as defined in ArchR, using the same marker genes as in snRNA-seq to assign clusters to 568 

cell-types.  569 

 570 

Defining and classifying open chromatin regions. Insertion read counts were aggregated across 571 

all cells in each cell-type to form a cell-type pseudo-bulk and peak calling was performed on 572 

pseudo-bulk data of each cell-type. Using the function addReproduciblePeakSet in ArchR in 573 

conjunction with MACS2103, a union set of 352,900 peaks were called in total across all cell-types 574 

at FDR < 0.1. This set of peaks, called union set, were used for all downstream analyses.  575 

    In order to discover cell-type specific regulatory elements, a single-cell insertion count matrix 576 

was created using the function addPeakMatrix in ArchR. Cells were grouped into their respective 577 

cell-types and differential accessibility (DA) analysis was performed in a one-vs-all fashion, i.e., 578 

one cell type vs. all other ones. To perform DA, we used getMarkerFeatures in ArchR with default 579 

parameters, which uses the Wilcoxon rank-sum test on the log-normalized insertion count matrix. 580 

To control for technical variation, cells from the cell-type group and the group of remaining cell 581 

types are matched in terms of TSS enrichment and number of fragments. Using FDR < 10% and 582 

log2 fold-change > 1, we found about 47% of the union set to be cell-type specific.  583 

    For OCRs that were not differentially accessible, we reasoned that these are more likely to be 584 

shared. To further stratify these OCRs into different classes, based on sharing among different cell 585 

types, we used a simple quantile-based method. First, we aggregated the ATAC-seq counts across 586 

all cells within each cell-type for each non-DA peak and normalized the counts by the total sum 587 

of counts in each cell-type. Next, we binarized the peaks within each cell-type based on whether 588 

they are in the top 25% or not in terms of their normalized counts. In this way, we identify the top 589 

25% accessible peaks in each cell-type. Finally, we count how many times a peak is 1, or highly 590 

accessible, across cell-types. Through this strategy, we defined three disjoint sets: shared in 2-3 591 

cell types, shared in 4+ cell types and the remaining peaks denoted as “non-DA”. The last category 592 
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corresponds to peaks that are only highly accessible (top 25%) in one cell type but are not found 593 

to be differentially accessible based on our criteria above.  594 

 595 

Identifying putative TFs regulating chromatin accessibility. We used a set of 870 human motif 596 

sequence instances from CisBP104. These motif annotations were added onto the ArchR object 597 

using the addMotifAnnotations function. Next, enrichment analysis was performed for each motif 598 

in each cell-type-specific set of peaks, using the peakAnnoEnrichment function in ArchR. The 599 

function uses the hypergeometric test to assess the enrichment of the number of times a motif 600 

overlaps with a given set of peaks, compared to random expectation. After correcting for multiple 601 

testing within each cell-type, we used FDR < 1% to ascertain a set of motifs and their enrichment.  602 

    Motif enrichment analysis may find multiple TFs with similar motifs. To reduce the redundancy 603 

and identify true TFs that drive gene regulation, we correlated the motif accessibility with gene 604 

score activity of each TF, expecting that for true TFs, their expression levels should be positively 605 

correlated with accessibility of their motifs across cells. We obtained motif accessibility scores 606 

from chromVAR (using the addDeviationsMatrix function in ArchR) for each TF across all cells. 607 

We obtained the corresponding TF gene activity scores using the “model 42” by ArchR (see 608 

“scATAC-seq pre-processing”). These single-cell-level motif accessibility scores and gene scores, 609 

however, are noisy given the sparsity of data at individual cells. We thus used a strategy similar to 610 

Cicero105, by aggregating cells into “metacells” based on similarity using a k-nearest neighbor 611 

approach. Specifically, we found the k nearest neighbors to each cell using the LSI vectors of the 612 

single-cell ATAC-seq data. We only retained sets of metacells that shared a maximum of 25% of 613 

constituting cells. Metacells that shared more than 25% of cells were removed at random. Using k 614 

= 100, we created about 200 non-redundant meta-cells based on these criteria and averaged the 615 

motif accessibility scores and gene scores across cells within each meta-cell. We then computed 616 

