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 2 

Abstract:  27 

 28 

Background: Cardiometabolic diseases are highly comorbid and associated with poor health 29 

outcomes. However, the investigation of the relationship between the genetic predisposition 30 

to cardiometabolic diseases with the risk of conditions unique to females such as breast 31 

cancer, endometriosis and pregnancy-related complications is highly understudied. This 32 

study aimed to estimate the cross-trait genetic overlap and influence of genetic burden of 33 

cardiometabolic traits on health conditions unique to females. 34 

Methods: We obtained data for female participants in the Penn Medicine BioBank (PMBB; 35 

21,837 samples) and the electronic MEdical Records and GEnomics (eMERGE; 49,171 36 

samples) network. We examined the relationship between four cardiometabolic phenotypes 37 

(body mass index (BMI), coronary artery disease (CAD), type 2 diabetes (T2D) and 38 

hypertension (through blood pressure measurements)) and 23 female health conditions by 39 

performing four analyses: 1) Cross-trait genetic correlation analyses to compare genetic 40 

architecture. 2) Polygenic risk scores (PRS)-based association tests to characterize shared 41 

genetic effects on disease risk. 3) Mendelian randomization (MR) for significant associations 42 

to assess cross-trait causal relationships. 4) Chronology analyses to visualize the timeline of 43 

events unique to groups of females with high and low genetic burden for cardiometabolic 44 

traits and highlight the disease prevalence in risk groups by age. 45 

Results: We observed high genetic correlation among cardiometabolic and female health 46 

conditions. PRS meta-analysis identified 29 significant associations reflecting potential 47 

shared biology among common cardiometabolic phenotypes and female health conditions. 48 

Significant associations include PRSBMI with endometrial cancer and polycystic ovarian 49 

syndrome (PCOS), PRSCAD with breast cancer, and the PRST2D with gestational diabetes and 50 

PCOS. Mendelian randomization provided additional evidence of independent causal effects 51 

between T2D and gestational diabetes and CAD and with breast cancer. Our results reflected 52 
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inverse association between PRSCAD and breast cancer. Lastly, as visualized from chronology 53 

analyses, individuals with high PRS are also more likely to develop conditions such as PCOS 54 

and gestational hypertension at earlier ages. 55 

Conclusions: Polygenic susceptibility to cardiometabolic traits is associated with conditions 56 

unique to females. Several of these associations are likely to result from the complex 57 

pathophysiology of cardiometabolic risk, and others may reflect potential pleiotropic effects 58 

that go beyond cardiometabolic health in females.  59 
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Introduction: 60 

 Cardiometabolic diseases such as coronary artery disease (CAD), obesity, 61 

hypertension, and type 2 diabetes (T2D) are profoundly prevalent and among the leading 62 

causes of death in the world5,6,7. Cardiometabolic conditions are highly comorbid and 63 

considered as risk factors for sequelae of many diseases, such as depression, anxiety, chronic 64 

obstructive pulmonary disease (COPD), and cancer, to name a few8,9.  These conditions 65 

affect female individuals disproportionately because they are also linked to disorders of the 66 

reproductive system and adverse outcomes of pregnancy and childbirth such as preeclampsia, 67 

gestational diabetes, stillbirth, and pregnancy loss10,11. Many studies suggest that the 68 

pathophysiology of cardiometabolic diseases affects males and females differently14.  There 69 

are multiple shreds of evidence supporting the relationship between female health conditions 70 

and cardiometabolic diseases. For instance, people who develop preeclampsia during 71 

pregnancy are more likely to develop cardiovascular diseases and hypertension after 72 

pregnancy15,16. Additionally, obesity and polycystic ovarian syndrome (PCOS) are closely 73 

linked conditions, and people with PCOS are at high risk of developing T2D17-19. People with 74 

endometriosis are also at high risk for developing oncological cancers and cardiovascular 75 

diseases such as myocardial infarction and ischemic heart disease20,21. However, the 76 

relationship between female health and cardiometabolic phenotypes, particularly the potential 77 

for any shared genetic burden between them, is still highly understudied. The investigation of 78 

shared genetic burden could lead to identifying obesity and cardiometabolic cluster-related 79 

risk factors associated with female health conditions to modify standard screening practices 80 

in people at high risk for many diseases. 81 

Genome-wide association studies (GWAS) in the past couple of decades have 82 

exposed common cross-trait connections. Disease traits such as type 2 diabetes, obesity, 83 

sleep apnea, hypertension, Alzheimer’s diseases, and many cancer types have been shown to 84 
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share genetic etiology1-4. GWAS have identified >1000 loci with a likely impact on 85 

cardiometabolic phenotypes, but the effect size of any single variant is generally tiny. Many 86 

methods have identified relationships between different phenotypes and traits by calculating 87 

their genetic correlation from GWAS effect sizes. In addition, to more accurately estimate an 88 

individual’s overall risk for disease, researchers have used GWAS to calculate polygenic risk 89 

scores (PRS), which sum up the effect of common single nucleotide polymorphisms (SNPs) 90 

throughout the genome into a single score of overall genetic burden for a phenotype27. PRS 91 

have been shown to predict the risk of many cardiometabolic diseases and its 92 

comorbidities28,29. 93 

Our approach to investigating the impact of genetic burden of cardiometabolic t raits 94 

in female health conditions is to measure the genetic correlation and association of   95 

cardiometabolic PRS with EHR-derived phenotypes. Many prior studies have successfully 96 

used PRS as the genetic risk factor for identifying links between overall genetic risk for one 97 

phenotype to other phenotypes31,32. PRS-based association tests make fewer assumptions and  98 

have the benefit that they are based on unvarying risk factors (i.e., inherited genetic burden). 99 

We hypothesize that the genetic burden for cardiometabolic phenotypes could further explain 100 

the phenotypic variance in health conditions unique to females. This present study obtained 101 

genotyped data and a wide range of female health conditions from the Penn Medicine 102 

BioBank (PMBB) and the Electronic Medical Records and Genomics (eMERGE) Network. 103 

We measured pairwise genetic correlation between cardiometabolic phenotypes and female 104 

health conditions to identify the strength of shared genetic factors. The association of PRS 105 

with multiple selected phenotypes is further used to estimate the significance of associations 106 

between cardiometabolic genetic burden and female health conditions. We additionally 107 

evaluated the causal relationship between significant associations by using Mendelian 108 

randomization (MR) approaches. Lastly, electronic health record (EHR) data provides the 109 
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opportunity to map female health by considering the disease prevalence by age. We 110 

generated a chronological map of diseases in participants in high and low PRS groups to 111 

understand the prevalence of diseases in the two risk groups at different ages.  112 

