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ABSTRACT 

 
Objective: Social media mining may provide surprising information about unknown effects of 

drugs. We endeavored to uncover such unknown drug-disease relationships by text mining of 

audio record transcripts from the popular NPR show, The People’s Pharmacy. 

Materials and Methods: We used Google Cloud to transcribe episodes of the NPR podcast into 

textual documents. We then built a pipeline for systematically pre-processing the text to ensure 

quality input to the core classification model. Finally, results of the model were filtered by a series 

of post-processing steps. Our classification model itself uses the FLAIR language model pre-

trained on PubMed abstracts. The modular nature of our pipeline allows for ease of future 

developments in this area by substituting higher quality components at each stage of the pipeline. 

To validate the drug-disease relating assertions extracted from the podcast, we utilized the 

DrugCentral database and ROBOKOP biomedical knowledge graph, which capture drug-disease 

relationships for FDA approved medications.   

Results: Our model identified 128 drug-disease pairs that were found in DrugCentral and 112 

novel candidate pairs requiring expert review. To demonstrate the expert review process, we found 

literature evidence supporting the assertions for novel drug-disease pairs.  

Discussion and Conclusion: Text mining of social media is increasingly used to uncover novel 

relationships between semantic concepts corresponding to biomedical concepts.  However, mining 

audio transcripts of specialized podcast shows has not been explored previously for this purpose. 

Using this approach, we have identified several unknown drug-disease relationships with support 

in biomedical literature. The proposed approach can extend beyond radio podcasts and could be 

applied to any source of audio and textual data. 
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1. BACKGROUND AND SIGNIFICANCE 
 

Major computational approaches to drug discovery include so called ligand-based (such as 

similarity search, pharmacophore modeling, Quantitative Structure – Activity Relationship 

(QSAR) modeling) and structure-based (docking and virtual screening) approaches [1,2].  These 

approaches have been extensively employed to discover drugs against multiple diseases including 

recent gargantuan efforts to repurpose drugs against COVID-19 (reviewed recently by Muratov et 

al. [3]). In recent years, literature-based discovery (LBD) has been added to the arsenal of tools 

employed specially to identify novel or poorly known uses of existing drugs (also known as ‘drug 

repurposing’ [4]) or identify potential side effects of the existing drugs [5]. Commonly, LBD 

approaches have been used to analyze textual sources such as abstracts of full texts of the scientific 

papers [6,7]) although in some cases social media mining has been explored as well [8]. In this 

study, we proposed an uncommon LBD approach based on text mining of transcribed audio 

podcast recordings. Herein, we describe a systematic, step-by-step approach for extracting 

meaningful, nontrivial pairs of drug-disease concepts from raw audio files that are transcribed to 

unstructured textual information sources.  

    There have been previous attempts to leverage nontraditional data sources in the medical 

community. For instance, Mohammadhassanzadeh et al. [9] and Noh et al. [10] used podcasts as 

knowledge sources. The freeform communication typical of podcasts produces a substantial 

amount of natural language data, which can be mined for useful information. Many of these 

podcasts take the form of a dialogue between a host or hosts and guest, these guests may or may 

not be medically trained. Because of their freeform nature, podcasts contain language with little 

structure to be exploited (when compared to an academic paper), with episodes taking the form of 

dialogues or unscripted interviews. Mining such unstructured text is a fundamentally challenging 

Natural Language Processing (NLP) task [11]. Recent advances in NLP systems have enabled the 

training of so-called “language models”, multi-task general-purpose learners that model the 

structure of natural language sentences and perform various tasks such as part-of-speech tagging 

[12]. The most famous of these language models is the recent BERT model by Google [13], which 

achieved state-of-the-art results on several NLP tasks. However, we choose to use a different state-

of-the-art language model, FLAIR [14], for the modular nature of its code and its ease of use. We 

built our code upon the recent work of BioFLAIR [15], a model that fine-tuned FLAIR on PubMed 

data. By using this model to mine transcribed episodes of the popular NPR radio show ‘People’s 

Pharmacy”, we have identified over one-hundred known drug-disease connections (model 

validation) as well as over a hundred of connections not annotated in popular drug registries such 

as DrugCentral [16]. 