Pearson’s correlation between the gene scores and the motif accessibility scores across meta-cell. 617 

We selected all TFs with a Pearson’s correlation greater than 0.5.   618 

 619 

Testing enrichment of GWAS risk variants in functional annotations. We obtained 620 

harmonized GWAS summary statistics for cardiovascular and some non-cardiovascular traits from 621 

the IEU OpenGWAS project. We removed SNPs with missing values, SNPs on non-autosomal 622 
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chromosomes, and indels. Utilizing approximately independent Linkage Disequilibrium (LD) 623 

blocks generated by ldetect37, we assigned each SNP to one of 1700 LD blocks.  624 

    We used TORUS36 to estimate the genome-wide enrichment of risk variants of GWAS traits in 625 

various functional annotations, including cell-type specific OCRs obtained from DA testing, and 626 

some generic annotations including coding, retrieved from UCSC Genome Browser database, and 627 

conserved sequences from Lindblad-Toh, K. et al. 2011106. We ran TORUS on each annotation, 628 

one at a time, to get the marginal enrichment reported in Fig. 4a. P-values for enrichment were 629 

estimated from the 95% confidence intervals returned by TORUS and were adjusted for multiple 630 

testing across all traits/cell-types using the Benjamini-Hochberg approach. 631 

 632 

Fine-mapping causal variants in AF-associated loci. We used SuSiE107 to perform functionally-633 

informed fine-mapping. We used the susie_rss function to fine-map each LD block, which takes 634 

GWAS z-scores and an LD matrix for the SNPs in the block. Because only summary statistics 635 

were available publicly, we used out-of-sample genotype information from 1000 Genome 636 

Project108 to construct LD matrices. We ran SuSiE with L = 1, which allows a single causal signal 637 

for each LD block and is robust to mismatching LD patterns. We allow SNPs to have different 638 

prior probabilities in fine-mapping. These prior probabilities were generated by TORUS using a 639 

joint-model of the following annotations: CM specific ATAC, CM shared ATAC, non-CM ATAC, 640 

UCSC conserved/coding. We fine-mapped a total of 122 LD blocks, each containing at least 1 641 

SNP at genome-wide significance (P < 5 x 10-8).  642 

 643 

Annotating putative AF causal variants with additional functional data. Fetal DHS and heart 644 

H3K27ac data were obtained from ENCODE. PC-HiC interactions were obtained from an earlier 645 

study conducted in iPSC derived CMs41. Only interactions found in at least 2 out of 3 replicates 646 

were included. Motif analysis was performed using R motifbreak package109 . Only “strong” 647 

effects on motif scores, according to the package, were considered.  648 

 649 

Assessing regulatory effects of candidate variants by Luciferase assay. Candidate regulatory 650 

elements were designed from CM-specific accessibility in hg38 and synthesized by IDT, with 651 

either the reference allele or SNP allele(s). Sequence was verified and then cloned into the 652 

pGL4.23 enhancer luciferase response vector with a minimal promoter. HL-1 cardiomyocytes 653 
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were co-transfected with luciferase response vector and a pRL control using Lipofectamine 3000, 654 

cultured for 48 hr after transfection, then lysed and assayed using the Dual-Luciferase Reporter 655 

Assay system (Promega).  656 

 657 

Gene mapping procedure with Mapgen. We used the posterior inclusion probabilities (PIPs) 658 

generated by SuSiE to calculate a gene-level PIP, reflecting the probability that a gene is a risk 659 

gene. We assume there is a single causal gene per disease associated locus. Let Zg be an indicator 660 

variable describing whether gene g is causal (Zg = 1) or not (Zg = 0) for the trait. Assuming a single 661 

causal SNP per locus, the probability that the gene is causal, which is denoted as “gene PIP”, can 662 

be then related to the probabilities of SNPs being causal variants: 663 

 664 

𝑃(𝑍! = 1|	𝐷) 	= 	∑ 𝑃(𝑍! = 1|𝛾" = 1)𝑃(𝛾" = 1|𝐷)" , 665 

 666 

where 𝛾"	is the indicator variable for whether SNP i is causal or not, and D is the GWAS summary 667 

statistics. The term 𝑃(𝑍! = 1|𝛾" = 1) is the probability that g is the causal gene if the causal SNP 668 

is SNP i, and the term 𝑃(𝛾" = 1|𝐷) is simply the PIP of SNP i, or PIPi. So the gene PIP of a gene 669 

is a weighted sum of PIPs of all SNPs, weighted by how much that gene is supported by each SNP 670 