Methods: The authors have individual level access to genotype and medical record data 113 

from the Penn Medicine BioBank and the Electronic Medical Records and Genomics 114 

network datasets. 115 

Study Populations 116 

Penn Medicine BioBank: The Penn Medicine BioBank (PMBB) is a University of 117 

Pennsylvania academic biobank which recruits patient-participants from the University of 118 

Pennsylvania Health System around the greater Philadelphia area in the United States. 119 

PMBB links an individual’s genotype data with detailed electronic health record (EHR) 120 

information. Currently, PMBB consists of genome-wide genotyped and whole-exome 121 

sequenced data on ~45,000 samples. PMBB is a diverse cohort, with over 25% of 122 

participants of African ancestry. PMBB genotyped data is imputed to TOPMED Reference 123 

panel using the Michigan Imputation server. We included 21,837 female participants from 124 

PMBB in this study (Table 1). The stratified analyses in this study only included participants 125 

of European and African ancestry and excluded those from Asian and Hispanic ancestries 126 

due to the limiting sample size.  127 

 128 

eMERGE: The Electronic Medical Records and Genomics (eMERGE) Network is a 129 

nationwide consortium containing individuals with genome-wide genotyped data linked to 130 

EHRs from several health systems across the United States, with most participants from the 131 

Geisinger Health System and Vanderbilt University. eMERGE data is imputed to Haplotype 132 

Reference Consortium panel using Michigan Imputation Server. Like PMBB, the eMERGE 133 
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cohort is diverse across ancestries and ages. This study was performed on 49,171 female 134 

patients in eMERGE born after 2001 (Table 1). 135 

Genome-wide association studies for cardiometabolic phenotypes 136 

 Most genetic correlation and PRS calculation methods require effect sizes of variants 137 

on the phenotypes determined through large GWAS. Given the diverse nature of our study 138 

population, we obtained the largest publicly available multi-ancestry GWAS summary 139 

statistics for six cardiometabolic phenotypes: obesity (measured through body mass index 140 

(BMI), CAD, hypertension (measured through diastolic blood pressure (DBP), systolic blood 141 

pressure (SBP), and pulse pressure (PP)), and T2D. The summary statistics used for each 142 

phenotype and its respective study is referenced in Table 2. 143 

 144 

Genome-wide association for female health conditions 145 

Large multi-ancestry GWAS are not available for most female health conditions 146 

evaluated in this study. Thus, we used PLINK version 1.90 to conduct GWAS for the female 147 

health conditions in PMBB and eMERGE datasets33. We filtered the variants in the PMBB 148 

imputed datasets to include only those with imputation quality R2 > 0.3 and minor allele 149 

frequency > 0.01. We then meta-analyzed the GWAS from our two cohorts in PLINK. 150 

Genetic correlation calculation  151 

 We calculated pairwise genetic correlation between cardiometabolic phenotypes and 152 

female health conditions using LD score regression (LDSC), with the large publicly available 153 

cardiometabolic GWAS and the meta-analyzed GWAS for female health conditions from 154 

PMBB and eMERGE as input GWAS34. LDSC accounts for linkage disequilibrium (LD) 155 

among SNPs by using an external reference panel that should also match the ancestry 156 
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distribution of the GWAS. We generated a multi-ancestry LD reference panel using the 157 

HapMap3 SNPs (~1M common variants) from the entire 1000 Genomes population. 158 

Polygenic Risk Scores (PRS)  159 

PRS calculated using GWAS performed in one ancestry group tend to perform poorly 160 

in individuals from different ancestries27,35,36. To accurately calculate a PRS for our diverse 161 

target datasets (PMBB and eMERGE), we calculated a PRS for the six different 162 

cardiometabolic phenotypes using the large publicly available multi-ancestry GWAS used in 163 

the genetic correlation analyses.  Weights for each SNP included in the PRS were calculated 164 

using PRS-CS (version from Apr 24, 2020)38. Like LDSC, PRS-CS requires a reference 165 

panel that matches the ancestry distribution of the target dataset, and we generated a similar 166 

multi-ancestry LD reference panel using the HapMap SNPs from 1000 Genomes. We used 167 

PLINK(v1.90) to identify LD blocks and calculate the LD between the SNPs in each block. 168 

For PRS-CS, the global shrinkage parameter phi was fixed to 0.01, and default values were 169 

selected for all other parameters. PRS was then calculated using these weights through 170 

PLINK. Only the SNPs in the target dataset, summary statistics, and LD reference panel were 171 

included in the PRS. The number of SNPs used for PRS calculation is listed in Table 2. 172 

Scores were then normalized to obtain meaningful beta coefficients. 173 

To evaluate the power of PRS, we tested the performance of each PRS on predicting 174 

the primary phenotype of the summary statistics. We could not obtain any blood pressure 175 

quantitative measurements for participants from eMERGE, and PP and SBP measurements 176 

were not curated in PMBB. Therefore, we evaluated the performance of the PRS from blood 177 

pressure traits (SP, DBP, PP) in eMERGE on hypertension case-control phenotype and in 178 

PMBB by predicting DBP or hypertension (for SBP and PP) as outcomes. We constructed 179 

logistic regression models for binary phenotypes (CAD, T2D, and hypertension), and 180 

evaluated PRS performance based on the area under the receiver-operator curve (AUC) using 181 
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R’s pROC package. Similarly, we constructed linear regression models for continuous 182 

phenotypes (BMI and DBP) and evaluated them based on the R2 using R’s glm function. The 183 

regression models used birth year and the first five principal components (PCs) as covariates. 184 

We tested PRS performance in all individuals as well as in only European and African 185 

ancestry individuals. 186 

Phenotype data 187 

Cases and controls for each phenotype were defined using International Classification 188 

of Disease (ICD) diagnosis codes. Participants were coded as cases for a phenotype if they 189 

had at least one occurrence of the corresponding ICD codes. For pregnancy-related 190 

phenotypes, participants were only considered as controls for a phenotype if they had at least 191 

one occurrence of a pregnancy-related ICD code and no occurrences of codes for certain 192 

complications during pregnancy (such as miscarriage) or any of the case ICD codes. 193 

Participants were counted as controls for cardiometabolic and all other female health 194 

conditions if they did not have any of the case ICD codes. The complete list of all ICD codes 195 

used to include or exclude participants as cases and controls can be found in Supplementary 196 

Table 1. Using these definitions, we determined the sample size for each phenotype in 197 

eMERGE and PMBB (Table 1). 198 

PRS association analyses 199 

We tested the association of each cardiometabolic PRS and female health conditions 200 

by fitting separate logistic regression models, adjusting the models by birth year and the first 201 

five PCs. We conducted this analysis in all participants as well as ancestry-stratified analyses 202 

for individuals of European and African ancestry. To account for biases from multiple 203 

hypothesis testing, we determined if these associations passed an FDR-significance threshold 204 

of 0.05, using the number of female health conditions (23) as the number of hypotheses 205 
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tested. The logistic regressions were performed using R’s glm function, and results from 206 