 In summary, we have developed and validated a novel framework for extracting 

meaningful drug-disease pairs from unstructured, natural language. This framework is built on a 

modular plug-and-play system that can be easily modified to include new algorithms or data 

sources. We have emphasized the importance of rigorous curation of primary data and validation 

of the assertions generated by this approach. The code and software developed in this project have 

been made publicly accessible at https://github.com/yrahul3910/drug-repurposing-textmining.  
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2. DATA AND METHODS 
 

Our approach comprises three major parts: pre-processing, pair formation, and post-processing. 

Key steps of our pipeline are shown in Figure 1. 

 

2.1 The source dataset 
 

The People's Pharmacy NPR Radio Program is a popular weekly radio program hosted by Joe and 

Terry Graedon. This show has been running for forty years, with over one thousand episodes 

having been recorded. Episodes of The People’s Pharmacy focus on the intersection of the general 

public and the medical field, cover topics such as: the effectiveness of drugs, home remedies, and 

doctor-patient interactions [17]. 

 

The input podcast data included all available MP3 files for The People’s Pharmacy, 199 episodes 

in total [18]. The raw MP3 files were passed through Google Cloud Text-to-Speech (TTS)1 to 

transcribe the voice recordings to text. The result of the Google Cloud transcriptions are JSON 

files for each episode. These JSON files are chunked by Google (into arbitrary sizes). Each chunk 

was given a TTS confidence score by the transcription . On average, each episode had  81 chunks. 

Figure 2 illustrates the distribution of the number of text chunks in the episodes. In total, we 

processed 16,291 chunks. 

 

 

 
1 https://cloud.google.com/text-to-speech 

Figure 1. The workflow for text mining of the People’s Pharmacy episodes. The workflow is 
comprised of three components: a)  Creation of textual data from podcasts. b) The process of 
mining drug-disease pairs from transcripts of the podcast. c)  Verification of drug-disease pairs 
using DrugCentral. 
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Figure 2. A histogram of the number of chunks of text produced per podcast episode. These 
chunks are generated automatically by Google Cloud’s transcription service. Here we show how 
in general each episode produces about the same amount of content. 

 

2.2 Auxiliary datasets 
 
Our approach relies on training models in an unsupervised manner on large-scale datasets a priori. 

This is done based on the domain of the problem—in this case, drugs and diseases. Specifically, 

we use the BioCreative V Chemical Disease Relation (bc5cdr) corpus [19] and the NCBI disease 

corpus [20], which contains 793 PubMed abstracts fully annotated. We choose these because a 

prior implementation that fine-tuned word embeddings for medical corpuses, BioFLAIR[15], used 

a superset of these datasets. However, for the purposes of our approach, these two corpuses were 

sufficient. These datasets were obtained from the BioFLAIR [15] code repository. 

 

2.3 Pre-processing 
 

Our first pre-processing step (performed on the TTS transcription output) was removing chunks 

that have a confidence score less than 96%. We derived this threshold by manually going through 

100 chunks of text and analyzing poorly transcribed chunks of text (as a particularly egregious 

example, “Dr. Sacks” was transcribed as “Doctor Sex”). We found that chunks with a confidence 

score less than 96% contained errors which would reduce our ability to find valid medical 

information. 
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Table 1: List of medical-adjacent terms 

 
Because our core idea was to identify related drug and disease terms (together called “medical 

terms”), we sought a language model to identify these medical terms. However, traditional 

language model would also identify “medical-adjacent” terms, such as “doctor” and “hospital”. It 

is not informative to learn that visiting a doctor 

helped cure a patient of some disease,  so next 

we compiled a list of such medical-adjacent 

terms. During our pass through 100 random 

chunks of text, we were able to compile a list 

of these terms. This compiled list is 

summarized in Table 1. We performed a partial 

string match and removed all  medical-adjacent 

words from all chunks of text.  

