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Abstract

Background: The COVID-19 pandemic is one of the worst public health crises the world
has ever faced. A major hindrance in making apt decisions by health control systems is
the fact that protocols tested in other epidemics are no guarantee of success to control
the COVID-19 epidemic, given its singular nature and complexity. The occurrence of
two or more waves of infections all over the world poses an even greater challenge. An
effective way to assist health authorities in adopting public policies to face the COVID-19
pandemic depends on smart analytics and visualization.

Purpose: We present the software Modinterv as a tool to monitor, in an automated and
user-friendly manner, the evolution and trend of COVID-19 epidemic curves, both for
cases and deaths.

Methods: The Modinterv software uses parametric generalized growth models, together
with machine learning algorithms, to fit epidemic curves with one or two waves of infec-
tions of cases and deaths for countries around the world as well as for states and cities
in Brazil and the USA. The richness of the implemented models lies in the possibility of
detecting the distinct acceleration regimes of the disease in places where there are one or
two waves of infections.

Results: We show how growth models can be combined with machine learning algorithms
in an automated software that can identify the current stage of the COVID-19 epidemic
curve in the selected place. We describe the backend structure of software as well as its
practical use. The software helps the user not only to understand the current stage of the
epidemic in the chosen location but also to make short term predictions as to how the
curves may evolve.

Keywords: COVID-19, Epidemic curve, Growth models, Intervention strategies,
Machine learning

1. Introduction

The complex evolution pattern of an epidemic outbreak, such as the ongoing COVID-
19 pandemic, requires a dynamic response of public health policies based on reliable
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factual evidence and accurate information analysis. Generally speaking, one can identify
different stages of response to an outbreak, ranging from the detection of the first cases,
involving surveillance systems and especially qualitative measures of risk assessment, fol-
lowed by the assessment of the dynamics of transmission in the intervention phases, where
more complex analyses are required to inform and guide the authorities as to the adop-
tion of appropriate non-pharmacological interventions (e.g., intermittent lockdowns) and,
if available, pharmacological measures as well (e.g., vaccination strategies), up to the
registration of the last cases that recover or dies (assuming the disease does not become
endemic). Finally, a post-intervention stage emerges, where lessons learned can help and
improve protocols and preparation for a possible next epidemic.

An important feature of the modern response to epidemics is the increasing focus on
exploiting all available data, including geo-referenced information of specific population
groups, such as countries, cities, and even smaller administrative units (e.g., neighbor-
hoods or census sectors). Taking into account this wealth of information can help in a
macro view of the situation, enabling rapid responses and evidence-based decision mak-
ing [5], [7]. The use of data and modeling techniques, together with information tools that
range from data collection at service points to the generation of informative situational re-
ports (apps, dashboards, tweets, etc.) [32], 4], allows for a better dissemination of reliable
information and contributes to an accurate public perception of the epidemic situation.

From this perspective, we can obtain important insights about the evolution of an
outbreak in a given population group by analyzing the corresponding epidemic curves, as
represented by either the cumulative or the daily number of cases or deaths as a function
of time [12, I1]. Epidemic curves are useful in many aspects because they provide a
simple visual outline of demographic dynamics, which can be used to assess the growth
or decline of an outbreak [16] as well as to assess the effect of intervention measures. In
addition, epidemic curves also form the raw material used by a wide range of modeling
techniques for monitoring and forecasting [28, 27, [15, B1]. Having good mathematical
models to describe the empirical data is a necessary condition for this endeavor. In this
context, phenomenological growth models are an important tool to analyze epidemic data
[6], 28], 27], because contrary to other epidemiological models, such as compartment models
[13, 9] and agent-based models [14],22], growth models often admit an analytic solution—a
fact that simplifies both the model analysis and its numerical fitting to the data.