PMBB and eMERGE were combined using the rma function from the metafor R package 207 

under the restricted maximum-likelihood estimator model37. We used PheWAS-View to 208 

visualize our results39. We then created prevalence plots for each significant association. 209 

Participants were divided into quintiles based on their PRS, and the percentage of cases for 210 

the most significant female health conditions was calculated at each quintile. 211 

Mendelian Randomization 212 

To identify potential evidence of causality between cardiometabolic phenotypes and 213 

female health conditions, we performed one-sample Mendelian randomization (MR) for 29 214 

significant associations from PRS analyses using the ivreg function from the ivpack R 215 

package. Cardiometabolic PRS were used as genetic instruments in the one-sample MR, with 216 

birth year and the first five PCs included as covariates. Results were combined through meta-217 

analysis using the metafor R package as done in the PRS meta-analysis. Since the low sample 218 

size for some of the female health conditions could limit the power of our analyses, we also 219 

performed two-sample MR for the same associations using the inverse variance weighted 220 

(IVW) method in the twoSampleMR package in R40. MR sensitivity analyses were conducted 221 

using the weighted median and the MR Egger methods through the same package. Genetic 222 

instruments for cardiometabolic phenotypes in the two-sample MR were defined as genome-223 

wide significant SNPs in the GWAS summary statistics used to calculate the PRS. SNPs 224 

were LD pruned according to LD patterns in the 1000 Genomes HapMap SNPs, and the 225 

representative SNPs were included in the analysis. Matching genetic instruments for female 226 

health conditions were obtained from publicly available GWAS available through the 227 

twoSampleMR package (Supplementary Table 2). 228 

 229 
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Chronology Analyses 230 

We divided participants into high-risk and low-risk groups according to each 231 

cardiometabolic PRS. High PRS was defined as the top quintile (PRS > 80 percentile), and 232 

low PRS was defined as the bottom quintile (PRS < 20 percentile). We obtained the age at 233 

the first occurrence of each female health condition according to the ICD record. For 234 

pregnancy-related conditions, participants were split into three age groups: <25, 25-40, and 235 

40-55. We excluded participants who were over 55 at the first occurrence of pregnancy-236 

related conditions due to low sample sizes and potential errors in diagnosis coding. For all 237 

other conditions, participants were split into five different age groups: <25, 25-40, 40-55, 55-238 

70, and >70. We examined the combined case prevalence in PMBB and eMERGE for female 239 

health conditions in high and low PRS groups across all age groups. 240 

  241 

Results: 242 

Genetic correlation among cardiometabolic phenotypes and female health conditions 243 

The six cardiometabolic phenotypes were significantly correlated with six different 244 

female health conditions for a total of 13 statistically significant correlations (Figure 1A). 245 

BMI was significantly correlated with breast cancer (Rg=-0.179, p=0.011) and PCOS 246 

(Rg=0.4, p=0.007), CAD with breast cancer (Rg=-0.199, p=0.011), PCOS (Rg=0.216, 247 

p=0.04), and postpartum depression (Rg=0.204, p=0.025), PP with gestational hypertension 248 

(Rg=0.481, p=0.0025), SBP with breast cancer (Rg=-0.153, p=0.041) and gestational 249 

hypertension (Rg=0.523, p=0.0017), and T2D with breast cancer (Rg=-0.196, p=0.0001), 250 

excessive fetal growth (Rg=0.126, p=0.044), gestational diabetes (Rg=0.529, p=0.011), 251 

gestational hypertension (Rg=0.237, p=0.028), and PCOS (Rg=0.316, p=0.0093). 252 
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PRS performance on primary phenotype  253 

We calculated a PRS for six cardiometabolic phenotypes for individuals in PMBB 254 

and eMERGE and checked the distribution of the raw and normalized PRS (Supplementary 255 

Figures 1-6). The full model for all PRS generally performed well in predicting the primary 256 

phenotype across ancestry groups (Table 3). PRS was significantly (p < 0.05) associated with 257 

the primary phenotype for all cardiometabolic phenotypes. The covariate only model (null 258 

model) generally performed better in African ancestry individuals than in European 259 

individuals, but the PRS only model generally performed better in European ancestry 260 

individuals. We calculated the difference between the full and null models for all 261 

cardiometabolic PRS in PMBB and eMERGE and found that the PRS improved predictive 262 

performance significantly more for European ancestry participants than for African ancestry 263 

participants (p = 0.000488, Wilcox signed rank test). As such, the cardiometabolic PRS were 264 

more accurate in European ancestry individuals but still significantly improved predictive 265 

performance in African ancestry individuals. 266 

Association of cardiometabolic PRS association and female health conditions 267 

We detected numerous associations between cardiometabolic PRS and female health 268 

conditions in the meta-analyzed results (Figure 1B-D). 29 associations were statistically 269 

significant after correcting for multiple hypothesis burden through FDR significance (Table 270 

4). Most of these associations were also significantly associated in both PMBB and eMERGE 271 

separately (Supplementary Figures 7-12). In the meta-analysis, for all and European ancestry 272 

individuals, the PRSBMI was significantly associated with endometrial cancer (betaall=0.24, 273 

seall=0.046, pall=9.4x10-8; betaeur=0.28, seeur=0.087, peur=0.0015), gestational diabetes 274 

(betaall=0.23, seall=0.051, pall =6x10-6; betaeur=0.28, seeur=0.062, peur=8.7x10-6), and PCOS 275 

((betaall=0.27, seall=0.039, pall=2.4x10-12; betaeur=0.29, seeur=0.045 peur=6.8x10-11). The 276 
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PRSBMI was also significantly associated with breast cancer in all individuals (betaall=-0.071, 277 

seall=0.022, pall=0.0016). These results suggest that an increased genetic burden for obesity 278 

and high BMI also increases the risk for endometrial cancer, gestational diabetes, and PCOS 279 

but decreases the risk for breast cancer. The PRSCAD was also significantly associated with 280 

breast cancer for all and European ancestry individuals (betaall=-0.072, seall=0.015, pall=1x10-281 

6; betaeur=-0.07, seall=0.017, peur=3.1x10-5). This highly significant negative association 282 

suggests that individuals, particularly those of European ancestry, with high PRSCAD are at 283 

relatively lower risk for breast cancer compared to individuals with low PRSCAD. The PRST2D 284 

was also significantly associated with gestational diabetes in all and European ancestry 285 

individuals (betaall=0.58, seall=0.063, pall=1.2x10-20; betaeur=0.68, seeur=0.076, peur=3.9x10-19) 286 

and with PCOS in all, European ancestry, and African ancestry individuals (betaall=0.22, 287 

seall=0.043, pall=1.9x10-7; betaeur=0.21, seeur=0.049, peur=1.6x10-5; betaafr=0.32, seafr=0.1, 288 

pafr=0.0021). The link between T2D and these female related phenotypes is well known, and 289 

our results support a potential genetic basis linking these phenotypes18,19. Among all and 290 