(see below). Since the PIPs of all SNPs in a block sum to 1, the gene PIP has an upper-bound of 671 

1. In the rare cases where a gene spans two nearby blocks - e.g. when a gene has large introns, the 672 

gene PIP may exceed 1, which can be interpreted as the expected number of causal variants 673 

targeting the gene g.  674 

    To calculate the term 𝑃(𝑍! = 1|𝛾" = 1), we consider the location of the SNP i with relation to 675 

the gene g, as well as functional genomic data linking SNP i with gene g. These data were used to 676 

assign the weights, denoted as 𝑤"!, between SNP i and gene g, reflecting how likely the SNP i 677 

affects gene g. For example, if a SNP is inside an exon of a gene, then the SNP-gene will have 678 

weight 1. We note that 𝑤"! and 𝑃(𝑍! = 1|𝛾" = 1)	have different semantics: it is possible that a 679 

SNP affects multiple genes with weights all equal to 1, but there is only a single causal gene 680 

supported by any SNP. In other words, for a causal SNP i, the conditional probabilities 𝑃(𝑍! =681 

1|𝛾" = 1)		should sum to 1 across all nearby genes g. So we need to normalize 𝑤"! with: 682 

𝑃𝑃.𝑍! = 1	/𝛾" = 10 = 	
𝑤"!

∑ 𝑤"!!
 683 
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	684 
To assign the weight terms, 𝑤"!, we follow these four steps capturing several scenarios where a 685 

SNP may affect a gene: 1) If a SNP is in an exon or active promoter (promoter overlapping with 686 

OCR) of a gene, we assign the SNP to that gene with weight 𝑤"! = 1. 2) If a SNP can be linked 687 

to a gene’s promoter via “enhancer loops”,  we assign the linked gene with weight 𝑤"! = 1. Here, 688 

"enhancer loops" are defined based on Activity-By-Contact (ABC) scores (constructed from heart 689 

ventricle data with ABC scores >= 0.015)44 and promoter-capture HiC data (from iPSC-CMs)41. 690 

Considering the fact that Hi-C and PC-HiC may miss contacts between close regions due to 691 

technical reasons, we also consider a SNP in OCR within 20 kb of an active promoter as an 692 

“enhancer loop”. 3) If a SNP is in a UTR but not in OCRs, suggesting that the SNP likely regulates 693 

the containing gene through RNA processing mechanisms, e.g. RNA stability or alternative 694 

polyadenylation, we will assign the SNP to the UTR-containing gene with weight 𝑤"! = 1.  4) If 695 

a SNP is not linked to any gene via the criteria above, we use a distance-based weighting to assign 696 

it to all genes within 1Mb. The weights follow an exponential decay function as below, where 697 

𝑑"!is the SNP-gene distance: 698 

𝑤"! = 𝑒$%!"/'	⨉)*# .  699 

The parameter of this weight function, 50 kb, was chosen based on the fact that most enhancers, 700 

estimated to be 84% using CRISPR deletion experiments110, are located within 100 kb of the target 701 

promoters. Using a weight of 50 kb here would lead to 87% of weights within 100 kb, with a 702 

simple area-under-curve calculation of the weight function above.  703 

    At any locus, having PIPs for all the genes in the locus allows us to define the “credible gene 704 

set” of the locus, much like the use of the term for SNPs107. Simply speaking, the credible set at 705 

the 80% level means the minimum set of genes in the locus whose sum of PIPs is greater than or 706 

equal to 80%. One complication is that some of the genes in the locus may span another nearby 707 

locus, as described above. In this case, while the final reported gene PIP is computed from both 708 

loci, we only use the PIP of the gene from the locus of interest to define the credible gene set of 709 

that locus.   710 

 711 

Gene interaction network analysis. We used the STRING database (STRING) 11.5111 to 712 

construct gene network. The analysis was done using Cytoscape 3.8.2112. The input genes are those 713 

at PIP >= 0.5 from our gene-mapping analysis. To create the gene network (Fig. 5h), we use all 714 
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default settings except that we use the recommended threshold for high-confidence interactions 715 