In this paper, we present an automated software application, called Modinterv, that
enables the user to monitor the COVID-19 epidemic curves of cases and deaths for different
countries around the world as well as for states and cities in Brazil and the USA. The app
implements a general class of growth models (to be discussed later) to fit the case and
death curves of the selected location. The implemented models can be divided into two
main subclasses, depending on whether the chosen data has one or two waves of infections.
To fit single-wave curves, the app implements four specific models, as follows: i) the g¢-
exponential model, which is suitable for the early rapid-growth phase of the epidemic; ii)
the Richards model and iii) the generalized Richards model, which are used for epidemics
that are in the intermediate stage; and iv) the beta logistic model (BLM), which is
appropriate for the late stage of the epidemic when the cumulative curve is approaching
a plateau. For locations where, after an initial leveling-off of the curve, there has been
a resurgence of cases and deaths, indicating a second wave of infections, the app uses
a generalized version of the BLM where the model parameters become time dependent,
so as to capture the two-wave pattern. The current version of the Modinterv app uses
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models with only up to two waves. Implementing automatic models with higher number
of waves, although possible in principle, is a more complex computational undertaking
that is beyond the scope of the present paper.

Once the user chooses the type of data (i.e. cases or deaths) and the desired location,
the app automatically decides, based on a machine learning (M.L.) algorithm, whether
the corresponding data has one or two waves and then fits the data with the appropriate
best model selected among the ones mentioned above. From the best fitted model, the app
provides the user with relevant information about the epidemic evolution in the chosen
location. For example, the app presents an output plot with the theoretical curve, as
obtained from by the best-fit model, superimposed with the empirical data, where special
marks (colored vertical lines) are drawn to indicate the different acceleration regimes of
the epidemic curve. Furthermore, by comparing the location of the last data point in
relation to these special points, the app then informs the user the current stage of the
epidemic, according to a refined classification scheme that considers not only the curve
acceleration but also its second and third derivatives, known as the jerk (or jolt) and the
jounce (or snap), respectively. The app also allows the user to perform additional analyses
of the fitted results by clicking on extra check boxes or moving certain sliding bars.

It will be argued that the mathematical analysis provided by our application can be
useful to public health authorities, not only because it indicates the current dynamical
stage of the epidemic in a given place but also because it can help to predict its likely
evolution in the near future. This type of information, combined with other analyses,
can in turn help the authorities in their decision making process regarding, say, the
adoption or relaxation of non-pharmacological interventions [25] and other containment
measures. [t should also be emphasized from the outset that the Modinterv app, by directly
implementing mathematical models, provides information about the epidemic dynamics
which cannot be obtained neither from a mere visual inspection of the raw empirical curve
nor by using only its moving-average smoothed version.

The paper is organized as follows. In section [2] we discuss some general properties
of epidemic curves, with emphasis on their different dynamical regimes for the cases of
one and two waves of infections. In section [3| an overview of the mathematical models
implemented in the Modinterv application is presented, while a more thorough discussion
of the models is given in the Appendices. A detailed description of the backend structure
of the app is presented in section [d] where the several Python modules used by the app are
discussed. This section also contains a brief description of the machine learning algorithm
implemented in the app to distinguish between curves with one and two waves. In section
b}, we give an overview of the general features of the software and how the user can interact
with these features. The user interface is divided into two sections, one for Countries and
the other for States and Cities in Brazil and the USA, and the functioning of each section
is discussed in detail. Illustrative examples for locations with one and two epidemic waves
are given in section [0, where a detailed guide to generate and customize the output graphs
is also presented. Finally, the main conclusions of the paper are summarized in section [7]

2. Epidemic curves and their dynamical stages

Here we discuss some general properties of typical epidemic curves and their different
dynamical growth stages. First, we shall consider the case in which the epidemic has only
one wave of infection and describe the main acceleration regimes of the corresponding
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cumulative curve of cases or deaths. After that, we we will extend the discussion to the
case of epidemic curves with two waves.

2.1. Single-wave epidemic curves

In the case of a single-wave epidemic, the cumulative curve, whether for the number
of cases or deaths, typically has sigmoidal-like shape, as shown Fig. (a). Such a curve
has three clear distinct regions, namely: i) an early period of rapid, accelerated growth;
ii) an intermediate region where the curve grows approximately linearly in time; and iii)
a late growth phase when the curve “bends away” from the linear profile and tends to a
saturation plateau. One can give a better characterization of these three growth phases
in terms of the corresponding acceleration regimes, as described next.