European ancestry individuals, the PRST2D was also significantly associated with gestational 291 

hypertension (betaall=0.18, seall=0.064, pall=0.0041; betaeur=0.18, seeur=0.067, peur=0.008) and  292 

breast cancer (betaall=-0.073, seall=0.021, pall=0.00066; betaeur=-0.079, seeur=0.026, 293 

peur=0.0027). 294 

The three-blood pressure traits PRS (PRSDBP, PRSSBP, and PRSPP) showed varying 295 

significant associations with gestational hypertension and preeclampsia in the PMBB and 296 

eMERGE meta-analysis. There was no sign of association between the PRSDBP and these 297 

phenotypes in the meta-analysis. However, the PRSDBP was significantly associated with 298 

gestational hypertension in PMBB all and African ancestry individuals (p=1x10-05, 0.00041) 299 

and nominally associated (p<0.01) with preeclampsia in African ancestry participants 300 

(p=0.0063). The PRSPP was significantly associated with gestational hypertension for all and 301 
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European ancestry participants (betaall=0.22, seall=0.044, pall=8.5x10-7; betaeur=0.24, 302 

seeur=0.056, peur=2.5x10-5) and with preeclampsia for all participants (betaall=0.2, seall=0.058, 303 

pall=0.00076). The PRSSBP was significantly associated with gestational hypertension and 304 

preeclampsia in all, European ancestry, and African ancestry individuals (Gestational 305 

hypertension: betaall=0.33, seall=0.083, pall=5.6x10-5; betaeur=0.31, seall=0.066, peur=3.6x10-6; 306 

betaafr=0.4, seafr=0.099, pafr=5.7x10-5; Preeclampsia: betaall=0.28, seall=0.08, pall=0.00057; 307 

betaeur=0.23, seeur=0.071, peur=0.0013; betaafr=0.36, seafr=0.1, pafr=0.00052). 308 

For each FDR-significant association in both PMBB and eMERGE, we looked at the 309 

case prevalence of the female health condition per the associated PRS quintile (Figure 2B 310 

and Supplementary Figures 13-17). The trends matched the results we obtained from the 311 

association analyses across ancestry groups and in both datasets. Distribution of the number 312 

of cases increased as the PRS percentile increased for the positive associations in the 313 

association analysis, such as PCOS with the PRSBMI. The number of cases for breast cancer 314 

decreased when increasing the PRSCAD percentile, matching the inverse association between 315 

breast cancer and the PRSCAD (Figure 2B). 316 

 317 

Association of PRSCAD and breast cancer  318 

To validate the inverse association between PRSCAD and breast cancer, we examined 319 

the genetic correlation between CAD and breast cancer from the UKBB Genetic Correlation 320 

Browser (Figure 2A). The genetic correlation between I9_CHD (Major coronary heart 321 

disease event) and C50 (Diagnoses-main ICD10: C50 Malignant neoplasm of breast) was 322 

significantly negative (Rg=-0.24, p =0.0325). 323 

Additionally, to evaluate the risk of ascertainment biases and the reporting of 324 

comorbidities in the EHR, we preformed the associations of CAD PRS with breast cancer in 325 

females who are not diagnosed with CAD (n=61,201). In the individuals who were not 326 
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diagnosed with CAD, we observed slightly less significant association between breast cancer 327 

and CAD (betaall=-0.0484, pall=0.0045; betaeur=-0.0464, peur=0.0112) than in the full set of 328 

individuals. These associations attenuated but were not completely diminished when 329 

evaluating participants who were not diagnosed with CAD. Next, given the longitudinal 330 

nature of availability of comorbidities in the EHR, we aimed to measure the impact of risk of 331 

CAD on the first reported incidence of CAD and breast cancer in females. The overlap on 332 

individuals who were diagnosed with CAD and breast cancer in our study population 333 

suggests that females with a diagnosis of CAD are less likely to be diagnosed or report a 334 

history of breast cancer (Figure 2C). 335 

 336 

Mendelian Randomization 337 

We performed one-sample MR in PMBB and eMERGE for the 29 associations that 338 

were FDR-significant and combined them through a meta-analysis (Figure 3A). The majority 339 

of analyses were significant (p < 0.05), and the direction of the estimated beta coefficient for 340 

each association aligned with the direction of effect seen in the PRS association analysis. Our 341 

results support a potential causal relationship between many cardiometabolic phenotypes and 342 

female health conditions, with the most significant associations being between T2D and 343 

gestational diabetes (All: p=1.5x10-11, beta=1.52, se=0.23; EUR: p=2.4x10-10, beta=1.78, 344 

se=0.28) and BMI and PCOS (All: p=1.1x10-8, beta=0.0021, se=0.00037; EUR: p=3.6x10-8, 345 

beta=0.0021, se=0.0038). 346 

We also performed two-sample MR to leverage the power of larger GWAS for our 347 

female health conditions (Figure 3B). Most analyses were significant when using the IVW 348 

method but became less significant when using the MR Egger and the weighted median 349 

methods. Some associations remained significant for all three methods, particularly CAD 350 

with breast cancer (IVW: beta=-0.0587, se=0.021, p=0.00463; MR Egger: beta=-0.102, 351 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.02.22269844doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.02.22269844
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

se=0.049, p=0.04; Weighted median: beta=-0.0642, se=0.028, p=0.021) and T2D and 352 

gestational diabetes (IVW: beta=0.613, se=0.044, p=1.73x10-43; MR Egger: beta=0.656, 353 

se=0.11, p=8.8x10-10; Weighted median: beta=0.635, se=0.066, p=8.12x10-22). 354 

 355 

Investigation of the role of population stratification 356 

 Population stratification could have confounded our results in the PRS association 357 

and the MR analyses. Therefore, we tested the association of the PRS with the PCs 358 

(Supplementary Table 3). The high R2 for most cardiometabolic PRS shows that a large 359 

amount of the variance in the PRS could be explained by the PCs when considering all multi-360 

ancestry variables, and the R2 decreases when analyzing only European or African ancestry 361 

groups. The PCs explained more of the variance in PRS for African ancestry individuals than 362 

European ancestry individuals, a finding that suggests there is more population stratification 363 

among our African ancestry individuals and that there could be confounding factors 364 

influencing some results. To overcome these biases, we accounted for PCs in both our PRS 365 

association analyses and the one-sample MR analyses. Additionally, we ran one-sample MR 366 

without adjusting for the covariates (PCs and birth year) and compared the results with the 367 

adjusted ones (Supplementary Table 4). 368 

 369 

Chronology analyses 370 

EHR is a powerful resource to visualize the landscape of events in a patient ’s 371 

diagnosis. Continuing on the theme of genetic correlation and the influence of shared genetic 372 

burden of cross-trait analyses, we investigated if an individual’s genetic burden for 373 

cardiometabolic diseases may also affect the time at which they develop certain female health 374 

conditions. Case prevalence for female health conditions was generally higher in the high 375 