(0.700) for interaction scores. Singletons, i.e., genes not having any interactions with other ones, 716 

were not shown from the output network. We also used STRING to run functional enrichment 717 

analysis based on sources including Gene Ontology113,114, Reactome Pathways115 and KEGG116.  718 

 719 

eQTL tissue sharing analysis. We started with the rationale of our eQTL tissue sharing analysis. 720 

For simplicity, consider eQTLs found in one tissue (heart in our case), and we study the sharing 721 

of these eQTLs in a second tissue. Let p denote the probability of eQTLs in the first tissue being 722 

shared in the second tissue. Assuming we have several functional categories of eQTLs, e.g. 723 

regulatory elements specific in a cell type, or shared across cell types, we can then break down p 724 

into several categories with the simple relation: 725 

                                            𝑝	 = 	∑ 𝑝+𝑤++ 	,                                   726 

where c denotes a category, pc is the probability of tissue sharing in eQTLs from category c, and 727 

wc is the proportion of eQTLs in category c. We hypothesize that different eQTLs categories have 728 

distinct molecular mechanisms of modulating transcript levels, and thus different tissue sharing 729 

patterns. This simple analysis thus suggests that both wc and pc are important for our understanding 730 

of tissue sharing. For instance, some categories may have a highly tissue-specific pattern (low pc), 731 

but may constitute a small proportion of all eQTLs (low wc), thus these categories would have 732 

limited contribution to the overall level of tissue sharing among eQTLs.  733 

 734 

Summary statistics of GTEx heart eQTLs. Summary statistics of eQTLs from the left ventricle 735 

were obtained from the GTEX v8 release14. We also obtained fine-mapping results using DAP-736 

G38. The variants with posterior inclusion probability (PIP) greater than 0.8 were kept for 737 

downstream analyses. We refer to these putative causal variants as eQTLs henceforth. The total 738 

number of eQTL-gene pairs that passed the threshold is 1,216. Tissue sharing data on the same 739 

eQTLs were also obtained from GTEx14. These data provide information of whether these heart 740 

eQTLs are also associated with gene expression in the other tissues in GTEx.  741 

 742 

Defining functional categories of heart eQTLs. eQTLs were intersected with genomic features. To 743 

obtain a set of disjoint genomic features, we used a combination of the union peak set and generic 744 

annotations. For generic annotations, the longest transcript was chosen for each gene body, and its 745 
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corresponding exons, UTRs, and introns were obtained for all protein coding genes. We partitioned 746 

the union peak set into cell-type-specific categories based on the differential accessibility (DA) 747 

analysis, as well as the shared categories defined using the quantile approach, as described earlier. 748 

We note that DA analysis does not guarantee disjoint sets of features. Indeed, we find that cell 749 

types such as lymphoid and myeloid share about 6% of their DA peaks, while CMs share at most 750 

1% with the other cell-types. To make these cell-type DA sets disjoint, we moved any DA peaks 751 

that occurred in multiple cell types from DA analysis, to the “Shared 2-3” and “Shared 4+” 752 

categories (see “Defining and classifying OCRs”) depending on the number of cell types in which 753 

it occurred. A small percentage of peaks (< 1%) were affected by this step. The eQTLs in OCRs 754 

that overlap with exons or UTRs, or eQTLs in non-DA OCRs, are ambiguous to assign, so they 755 

were filtered from our analysis. The eQTLs in intronic OCRs were assigned based on the OCR 756 

categories. Those eQTLs not intersecting with any functional category were designated in an 757 