 

2.4 Classification 
 

The kind of problem we described can be framed as a Named Entity Recognition  (NER) task. 

Specifically, we  endeavored to classify each word in the text as a drug, a disease, or neither. To 

do so, a language model was used. Such models can be adapted to several tasks because of the 

general-purpose nature of their initial training. As shown in Figure 3, given a sentence “George 

Washington was born”, an NER model would be expected to predict that “George” is the beginning 

of a PERSON entity, and “Washington” was the corresponding ending. All other words are 

assigned an OTHER entity. In our case, the model predicts B-DRUG and E-DRUG to delimit drug 

candidates, and B-DISEASE and E-DISEASE to delimit disease candidates (note that at the time of 

prediction, whether a candidate is truly a drug/disease is unknown). A BiLSTM-based model 

[21,22] is used to achieve this, which is implemented by the FLAIR framework [23]. The overall 

architecture of the model is illustrated in Figure 3.  

 

 
2 This was an actual word in the text. The natural language text is discussed by non-experts, and therefore involves a 

lot of colloquial terms. Our language model can handle this. 

pharmacy health allergist 

patient biochemical medication 

symptom poop2 feces 

urologist polypharmacy relief 

nutrient dr herbal 

care/healthcare prognosis diagnosis 

die/death insurance remittance 

relapse physician decease 

practitioner anesthesia ICU 

Medicare etiology  

Figure 3. A demonstration of how a language model from FLAIR 
would process the name, "George Washington", using B-PER 
(beginning of person) and E-PER (end of person) outputs. 
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 Because of the high modularity and accuracy of the FLAIR language model in state-of-the-art 

datasets, we leveraged it to train a model that fits our task. At a high level, we used the embeddings 

trained on PubMed, and pre-train it on our data. Finally, we ran NER on each chunk separately. 

    In detail, we used two instances of the FLAIR model [23]: We fine-tuned one model on the 

bc5cdr data [19], which contain labels for identifying both diseases and drugs, and fine-tuned the 

other model on the NCBI disease dataset [20], which contains only disease labels. Next, we 

identified the drugs in text as a set difference between the two models’ outputs. We used this twin 

classification model because it leads to more stable results. Specifically, this approach has two 

advantages: (1) using this model yields less pairs for a human expert to verify; (2) for a pair to be 

proposed, it needs to be acknowledged by two differently trained models; this is akin to asking for 

two different perspectives from two experts, each of whom studied the same material from 

different sources. 

This robust approach is not very computationally expensive. In our testing, the significant 

computation (besides the fine-tuning) was in initializing the models, not in classifying. Therefore, 

our approach is fast, scalable, and robust in identifying perplexing drug-disease pairs for further 

examination from a human expert. 

 

2.5 Post-processing 
 

Our post-processing steps are designed to work in conjunction with the classification step and 

prune the pairs proposed. We disregarded adjacent medical terms of the same class (i.e., a drug 

cannot treat another drug; a disease cannot treat another disease), so that the final proposed pairs 

were at least semantically valid. We also removed adjacent duplicate medical terms. Finally, we, 

removed duplicate pairs (including pairs of the form A, B and B, A). As shown in Figure 1,  we 

began with the original 6,514 drug-disease pairs proposed and verified 128 pairs as exact matches 

in DrugCentral; the 6,386 remaining pairs were sequentially pruned using the DrugCentral 

database by applying the following sanity checks in order: (a) Exactly one of the terms of the pair 

must be a drug—this led to 1,963 pairs. (b) Exactly one of the terms must be a disease—this led 

to 455 pairs. (c) Both (a) and (b) must be true simultaneously, i.e., exactly one of the terms must 

be a drug and exactly one of the terms must be a disease—this led to the final 112 pairs that were 

shown to a human expert for verification. 