PRS group in the younger age groups (Figure 4 and Supplementary Figures 18-22). Many 376 
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pregnancy-related phenotypes were most prevalent in the 25-40 years age group, but for 377 

participants who developed those phenotypes in the <25 years age group, the relative 378 

difference in prevalence between the high-risk and low-risk PRS group was larger. The 379 

cardiometabolic PRS used to define high-risk and low-risk groups did not seem to affect case 380 

prevalence for most phenotypes, but phenotypes found to be associated with specific 381 

cardiometabolic PRS in the association analysis did show differences across PRS. Gestational 382 

hypertension and preeclampsia were generally more prevalent in the younger age groups (<25 383 

and 25-40) for participants with high blood pressure PRS than for participants with high PRS 384 

for other phenotypes. Similar trends were observed for other traits, such as the PRST2D with 385 

gestational diabetes and the PRSBMI with PCOS. High prevalence of endometriosis and 386 

uterine fibroid cases were also observed in individuals with high-risk PRS, particularly in the 387 

age group 25-40. 388 

Discussion:   389 

We have demonstrated high genetic correlation and shared genetic burden between 390 

cardiometabolic traits and female health conditions spanning across many obstetrics and 391 

gynecological disorders. Additionally, this study shows that genome-wide PRS of 392 

cardiometabolic traits has potential translational effects in health conditions unique to 393 

females. Initially, we calculated the genetic correlation between phenotypes related to 394 

cardiometabolic diseases and traits with female health conditions. Genetic correlation 395 

analyses suggested a high overlap among the shared genetic etiology of all phenotypes tested 396 

in this study. We further investigated the effect of this shared genetic burden by generating 397 

PRS for cardiometabolic phenotypes and testing their association to various female-specific 398 

disease conditions. PRS was generally predictive of the primary phenotype, and we identified 399 

several FDR-significant associations with female health conditions that were statistically 400 
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significant after meta-analyzing both datasets. Prior research has established relationships 401 

(mainly non-genetic factors) between many of these associations, such as BMI with PCOS 402 

and T2D with gestational diabetes17,18. Epidemiological studies have also shown evidence 403 

that people with obesity are at high risk for endometrial cancer41. The associations identified 404 

in this study between female health conditions and cardiometabolic PRS suggest genetic basis 405 

for these cross-trait categories. In addition, we performed Mendelian randomization and 406 

identified potential causal relationships.  407 

Unexpectedly, all of our analyses showed that the PRSCAD was inversely associated 408 

with breast cancer in European ancestry participants. CAD and breast cancer share many 409 

common risk factors, such as smoking and diet42. However, our results suggest that a high 410 

genetic burden for CAD is protective for breast cancer. Participants in our cohorts with high 411 

PRSCAD had lower incidence of breast cancer. When we evaluated the individuals with high 412 

PRSCAD but no CAD diagnoses, we still saw a moderate but decreased risk for breast cancer. 413 

Several factors might contribute to these associations. First, these patterns might reflect 414 

ascertainment biases and competing risks. Individuals with higher risk of CAD likely live 415 

shorter lives and thus are not diagnosed with breast cancer. Second, the treatments and drugs 416 

given for treating CAD might also protect against breast cancer. Lastly, genetic mechanisms 417 

predisposing individuals to CAD might show protective effects for breast cancer. Briefly, 418 

among the SNPs that passed genome-wide significance in the CAD GWAS we used to 419 

calculate the PRSCAD, 125/220 SNPs had opposite directions of effects in the breast cancer 420 

GWAS we used in the two-sample MR. For example, rs1011970 (CAD: beta=-0.0407, 421 

p=6.94x10-10; breast cancer: beta=0.053, p=3.1x10-5) is a known risk variant for both CAD 422 

and breast cancer and maps to the CDKN2B-AS1 gene, which helps silence genes 423 

epigenetically in the CDKN2A-CDKN2B cluster43. CDKN2B-AS1 knockdown suppresses 424 

breast cancer progression, and decreased expression of CDKN2B increases development of 425 
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atherosclerotic plaques44-46. Variants that promote decreased CDKN2B-AS1 expression could 426 

increase breast cancer risk but increase expression of CDKN2B and subsequently decrease 427 

CAD risk. A recent study also shows this protective effect of a PRSCAD on breast cancer, and 428 

more research should be undertaken to uncover the mechanisms behind this association47. 429 

The differences between the three PRSblood pressure suggests that analyzing the genetic 430 

burden for all three blood pressure traits might elucidate the understanding of hypertension 431 

during pregnancy. Only the PRSSBP was significantly associated with gestational 432 

hypertension and preeclampsia in African ancestry individuals. Prior studies have identified 433 

variability in the predictive performance when using different blood pressure measurements 434 

to predict hypertension and other diseases, and our results warrant further studies to replicate 435 

this association in other large multi-ancestry datasets to reach a more definite conclusion on 436 

the role blood pressure measurements play in predicting hypertensive diseases during 437 

pregnancy48,49.  438 

To further investigate the effect of cardiometabolic genetic burden on conditions 439 

unique to females, we drew information from EHRs to capture the landscape of trajectories of 440 

diseases presented at different ages. We found that a high genetic burden for most 441 

cardiometabolic phenotypes could increase risk of developing female health conditions at 442 

earlier ages, even if there was no overall association between the PRS and the condition. For 443 

example, the PRSBMI was not associated with many pregnancy-related complications such as 444 

gestational hypertension and ectopic pregnancy. However, in the youngest age group (<25), 445 

these phenotypes were more prevalent in the high PRSBMI group than the low PRSBMI group. 446 

Similarly, there was no association overall between the PRSSBP and PCOS or endometriosis, 447 

but participants who developed PCOS before 25 years old or endometriosis between 25-40 448 

years old were more likely to have high PRS. The difference in case prevalence between high 449 

and low PRS groups for these phenotypes decreased in older age groups. Patients with high 450 
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genetic burden for cardiometabolic phenotypes could be at higher risk to develop female 451 

health conditions at younger ages. These findings can be particularly of importance to 452 

prioritize patients for early screening. 453 

The limitations of our study point to many promising future directions. First, our 454 

study establishes a link between the genetic burden for different cardiometabolic phenotypes 455 

and several diseases unique to females. However, we estimate the genetic burden by using 456 