The early growth phase corresponds to a regime of increasing acceleration, when the
acceleration grows from nearly zero at the onset of the epidemic and reaches a maximum
value at some time, denote by ¢; and depicted in Fig. 1| by a a dashed orange vertical line.
After this time, the epidemic enters its intermediate phase characterized by two acceler-
ation regimes: i) first we have a regime of decreasing acceleration, where the acceleration
decreases (from the maximum at t3) and reaches zero at time ty = t., indicated by a
yellow vertical line in Fig. [I} which represents the inflection point of the growth profile.
After the inflection point, the acceleration becomes negative and increases in magnitude,
thus starting the regime of increasing deceleration, which ends at the time, t3, indicated
by the green vertical line in Fig. , when the deceleration is maximum (the acceleration
is minimum). After t3, it begins the late growth phase where the deceleration starts to
decrease and will approach zero towards the end of the epidemic.

The late growth phase is of particular interest because it indicates that the epidemic
has well passed its “peak” (corresponding to the yellow line in Fig. 1)) and is now entering
its final phase (supposing there is no resurgence of infections). Because of its relevance for
monitoring the possibly approaching end of the epidemic, it is convenient to divide this
regime of decreasing deceleration into two distinct dynamical stages, according to whether
the rate of change of the acceleration, known as jerk, is increasing or decreasing. In the
first of such stages, the jerk increases from zero (at the time ¢3) and reaches its maximum
at some time which we denote by t4 (indicated by the blue vertical line in Fig. . As the
effect of the positive jerk is to start to bend the curve away from its near-linear profile
seen in the intermediate phase [27], we shall refer to this regime of decreasing deceleration
and increasing jerk as indicating a transition to saturation. The second stage of the late
growth phase, which starts at t4, corresponds to a regime of decreasing deceleration and
decreasing jerk, which will be referred to as the saturation of the epidemic. In this final
stage the first three derivatives of the growth profile are all decreasing functions of time (in
absolute values), indicating that the epidemic curve is indeed approaching its saturation
plateau.

In summary, the characteristic points that we shall use to classify the dynamical
stages of an epidemic curve are as follows: i) the point #; of maximum acceleration;
ii) the point ty = t. of zero acceleration (corresponding to the inflection point of the
cumulative curve); iii) the point ¢3 of minimum acceleration (or maximum deceleration);
and iv) the point £; of maximum jerk in the deceleration phase. In order to classify the
current stage of an ongoing epidemic, one first needs to fit the empirical data with an
appropriate mathematical model from which these characteristic points can be computed;
see Sec. [3|and the Appendices. Then, by comparing the position of the last data point of
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the empirical curve, to be referred as the ‘current time’ ¢;, with the characteristic points
of the theoretical curve, one can estimate the current stage of the epidemic with more
precision than, say, just by visual inspection of the data. Furthermore, this classification
scheme has the advantage that it can be implemented automatically, i.e., without human
assistance, as will be discussed later.

In summary, the ModlInterv software (to be discussed later) classifies a given single-
wave epidemic curve according to the following five epidemic stages:

1. Increasing acceleration: ¢y < ;.
Decreasing acceleration: t; <ty < ts.
Increasing deceleration: ¢y < t; < t3.
Transition to saturation: t3 <t < 4.
Saturation: ty > 4.

Gl N

In order to describe epidemic data with only one wave of infections, the Modinterv
implements four mathematical growth models to fit the empirical curve of case and death
curves for the selected location. The choice of the model that best fits the respective
chosen data depends on the respective current stage of the empirical curve, as discussed
in more detail below. In the case of a single-wave epidemic curve all four models have
analytic solution, from which the characteristic points ¢; (vertical lines in Fig. [1)) can be
computed. Each particular model is more appropriate for a given curve depending on its
current dynamical stage, as will be discussed later.