“unassigned” category.  758 

 759 

Estimating extent of tissue sharing in different categories of heart eQTLs. GTEx has performed 760 

eQTL mapping jointly across all tissues. Using these results, we call a SNP an eQTL in a given 761 

tissue, if it passes the local false sign rate (LFSR) threshold of 1%. For any eQTL, we can thus 762 

determine the number of tissues where it is active.   763 

 764 

Estimating eQTL enrichment in functional categories. All the fine-mapped heart eQTLs are 765 

assigned to our set of categories. The proportion of eQTLs in each category is then compared with 766 

the expected proportion by chance to obtain enrichment reported in Fig. 6d and 6e. We used 767 

SNPsnap117 to create a set of random control SNPs that match our eQTLs in LD and minor allele 768 

frequency. The LD data is obtained from the European population genotypes from 1000 Genomes. 769 

We generated 1000 random SNPs which is roughly how many high-confidence eQTLs were used. 770 

The proportion of random SNPs in each category is then used as our estimated proportion by 771 

chance.  772 

 773 
Data availability 774 
Our snRNA-seq and scATAC-seq data will be deposited to the Gene Expression Ombinus 775 
(GEO).  776 
 777 
Code availability 778 
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Mapgen R package is available from https://github.com/xinhe-lab/Mapgen. Code for data 779 
processing and analyses are available at https://github.com/xinhe-lab/heart_atlas. 780 
 781 
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 791 
Main figures: 792 
 793 

 794 

 795 
Fig. 1 | Overview of our experimental and computational framework. Left: SnRNA-seq and 796 
scATAC-seq profiling to cluster cells and obtain open chromatin regions (OCRs) in each cell type. 797 
Middle: Using OCRs and GWAS summary statistics to assess variant enrichment in cell-type-798 
resolved OCRs. The enrichment results then provide prior for Bayesian statistical fine-mapping. 799 
The resulting Posterior Inclusion Probabilities (PIPs) represent the probabilities of variants being 800 
causal. The likely cell types through which the causal signals at each locus act can be identified by 801 
considering cell type information of likely causal variants. We may not always be able to identify 802 
a single cell type per locus, so we assign probabilities to cell types. Right: Computational gene-803 
mapping using PIPs from SNP fine-mapping and SNP-to-gene links to obtain gene level PIPs. 804 
Note that the PIP of a SNP is partitioned into nearby genes in a weighted fashion, with more likely 805 
target genes receiving higher weights (as indicated by thicker arrows). Prioritized genes can be 806 
further assessed through external evidence such as gene networks and expression.  807 
 808 
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 810 
Fig. 2 | Mapping cell types in the human heart. a, UMAP projection of individual cells from 811 
snRNA-seq and scATAC-seq colored by cell types. Stacked barplots on the right represent the 812 
proportions of cell-types from each of the three donors. b, Stacked track plots of chromatin 813 
accessibility at marker genes across cell types. The bottom part shows the gene track. c, Percent 814 
of nuclei expressing marker genes in each cell type. Colors represent log-normalized expression 815 
values.  816 
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 818 
 819 
Fig. 3 | Discovery of OCRs and transcriptional regulators in the human heart. a, Row-820 