PRS alone, which are calculated based on common variants and do not include the effects of 457 

other genetic risk factors such as rare variants and copy number variations. Second, our 458 

analysis does not consider clinical or environmental factors that could influence the 459 

associations between cardiometabolic and female health conditions. We found that 460 

population stratification is potentially present in our datasets and accounted PCs in our 461 

analyses accordingly. However, important social and environmental risk factors such as 462 

education level and socioeconomic status were missing and could not be properly accounted 463 

for in our current analyses. Our focus on PRS alone reflects the current limitations of 464 

methods for multi-modal risk model predictions. Current widespread interest in building 465 

integrative risk models suggests that this gap can be closed in the near future27,50. 466 

Furthermore, the weaker performance of PRS in African ancestry individuals contributed to 467 

the lack of power to identify African ancestry specific associations and suggests the urgent 468 

need for expanding studies to include more racially and ethnically diverse cohorts. 469 

The low sample size for some conditions may have limited the power of our one-470 

sample MR analyses. In addition, while our two-sample MR uses GWAS from larger cohorts, 471 

they were performed on populations of primarily European ancestry and thus lack the power 472 

to detect causality for the non-European ancestry participants in our cohort. The effects we 473 

see in our MR results may be biased due to horizontal pleiotropy, in which genetic variants 474 

associated with the exposure (cardiometabolic phenotypes) affect other traits that 475 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.02.22269844doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.02.22269844
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

subsequently influence the outcome (female health conditions). The effects of pleiotropy can 476 

be seen from the decreased statistical significance when using the weighted median and MR 477 

Egger methods in the two-sample MR. For example, the relationship between T2D and PCOS 478 

became insignificant when using the MR Egger method (p = 0.109) compared to the IVW 479 

method (p = 0.000148). These methods account for pleiotropy and other confounding factors 480 

but may not have captured all their effects. 481 

EHRs are particularly advantageous in investigating disease trajectories and 482 

progression. Our analyses in this study provided a big picture visualization of the burden of 483 

early diagnoses of disease unique to females at early ages among the high cardiometabolic 484 

PRS group. However, these analyses might point to the ascertainment biases of EHR and 485 

including confounding factors for statistically informed findings. This study illustrates the 486 

influence of cardiometabolic genetic burden on diverse phenotypes. Our findings serve as the 487 

initial basis for presenting the clinical utility of cardiometabolic PRS as non-modifiable risk 488 

factors for screening and early diagnostic tools for a variety of obstetric and gynecological 489 

conditions. To improve the power of cardiometabolic PRS for predicting risk for female 490 

health conditions and better understand the relationship between these phenotypes, future 491 

studies should incorporate PRS with other genetic and non-genetic risk factors and study their 492 

effects on larger and more diverse multi-ancestry populations. 493 

494 
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Figure Legends: 659 

Figure 1: Genetic correlation and the influence of shared genetic burden of 660 

cardiometabolic traits and health conditions unique to females. Panel A shows a heatmap 661 

of genetic correlation from cross-trait LDSC analyses: Blue represents negative correlation 662 

and red represents positive correlation. An * in each box suggests statistical significance of 663 

results based on p-values. Panels B, C and D refer to PRS based meta-analyses between 664 

cardiometabolic PRS and case/controls status of female-specific diseases in overall, EUR and 665 

AFR ancestry individuals respectively. The first panel in these plots corresponds to p-values 666 

and second panel represents beta estimates. The color of each point refers to the PRS for 667 

cardiometabolic traits. 668 

 669 

Figure 2: Inverse relationship between Coronary Artery Disease (CAD) and Breast 670 

Cancer. Panel A shows the heatmap of negative genetic correlation between CAD and breast 671 

cancer from the UKBB Genetic Correlation Browser dataset. The gradient of color refers to 672 

positive (red) to negative (blue) correlation, and the text in each box refers to the genetic 673 

correlation coefficient. Panel B shows the distribution of breast cancer per each PRSCAD 674 

quintile. The x-axis represents each PRS quintile, and the y-axis is the disease prevalence. 675 

The color of each point refers to the ancestry group (All, European, and African), and the 676 
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shape indicates the target dataset (eMERGE (circle) or PMBB (triangle)). Panel C is a Venn 677 

diagram representing the overlap of CAD and breast cancer cases in PMBB and eMERGE 678 

datasets based on disease diagnosis. 679 

 680 

Figure 3: Mendelian Randomization (MR) results for 29 significant PRS based 681 

associations. This figure shows forest plots of association between female health conditions 682 

as outcomes and cardiometabolic phenotypes as exposures in a one-sample MR analyses 683 

shown in Panel A and two-sample MR analyses shown in Panel B. Genetic instruments are 684 

the cardiometabolic PRS in the one-sample MR and genome-wide significant SNPs from 685 

GWAS in the two-sample MR. In panel A, each point refers to beta outcome/SD exposure for 686 

PRSBMI and log(OR) outcome for all other exposure variables for each tests performed as 687 

separated by ancestry. In panel B, each point refers to beta outcome/SD exposure for BMI 688 

and beta outcome/SD log(OR) exposure for all other variables across all methods used in 689 

sensitivity analyses for two-sample MR. P-values are reported in last column in both panels. 690 

 691 

Figure 4: Chronology analyses for the visualization of events from the EHR. Circular 692 

plot showing disease prevalence among high PRSBMI (in yellow) and low PRSBMI (in blue) 693 

categories. General female health conditions are shown in panel A and pregnancy and 694 

childbirth-related phenotypes are shown in panel B. The circular plots are divided into five 695 

age categories (<25, 25-40, 40-55, 55-70, and >70) for general female health conditions and 696 

three age categories (<25, 25-40, and 40-55) for pregnancy-related phenotypes697 
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Tables: 

Table 1: Sample size in PMBB and eMERGE datasets, for overall and stratified by ancestry analyses. 

Phenotype PMBB Sample Size 

(N Cases) 

eMERGE Sample Size 

(N Cases) 

All EUR AFR All EUR AFR 

Cardiometabolic Phenotypes 

BMI 20,209 12,344 6,744 39,403 31,875 5,250 

CAD 21,837 

(3,002) 

13,515 

(1,956) 

7,039 

(955) 

49,171  

(9,597) 

37,003 

(7,524) 

8,308 

(1,308) 

DBP 21,612 13,343 6,994 NA NA NA 

Hypertension 21,837 

(10,278) 

13,515 

(5,640) 

7,039 

(4,286) 

49,171 

 (27,685) 

37,003 

(20,820) 

8,308 

(4,695) 

T2D 21,837 

(4,388) 

13,515 

(1,969) 

7,039 

(2,221) 

49,171  

(12,403) 

37,003 

(8,311) 

8,308 

(2,725) 

Women’s Health Phenotypes 

Breast cancer 21,837 

(1,621) 

13,515 

(1,621) 

7,039 

(415) 