2.2. Multiple-wave epidemic curves

The above classification scheme can be naturally extended to the case where the
epidemic curve has more than one wave. An example of a cumulative curve with two
waves is shown in Fig. (a). In this case, each wave will in general undergo the five
dynamical stages described in the preceding section. In other words, at some point after
the first wave enters the saturation regime, the empirical curve reverses trend and starts to
accelerate again, reflecting a resurgence of infections, and a new sequence of acceleration
regimes ensues, until the epidemic enter its final saturation stage and can be said to
be definitely under control (assuming there is no subsequent wave). Thus, in this case
(H)}, i = 1,..,5, for the first and
second waves, respectively The characteristic points tl(-H) of the acceleration regime for
the second wave are indicated in Fig. [Ja) by colored vertical solid lines, whereas the
characteristic points tEI) of the first wave are represented by dashed vertical lines. In this
figure, the parameters K; represents the plateau of the first wave, which is an estimate
of the number of cases/deaths if the second wave had not happened; whereas K, is the
actual final plateau after the second wave. Also indicated in Fig. [2f(a) is the location (the
red circle from which descends a dashed black line) of the beginning of the second wave.
The daily curve corresponding to the cumulative of Fig. (a) is shown in Figure (b),
where the peak of each wave is indicated by inverted red triangles.

As will be discussed below, the two-wave model used by the app Modinterv does not
have an exact solution, so that the calculation of the characteristic points ¢; has to be
performed numerically. More specifically, in the case of empirical epidemic curves with
two waves, after the numerical fit is done, an interpolation of the corresponding theoretical
curve generated by the fitted model is made using splines. The location of the maxima
and minima of the second and third derivatives of the spline interpolation are computed,

bt

we now have two sets of characteristic points {tEI),t

%


https://doi.org/10.1101/2022.01.31.22270192

medRxiv preprint doi: https://doi.org/10.1101/2022.01.31.22270192; this version posted February 6, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
All rights reserved. No reuse allowed without permission.

8000 -

.
[]
Qo
€
2 6000 -
[
>
=
& 4000 -
=}
€
3
' 2000-
0-
0 20 40 60 80 100
Time (days)
(a)
.
[
Q
[S
>
c
>
‘©
)
0 20 40 60 80 100
Time (days)
c
2
S
©
o
[}
o
1)
<

0 20 40 60 80 100
Time (days)

(c)

Figure 1: (a) Schematic of a cumulative epidemic curve with one wave of infection, illustrating its
four main acceleration regimes, as separated by the dashed colored vertical lines; see main text for a
description of the corresponding acceleration regimes. The point t. indicates the inflection point of
the cumulative curve. (b) Velocity and (c) acceleration curves, corresponding to the first and second
derivatives, respectively, of the cumulative curve shown in (a).

thus determining the position of the four vertical lines for each of the waves, as illustrated
in Fig. As in the case of a single-wave epidemic discussed above, the current stage
of the second wave in a given location is determined by comparing the last data point
(or current time) with the respective characteristic points of the theoretical curve that
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Figure 2: Same as Fig. [I| for (a) cumulative and (b) daily epidemic curve for the case of two waves of
infections. The dashed (solid) colored vertical lines indicate the acceleration regimes during the first
(second) wave. The red dot indicates the beginning of the second wave, while inverted triangles in (b)
indicate the respective peaks of the first and second waves.

best fits the data. The classification of the dynamical stages for epidemic curves with
two waves discussed above, see Fig. [2] naturally extends to three or more waves, where
each wave would have its corresponding sequence of acceleration regimes. However, as
will be argued later, devising an automated software to classify epidemic data with more
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Figure 3: Schematic figure indicating the g-exponential, Richards and generalized Richards models as
particular cases of the beta logistic model.

than two waves is a more challenging and numerically demanding task that will be left
for future work.