3. RESULTS 
 

Amongst the 16,291 text chunks in a total of 199 episodes, 6,514 pairs of drug-disease associations 

were found by our model, which were pruned to 240 pairs. These pairs were then cross-referenced 

against the DrugCentral database, with 128 pairs matching against known facts and being verified, 

and 112 pairs that needed further review. This gives us a precision score of 128/240 = 53.3%. An 

example of using this approach for a sample text chunk is shown in Figure 4. As illustrated, the 

pair formation module creates associations between the adjacent medical terms. Then, set 

subtraction was used to extract only drug-disease pairs from the raw data. 

Due to several text chunks reporting the same kind of disease associations, several duplicate pairs 

were reported. Hence, deduplication was performed as a post-processing step. 

The results indicate that the model was able to find known pairs of drug-disease associations, but 

it also yielded 112 unverified associations. We used ROBOKOP, a biomedical knowledge 

graph[24], to formulate plausible connections between the proposed pairs, then conducted a 
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manual literature review to fill in additional details of these connections. In the following section, 

we discuss some associations that we confirmed through this process. ROBOKOP is a knowledge 

graph constructed from forty-five independent biomedical databases, it aims to integrate all of 

these disparate sources of information into a singular platform, where the data may be 

interoperable and queried through a single interface. Biomedical concepts (such as a disease like 

Chordoma, or a drug like aspirin) will be represented as nodes in the graph, how these ideas relate 

to each other is represented as edges connecting these nodes. 

 

 
Figure 4. Drug-Disease tuple generation from raw text chunks: In this example we see the 
portions of the text where pairs appear in (A) bolded. These highlighted sections are then 
reduced to pairs of biomedical terms in (B). These pairs are then reduced further to exclusively 
drug/disease tuples in (C). 

 

3.1 Examples of associations found in the transcripts and confirmed by ROBOKOP 
 

The list of associated drug-diseases terms contained some pairs that could be less obvious or less 

studied than others and could become interesting new hypotheses to guide research. For example, 

an association between asthma and fluticasone that is validated by ROBOKOP would be obvious 

to a pharmacologist studying drug repurposing because fluticasone is officially indicated for the 

management of asthma symptoms [25]. To demonstrate our method’s ability to identify novel 

associations, we used the DrugCentral Online Drug Compendium (https://drugcentral.org/) to 

distinguish “obvious” and “non-obvious” drug-disease associations. Drug-disease associations not 

listed as official indications in DrugCentral were pruned from the list and 112 non-obvious 

associations emerged.  

 

To demonstrate the validation of these non-obvious pruned pairs, we employed ROBOKOP to 

derive clinical outcome pathways (COP). A COP is an emerging concept [26] designed to be more 

informative than mechanism of action because it describes the cause-and-effect chain of chemical-

biological interactions underlying clinical effects of drugs [26,27]. ROBOKOP is well-suited for 

helping an expert elucidate a COP by identifying intermediary biological entities (genes, cell types, 
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biological processes) involved in a drug’s clinical effect. For the non-obvious pruned pairs, we 

used ROBOKOP to identify drug--gene--disease connections to serve as the starting point for 

manual literature review by an expert. This method helps saves time and expense of using a human 

to explore novel drug-disease associations. Two examples of COPs elucidated by using 

ROBOKOP are presented below and illustrated by Figures 5 and 6. 

 

3.2.1 Obesity and Testosterone 
 

 
 

Figure 5. Testosterone to obesity COP elucidated through manual literature using PPARG gene 
identified from ROBOKOP as literature search inspiration. 

 

Testosterone (T) deficiency has been linked to male obesity in a bidirectional manner, with obesity 

contributing to low T, and low T likewise contributing to obesity [28]. T decreases the expression 

of peroxisome proliferator activated receptor gamma (PPARG) in ovarian granulosa cells [29]. 

Additionally, the presence of  dihydrotestosterone (DHT) results in reduced activity of PPARG in 

fat-storing adipocytes [30]. PPARG is a nuclear receptor and transcriptional cofactor for genes 

controlling fat storage and metabolism in adipose tissue [31]. This evidence taken together 

suggests a potential COP for the treatment of obesity with T supplementation and supports the 

testosterone – obesity association. 