49,171  

(4,148) 

37,003 

(3,532) 

8,308 

(408) 
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Cervical cancer 21,837 

(105 

13,515 

(53) 

7,039 

(50) 

49,171  

(332) 

37,003 

(252) 

8,308 

(52) 

Ectopic  

pregnancy 

2,808 

(1,779) 

1,201 

(827) 

1,319 

(757) 

3,078 

(332) 

1,975 

(521) 

641 

(153) 

Endometrial 

cancer 

21,837 

(286) 

13,515 

(183) 

7,039 

(90) 

49,171  

(771) 

37,003 

(653) 

8,308 

(74) 

Endometriosis 21,837 

(701) 

13,515 

(320) 

7,039 

(340) 

49,171  

(2,314) 

37,003 

(1,805) 

8,308 

(330) 

Excessive fetal 

growth 

693 

(85) 

293 

(37) 

329 

(42) 

2,433 

(627) 

1,618 

(377) 

437 

(150) 

Gestational 

diabetes 

2,655 

(523) 

1,111 

(193) 

1,262 

(248) 

3,174 

(762) 

2,005 

(414) 

719 

(244) 

Gestational 

hypertension 

2,666 

(631) 

1,118 

(256) 

1,275 

(324) 

3,135 

(703) 

1,980 

(383) 

711 

(235) 

Intrauterine 

death 

685 

(57) 

289 

(23) 

324 

(27) 

2,156 

(64) 

1,438 

(38) 

358 

(17) 

Miscarriage 2,934 

(389) 

1,273 

(199) 

1,360 

(151) 

3,568 

(823) 

2,323 

(547) 

740 

(182) 

Ovarian cancer 21,837 

(305) 

13,515 

(191) 

7,039 

(89) 

49,171  

(1,589) 

37,003 

(1,324) 

8,308 

(177) 
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Placenta 

abruption/previa 

1,192 

(396) 

482 

(157) 

586 

(195) 

2,674 

(997) 

1,697 

(616) 

583 

(240) 

Polycystic 

ovarian  

syndrome 

21,837 

(736) 

13,515 

(387) 

7,039 

(272) 

49,171  

(1,006) 

37,003 

(690) 

8,308 

(200) 

Poor fetal 

growth 

792 

(202) 

325 

(78) 

388 

(107) 

2,209 

(167) 

1,478 

(102) 

360 

(21) 

Postpartum 

depression 

924 

(384) 

374 

(136) 

466 

(226) 

2,417 

(555) 

1,579 

(319) 

457 

(157) 

Postpartum 

hemorrhage 

846 

(283) 

350 

(108) 

408 

(146) 

2,320 

(401) 

1,544 

(250) 

408 

(104) 

Preeclampsia 2,631 

(452) 

1,100 

(149) 

1,264 

(272) 

3,132 

(702) 

1,974 

(377) 

713 

(13) 

Preterm birth 687 

(66) 

284 

(21) 

332 

(40) 

2,144 

(57) 

1,433 

(30) 

350 

(13) 

Stillbirth 649 

(17) 

270 

(3) 

311 

(12) 

2,123 

(8) 

1,417 

(6) 

347 

(0) 

Uterine cancer 21,837 

(113) 

13,515 

(66) 

7,039 

(43) 

49,171  

(418) 

37,003 

(340) 

8,308 

(58) 

Uterine fibroid 21,837 

(1,570) 

13,515 

(516) 

7,039 

(984) 

49,171  

(5,711) 

37,003 

(3,912) 

8,308 

(1,347) 
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Table 2: GWAS summary statistics datasets that are used for the calculation of genetic correlations and polygenic risk scores and the number of 

SNPs used from each GWAS to calculate the corresponding PRS. 

Vaginal cancer 21,837 

(23) 

13,515 

(13) 

7,039 

(9) 

49,171  

(109) 

37,003 

(86) 

8,308 

(17) 

Vulvar cancer 21,837 

(41) 

13,515 

(25) 

7,039 

(14) 

49,171  

(120) 

37,003 

(92) 

8,308 

(19) 

Phenotype Ancestries 

Included 

Source Sample Size 

(Number of 

Cases) 

PMID N SNPs included 

in PRS 

Type 2 Diabetes EUR, AFR, EAS, 

SAS, HIS 

Vujkovic et al., Nat Gen, 2020, MVP 1,407,282 

(228,499) 

32541925 PMBB: 

1,023,697 

eMERGE: 

716,330  

Body Mass Index EUR, AFR, EAS, 

SAS, HIS 

Justice et al., Nat Com, 2017, GIANT 241,258 28443625 PMBB: 885,143 

eMERGE: 

614,668 
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**DBP= Diastolic Blood Pressure; SBP= Systolic Blood Pressure; PP= Pulse Pressure; EUR= European ancestry; EAS= East Asian ancestry; 

SAS= South Asian ancestry; HIS= Hispanic ancestry; AFR= African ancestry; MVP= Million Veterans Program; GIANT=The Genetic 

Investigation of ANthropometric Traits; UKB= UK BioBank 

Hypertension (DBP, 

SBP, PP) 

EUR, AFR, EAS, 

SAS, HIS 

Giri et al., Nat Gen, 2019, MVP 318,891 30578418 PMBB: 

1,024,567 

eMERGE: 

715,471 

Coronary Artery 

Disease 

EUR, EAS, SAS, 

HIS, AFR 

van der Harst et al., Circ Res, 2018, 

CARDIoGRAMplusC4D + UKBB 

547,261 

(122,733) 

29212778  PMBB: 981,480 

eMERGE: 

681,029 
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Table 3: Effect estimates for testing association of PRS with its primary phenotype in eMERGE and PMBB datasets 

Phenotype Ancestry N Total N Cases 

R2 or AUC 

of Full 

Model 

Beta SE P-value 
R2 or AUC of 

Null Model 

R2 or AUC 

of PRS only 

Model 

eMERGE                   

BMI All 39,403   0.08494 2.378 0.05044 0 0.0334 0.0593 

  EUR 31,875   0.07208 2.336 0.05144 0 0.0121 0.0583 

  AFR 5,250   0.07424 2.76 0.25 5.01E-28 0.0529 0.0201 

CAD All 49,171 9,597 0.784 0.3091 0.01318 1.62E-121 0.7745 0.5474 

  EUR 37,003 7,524 0.7722 0.3096 0.01427 2.82E-104 0.7608 0.5614 

  AFR 8,308 1,308 0.8299 0.308 0.04789 1.24E-10 0.827 0.5442 

DBP (Hypertension) All 49,171 27,685 0.8109 0.1387 0.01347 7.17E-25 0.8099 0.529 

  EUR 37,003 20,820 0.7961 0.1464 0.01487 7.02E-23 0.7946 0.5339 

  AFR 8,308 4,695 0.8634 0.1503 0.04098 0.000245 0.8628 0.5114 

PP (Hypertension) All 49,171 27,685 0.8115 0.1644 0.01344 2.15E-34 0.8099 0.526 

  EUR 37,003 20,820 0.7969 0.1712 0.01438 1.13E-32 0.7946 0.5273 

  AFR 8,308 4,695 0.8629 0.09689 0.04871 0.0467 0.8628 0.5049 

SBP (Hypertension) All 49,171 27,685 0.8131 0.2977 0.01665 1.86E-71 0.8099 0.5352 