normalized accessibility of OCRs across all cell types. b, Number of cell-type-specific and shared 821 
OCRs and their genomic distributions. c, Density plot of the log10 distance to nearest gene for all 822 
cell-type-specific and shared OCRs. Colors of the lines for cell-type-specific OCRs follow the 823 
same convention as in Figure 2a. Gray and black lines represent shared 2-3 and shared 4 OCRs. d, 824 
Proportions of cell-type specific OCRs that overlap with DHS (upper panel). Bar graph (lower 825 
panel) shows the proportions of cell-type specific OCRs that overlap with H3K27ac regions (LV 826 
= left ventricle, RV = right ventricle). Smooth muscle cells and neuronal cells are not shown due 827 
to the small numbers of peaks in these cell types.  e, Enrichment of TF motifs in the OCRs specific 828 
to each cell type. Shown are 76 TFs with FDR < 1% from motif enrichment analysis in at least one 829 
cell-type, and correlation between motif enrichment and gene activity > 0.5. f, Gene scores (from 830 
ArchR) and motif accessibility scores calculated with chromVar in OCRs for MEF2A (top) and 831 
TBX5 (bottom) across all cells. 832 
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 837 
Fig. 4 | Statistical fine-mapping of loci associated with the AF risk. a, log2 fold enrichment 838 
(from the tool TORUS) of risk variants of various traits in cell-type-specific OCRs. b, Comparison 839 
of AF fine-mapping results under the informative prior using OCRs (Y-axis) vs. the results under 840 
the uniform prior (X-axis). Each dot is a SNP, and color represents the annotation of SNPs. Dashed 841 
line has a slope of 1. c, Summary of PIPs of variants. d, Summary of credible set sizes from fine-842 
mapping of AF. e, Proportions of summed PIPs in disjoint functional annotation categories among 843 
all the loci. f, Proportion of summed PIPs in disjoint functional annotation categories at each 844 
individual locus. g, Proportion of summed PIPs into cell type-specific OCRs at each individual 845 
locus, for loci with summed PIPs in OCR >= 0.25. Highlighted are three loci with high proportions 846 
in fibroblast, myeloid, lymphoid specific OCRs. h, Chromatin accessibility and additional 847 
functional genomic annotations of 54 SNPs (PIP >= 50%). i, Reporter activities in HL-1 cells of 848 
regions containing selected SNPs, with both reference and alternative alleles. P-values were 849 
calculated using a paired two-sided t-test. 850 
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 853 
Fig. 5 | Mapping putative risk genes of AF. a, Schematic demonstrating the calculation of gene-854 
level PIPs. ws,g represents the weight of a gene (g) with respect to a SNP (S). If a SNP is in exon 855 
or promoter of a gene, then the weight is 1 for that gene. If this is not the case, but the SNP can be 856 
linked to a target gene via regulatory interactions, we also set weight as 1. If none of these 857 
conditions apply, all nearby genes of a SNP receive distance-dependent weights. The weights are 858 
then normalized so that the total weight of all genes for a given SNP is 1. See Methods for details. 859 
b, Manhattan plot of gene PIPs. Genes at PIP >= 0.8 at labeled. c, Summary of the sizes of 80% 860 
credible gene sets from gene mapping. d, FGF9 locus: the top two tracks represent the -log10 p-861 
value of SNPs from AF GWAS (with color representing LD) and their PIPs from SNP-level fine-862 
mapping, respectively. Middle three tracks represent cell-type aggregated ATAC-seq signals (CM: 863 