 

3.2.2 Tumors and Capsaicin 
 

 
 

Figure 6. ROBOKOP identified TP53 as gene intermediate for capsaicin-tumor COP. Literature 
review elucidated capsaicin’s action on both wild-type and mutant TP53 isoforms. 

 

Capsaicin, the “spicy” ingredient in chili peppers, promotes the degradation of mutant tumor 

protein p53 (TP53) and promotes the reactivation of wild-type TP53 function [32]. TP53 is a 

transcription factor protein important to cancer prevention and response to acute stressors [33]. 

Tumor-promoting mutations in TP53 have been observed in most human cancer types, especially 

ovarian, colorectal, esophageal, head and neck, and laryngeal cancers with frequencies of 40-50% 
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[34]. Capsaicin induces autophagy and clearance of mutant TP53 while promoting DNA repair to 

restore wild-type function [35]. The mechanism by which a molecule like capsaicin can a disease 

becomes clear when all of these molecular interactions are taken together and arranged in the form 

of a COP. These capsaicin-induced molecular events could facilitate tumor cell death and represent 

promising COPs for capsaicin’s reported anti-tumor properties.  

 

4. DISCUSSION 
 

We discuss some of the aspects and potential concerns with our method and seek to provide 

additional reasoning for our approach in this section. 

 

4.1 Text chunking 
 

It may be noted that eliminating some of the chunks adds discontinuity to the text. However, we 

argue that this should not significantly impact our results; rather, it helps generate more robust 

results. By eliminating chunks below the threshold, we start with better, more robust data. We 

argue that this makes it less of a burden on the rest of the process to filter out bad results.  

Furthermore, by not running our model on two continuous chunks, we  avoid erroneous results 

generated by mixing  two potentially discontinuous chunks of text as input. 

 

4.2 Irrelevant term removal 
 

Simply removing the irrelevant terms from the text may cause the resulting text to become 

ungrammatical and incoherent. However, because our approach does not have a strong reliance on 

the structure of the sentence, this does not affect our results. Specifically, our approach is based 

on adjacent medical term pair formation; by removing potentially misleading terms, which we call 

medical-adjacent terms, we remove potential bad pairs  and obtain more robust results. 

 

4.3 Pair formation 
 

Because the BioFLAIR classifier identifies both diseases and treatments as medical terms, it is 

certainly possible to have pairs formed consisting of only diseases or only treatments. To alleviate 

this, we used a twin classifier model in the classification and pair formation stage. We train one 

BioFLAIR model as described above, and another that identifies only diseases. Then, we form 

pairs only from the set difference of the terms detected by these models. We find this significantly 

reduces (by 64.5%) the number of pairs suggested by the overall pipeline and improves the overall 

quality of the results.  

 

4.4 Validation 
 

The validation step has been a huge concern given the prohibitive number of pairs generated to be 

manually checked. Although, ROBOKOP provided a platform for validation of possible 

associations, some true positives given by the model are not present in the underlying ROBOKOP 

knowledge graph. Additionally, there were also some false positives found in the ROBOKOP 
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Knowledge Graph, where trivial relationships that are found by the model (but do not represent 

meaningful disease-treatment pairs) are marked as correct. This highlights the importance of 

confirming ROBOKOP COP pathways through manual literature review, as performed in the two 

case studies shown. 

 

5. CONCLUSION 
 

This study aimed to construct an automated pipeline to identify drug-disease tuples from 

unstructured texts using The People’s Pharmacy transcripts as an experimental dataset. Our current 

pipeline achieves a 53.3% precision score on the DrugCentral database. To the best of our 

knowledge, our approach is the first end-to-end, modular, automated system to propose novel 

drug-disease associations from unstructured verbal records. Our precision score indicates that 

around half the proposed pairs are already known to be true. Further, our multiple levels of pruning 

ensured that only 240/6514 = 3.7% of the total pairs have required human evaluation. 

 

In summary, we used a state-of-the-art NLP system as part of a pipeline to identify 

plausible novel treatments for diseases from unstructured text. These hypotheses can be validated 

by human experts, who may decide which are worth pursuing further.  
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