  EUR 37,003 20,820 0.7992 0.3156 0.01793 2.28E-69 0.7946 0.5428 

  AFR 8,308 4,695 0.8637 0.2845 0.06227 4.91E-06 0.8628 0.5116 

T2D All 49,171 12,403 0.7193 0.6334 0.01914 3.02E-240 0.691 0.6163 

  EUR 37,003 8,311 0.6869 0.6311 0.0205 3.56E-208 0.6414 0.6033 

  AFR 8,308 2,725 0.7795 0.6318 0.06546 4.83E-22 0.7728 0.5597 

PMBB                   
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BMI All 20,209   0.1542 2.658 0.08244 2.05E-222 0.1108 0.1417 

  EUR 12,344   0.07473 2.621 0.08679 2.66E-193 0.006422 0.06782 

  AFR 6,744   0.03203 2.708 0.2089 5.75E-38 0.008037 0.02711 

CAD All 21,837 3,002 0.8235 0.3571 0.02354 5.73E-52 0.8148 0.5619 

  EUR 13,515 1,956 0.8303 0.3894 0.02732 4.44E-46 0.8185 0.5929 

  AFR 7,039 955 0.799 0.2566 0.05214 8.60E-07 0.7955 0.5389 

DBP All 21,612   0.0425 1.036 0.06661 3.05E-54 0.03183 0.02905 

  EUR 13,343   0.01534 0.9964 0.08064 7.01E-35 0.004144 0.01213 

  AFR 6,994   0.04559 1.104 0.129 1.35E-17 0.03571 0.01375 

PP (Hypertension) All 21,837 10,278 0.8125 0.1942 0.02328 7.18E-17 0.8112 0.602 

  EUR 13,515 5,640 0.7797 0.1918 0.02638 3.53E-13 0.7778 0.5272 

  AFR 7,039 4,286 0.8389 0.1886 0.05376 0.00045 0.8383 0.5391 

SBP (Hypertension) All 21,837 10,278 0.8144 0.327 0.02523 2.08E-38 0.8112 0.6097 

  EUR 13,515 5,640 0.7813 0.279 0.02846 1.11E-22 0.7778 0.5397 

  AFR 7,039 4,286 0.8415 0.4505 0.05923 2.81E-14 0.8383 0.5649 

T2D All 21,837 4,388 0.754 0.8136 0.03523 5.49E-118 0.7287 0.6713 

  EUR 13,515 1,969 0.712 0.8418 0.04533 5.55E-77 0.6634 0.6323 

  AFR 7,039 2,221 0.7342 0.7896 0.05947 3.11E-40 0.7168 0.5919 

**BMI= Body Mass Index; CAD= Coronoray artery disease, T2D=Type 2 Diabetes; DBP= Diastolic Blood Pressure; SBP= Systolic Blood 

Pressure; PP= Pulse Pressure; EUR= European ancestry; AFR= African ancestry; Beta coefficients and standard errors are per SD PRS in the 

full model. Covariates included: birth year and the first five PCs. 
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Table 4: FDR-significant (FDR P-value < 0.05) associations between cardiometabolic PRS and female health conditions identified in the PMBB 

and eMERGE meta-analysis 

PRS Association Ancestry Beta  SE OR 95% CI P-value 

BMI Breast cancer All -0.071 0.0225 0.93 0.891-0.973 0.00159 

Endometrial cancer All 0.244 0.0458 1.28 1.17-1.4 9.4x10-8 

EUR 0.276 0.087 1.32 1.11-1.56 0.00152 

Gestational diabetes All 0.23 0.0508 1.26 1.14-1.39 6x10-6 

EUR 0.277 0.0622 1.32 1.17-1.49 8.69x10-6 

PCOS All 0.272 0.0387 1.31 1.22-1.42 2.37x10-12 

EUR 0.294 0.0451 1.34 1.23-1.47 6.76x10-11 

CAD Breast cancer All -0.0718 0.0147 0.931 0.904-0.958 9.96x10-7 

EUR -0.0699 0.0168 0.932 0.902-0.964 3.11x10-5 

Postpartum 

depression 

EUR 0.178 0.0577 1.19 1.07-1.34 0.00201 

PP Gestational 

hypertension 

All 0.218 0.0443 1.24 1.14-1.36 8.51x10-7 

EUR 0.235 0.0558 1.26 1.13-1.41 2.54x10-5 

Preeclampsia All 0.196 0.0581 1.22 1.09-1.36 0.000762 
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SBP Gestational 

hypertension 

All 0.332 0.0825 1.39 1.19-1.64 5.61x10-5 

EUR 0.306 0.0661 1.36 1.19-1.55 3.61x10-6 

AFR 0.398 0.099 1.49 1.23-1.81 5.7x10-5 

SBP Preeclampsia All 0.275 0.0799 1.32 1.13-1.54 0.000567 

EUR 0.229 0.0712 1.26 1.09-1.45 0.0013 

AFR 0.358 0.102 1.43 1.17-1.75 0.000517 

T2D Breast cancer All -0.0726 0.0213 0.93 0.892-0.97 0.000657 

EUR -0.0787 0.0263 0.924 0.878-0.973 0.00272 

Gestational diabetes All 0.587 0.063 1.8 1.59-2.03 1.19x10-20 

EUR 0.678 0.0759 1.97 1.7-2.29 3.88x10-19 

Gestational 

hypertension 

All 0.184 0.0642 1.2 1.06-1.36 0.00414 

EUR 0.178 0.0671 1.19 1.05-1.36 0.00798 

PCOS All 0.223 0.0428 1.25 1.15-1.36 1.93x10-7 

EUR 0.209 0.0485 1.23 1.12-1.36 1.56x10-5 

AFR 0.32 0.104 1.38 1.12-1.69 0.00206 

 Postpartum 

depression 

All 0.18 0.07 1.2 1.04-1.37 0.0101 
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**BMI= Body Mass Index; CAD= Coronoray artery disease, T2D=Type 2 Diabetes; PCOS=Polycystic ovarian syndrome; EUR= European 

ancestry; P= PMBB; E= eMERGE; Beta coefficients are per SD PRS. Results were adjusted for birth year and the first five PCs. 
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Figure 1: 
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Figure 3: 
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Figure 4: 
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