a

Exonic

SNPs Genes

Promoter

ABC/pcHiC/Nearby 
Interaction 

ws,g = 1

c
d

g h

e

C
M

 lo
g 2 T

P1
0k

Gene PIP

%
 O

M
IM

f

b

Distance

ws,g = 1

ws,g ≈ e-distance/50kb

Distance 
to TSS

CASZ1

BEND5

CHRNB2

KCNN3

GYPC

ZEB2

WIPF1 TTN

ERBB4

CAND2

THRB

LRIG1

EPHA3

XXYLT1

ELOVL6

PITX2
CAMK2D

HAND2

EFNA5

KCNN2

NR3C1
NKX2:5

ATXN1

PLN

TAB2

ETV1

CREB5

CAV1

CALU

ASAH1
SYNPO2L

DBX1

SSPN

PKP2 TBX5

FGF9

AKAP6

DPF3

HCN4

IGF1R

RPL3L

ZFHX3
MEX3C

TUBA8

MYO18B

0.00

0.25

0.50

0.75

1.00

1.25

1 2 3 4 5 6 7 8 9 10 11 12
13

14
15

16
17

18
19

20
21

22

Chromosome

G
en

e 
PI

P

cell proliferation involved in 
heart morphogenesis

regulation of relaxation of muscle

cardiac neural crest cell differentiation

regulation of cardioblast proliferation

cardiac ventricle formation

0 40 80 120

Biological processes

hormone binding

transmembrane receptor protein 
tyrosine kinase activity

alpha−actinin binding

sodium channel regulator activity

calcium−activated 
potassium channel activity

0 20 40
Enrichment

Molecular functions

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

0

1

2

3

0.0

2.5

5.0

7.5

<10%

11%−50%
Control

Gene PIP >= 0.8
50%−80%

>=80%

2
4
6
8

0.2
0.6

FGF9 LINC00424

22.3 mb

22.4 mb

22.5 mb

22.6 mb

22.7 mb

22.8 mb

22.9 mb

23 mb

23.1 mb

23.2 mb

23.3 mb

−l
og

10
 p

va
lu

e
PI

P

 ATAC
(0 - 0.8)

H3K27ac

Genes
Fetal DHS

PC-HiC

rs9506925

●

●

●

●

0-0.1
0.1-0.25
0.25-0.75
0.75-0.9

r (LD)

KCNN3

NKX2-5

FGF9KCNH2

EPHA3

ZFHX3 TBX5

TTN

LRIG1

KCNN2

FRMD4B

HAND2

GJA5

ATXN1

GATA4

HCN4

MYH6

IGF1R

SYNPO2L

EFNA5

KCND3

PITX2

CASQ2

ERBB4

TAB2
CAV1

CYTH1
YWHAE

NR3C1

Potassium channels

Transcription factors in heart development

Ephrin signaling

MAPK signaling

Ion channels and homeostasis
Transcription factors
Structure component and muscle
Signaling proteins
Others

 0.75 0.50  1.00

Gene PIP

0

10

20

30

40

1 2 3 4+
Credible gene set size (Num. genes)

C
re

di
bl

e 
ge

ne
 s

et
s

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 5, 2022. ; https://doi.org/10.1101/2022.02.02.22270312doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.02.22270312
http://creativecommons.org/licenses/by-nc-nd/4.0/


red, endothelial: green; fibroblast: purple), followed by heart H3K27ac and fetal DHS peak calls. 864 
The links represent interactions identified from promoter-capture HiC data in iPSC-derived CMs. 865 
The red links show interactions centered on the likely causal SNP. e, Log-normalized CM 866 
expression of genes at PIP >= 80% vs. other genes from the AF loci. f, Percentage of Mendelian 867 
disease genes from OMIM in each gene PIP bin. g, Top 5 Biological Processes (BP) and Molecular 868 
Functions (MF) GO terms from gene-set enrichment analysis of the 45 genes with PIP >= 80%. h, 869 
Gene interaction network of candidate AF genes (PIP >= 0.5) using STRING. Only genes with 870 
interactions are shown. Interactions are defined using a confidence threshold of 0.7 by STRING. 871 
Node sizes represent gene PIPs. Colors of genes indicate their shared molecular functions.  872 

873 
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 874 
 875 
 876 
Fig. 6 | Tissue-sharing patterns of heart (LV) eQTLs from GTEx. a, Number of tissues where 877 
LV-eQTLs are detected at local false sign rate (LFSR) < 1%. b, Violin plot showing the number 878 
of tissues in which a specific eQTL is detected. Each row represents a different class of eQTLs, 879 
assigned based on their overlap with OCRs categories and other genomic locations. Unassigned: 880 
eQTLs that cannot be assigned to any functional class. c, Proportion of LV-eQTLs located in OCRs 881 
of selected cell types (Cardiomyocytes, Endothelial cells, Fibroblast, and Immune cells) that were 882 
also detected as eQTLs in a second tissue. d, Proportion of LV-eQTLs (n = 1216) in each 883 
functional class. For comparison, the proportions of random SNPs in all the classes are also shown. 884 
The numbers near the bars represent the fold enrichment in heart eQTLs compared to random 885 
SNPs. e, Enrichment of GTEx heart eQTLs in OCRs vary with the number of cell types where the 886 
OCRs are active. Lower panel shows the proportion of eQTLs (light blue) and control SNPs (dark 887 
blue, chosen to match eQTLs in LD and MAF) overlapping OCRs. The OCRs are divided into 4 888 
categories, based on the degree of sharing across cell types in heart: 1= not shared, 4+= shared 889 
in >=4 cell types. The upper panel shows the enrichment of eQTLs in each OCR class compared 890 
to expectation based on control SNPs. 891 
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Table 1 | Top prioritized genes (gene PIP >= 0.95).  893 
 894 

Gene Gene 
PIP 

Supporting 
SNPs 
  

SNP 
PIP 

Link 
Method* 

OMIM CM- 
specific 
expressi
on 

Known 
AF risk 
gene 

Reference 

SYNPO2L 1.161 rs60632610 0.959 exon   ✔ [20215401, 
33768119] 

HCN4 1.108 rs7172038 0.959 ABC ✔  ✔ [29987112] 

ASAH1 1.061 rs7508 1 exon  ✔  [32015399] 

ATXN1 1.000 rs73366713 
rs113755256 
rs73724866 
rs7770062 
rs59430691 

0.267 
0.205 
0.187 
0.158 
0.157 

PC-HiC 
PC-HiC 
PC-HiC 
PC-HiC 
PC-HiC 

   [21475249, 
22306179] 

EFNA5 1.000 rs6871532 0.288 distance  ✔  [23562676, 
30909943, 
25359705] 

ERBB4 1.000 rs6738011 0.112 distance  ✔  [19632177] 

KCNN2 1.000 rs337705 
rs337708 

0.477 
0.119 

distance 
distance 

  ✔ [19139040] 

RPL3L 1.000 rs140185678 
  

1 
  

exon    [32870709, 
32514796] 

TUBA8 1.000 rs464901 
rs361834 

0.853 
0.147 

nearby OCR 
nearby OCR 

   [31398994] 

EPHA3 0.999 rs35124509 
rs6771054 
rs2117137 

0.375 
0.154 
0.108 

exons 
distance 
distance 

   [17046737] 

THRB 0.999 rs73041705 
rs73032363 
rs9841040 
rs1865712 

0.173 
0.136 
0.127 
0.118 

distance 
distance 
distance 
distance 

 ✔  [28740583] 

ETV1 0.998 rs55734480 
rs12154315 
rs12112152 

0.394 
0.335 
0.223 

distance 
distance 
distance 

  ✔ [27775552, 
29930145] 

PITX2 0.997 rs2220427 0.193 distance   ✔ [28217939, 
29367545, 
32309338] 
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TBX5 0.997 rs7312625 
rs883079 
rs7955405 
rs10507248 

0.404 
0.199 
0.141 
0.107 

distance 
exon 
PC-HiC 
PC-HiC 

 ✔ ✔ [28057264] 

CAMK2D 0.996 rs17446418 
rs2285703 

0.43 
0.166 

PC-HiC 
PC-HiC 

 ✔ ✔ [24030498] 

PKP2 0.993 rs2045172 
  

0.841 
  

PC-HiC 
  

 ✔  [28740174] 

NKX2-5 0.990 rs6882776 
rs6891790 
rs2277923 
rs10071514 

0.343 
0.294 
0.202 
0.14 

active promoter 
ABC/nearby OCR 
exon 
ABC/nearby OCR 

✔   [26805889] 

LRIG1 0.982 rs34080181 
rs900171 

0.322 
0.156 

distance 
exon 

   [23558895, 
19632177] 

ZEB2 0.979 rs10496971 0.805 distance    [33398012] 

TTN 0.977 rs3731746 
rs2857265 
rs3829748 
rs3731748 

0.317 
0.265 
0.182 
0.15 

exon 
exon 
exon 
exon 

✔ ✔ ✔ [30535219] 

MYO18B 0.973 rs133902 
rs133885 

0.609 
0.196 

distance 
exon 

 ✔  [27858739] 

 895 
 896 
* In the Supporting SNPs column, only SNPs that contribute a fractional PIP (SNP PIP multiplied by the weight of 897 
the SNP to that gene) of 0.1 or more are shown. NR3C1 is not included because it does not have any SNPs with 898 
fractional PIP >= 0.1. 899 
* Nearby OCR is defined as OCR within 20 kb of active promoter of the gene. 900 
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