3. Mathematical models implemented in the app: an overview

As already mentioned, in order to classify the dynamical stage of a given epidemic
curve, it is first necessary to adjust a mathematical model to the empirical data. The
ModInterv app implements two general classes of deterministic growth models, depending
on whether the chosen data has been identified as presenting one or two waves of infec-
tions. (A machine learning algorithm is used to automatically classify epidemic curves
according to the number of waves, as will be described in Sec. [4.4] after which the relevant
class of models is applied.) Here we give a brief overview of the models implemented by
ModInterv, while referring the interested reader to Appendices A and B for their mathe-
matical aspects.

To fit single-wave curves, the app implements a generalized logistic model with con-
stant parameters, known as the beta logistic model (BLM), which is one of the most
general mathematical growth models and includes several well-known growth models as
particular cases [23] 27]. As the full BLM is more suitable to epidemic curves that are in
the late growth phase, the app also implements separately three particular cases, which
are in general applicable to curves in less advanced stages. The relevant particular cases of
the BLM are as follows (in decreasing degree of complexity): i) the generalized Richards
model (GRM); ii) the Richards model (RM); and iii) the g-exponential model, as illus-
trated in Fig. [3] The latter model describes monotonically increasing curves and so it
is only suitable for curves in the early growth phase (i.e., with increasing acceleration);
whilst the three other models (BLM, GRM, and RM) describe sigmoidal curves with dif-
ferent degrees of mathematical complexity; see for a detailed description of
the four single-wave models above.

For a given empirical curve with only one wave, the Modinterv seeks to determine the
corresponding best model by successively applying the four single-wave models above,
from the most complex to the simplest. More specifically, first the app tries to fit the
data with the BLM. If the BLM does not converge, indicating that the epidemic curve is
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probably not yet in the saturation phase, then the app tries to fit the data with the next
less complex model, namely the GRM. Similarly, if the GRM does not converge either,
then the RM is applied. If the RM also fails, this is taken as an indication that the curve
is in the early growth phase, when the acceleration is still growing (and hence no inflection
point is present), in which case the g-exponential model is applied.

For epidemic curves with two waves, the app implements a generalized version of the
BLM where the model parameters are now taken to be time dependent. More specifically,
each of the five parameters of the BLM are assumed to vary in time, according to a
logistic-like function, between two plateaus, corresponding to the parameter values for
the first and second waves, respectively; see [Appendix B| Thus, if the machine learning
algorithm classifies a given epidemic curve as having two waves, the app fits the data with
the two-wave BLM.

The two-wave model mentioned above can be naturally extended to include an arbi-
trary number N of waves, by assuming that the time dependence of the parameters is
a generalized logistic-like function with N > 2 plateaus [24]. It should be noted, how-
ever, that implementing a fitting algorithm that operates without human assistance for
a generic N-wave models poses two main technical challenges. First, one needs an “in-
telligent” algorithm for deciding how many waves there are in a given empirical curve.
As will be discussed in Sec. in our app Modinterv we have implemented a machine
learning algorithm that can distinguish between epidemic curves with one and two waves,
but an extension to three or more waves, although possible in principle, would render the
app too slow for the online user due to the extensive amount of data required to train the
machine learning model. The second technical difficult is the number of free parameters
which rapidly increases with the number N of waves; see [Appendix B| This poses an
additional challenge for devising an automated fitting procedure that can handle such a
large number of parameters without incurring in excessive overfitting. For these reasons,
the current version of the Modinterv is limited to up to only two waves. (Current work is
being carried out to extend the app to process data with a large number of waves, but
this is beyond the scope of the present paper.)

One important point to note here is that once a mathematical model (between the
one and two-wave models) is adjusted to the data for a given location, several important
information concerning the epidemic evolution in that location can be extracted from
the model. For instance, if one of the three single-wave models (i.e., BLM, GRM, or
RM) that describe sigmoidal curves is selected, the characteristic points ¢; that define the
various acceleration regimes of the curve (see vertical lines in Fig. |1|) are given by analytic
expressions in terms of the model parameters; see . (If the g-exponential
model is selected, then the curve is necessarily in the regime of increasing acceleration,
as discussed above.) For the two-wave model, the set of characteristic points {tl(-l), t§”>}
for the two waves have to be determined numerically, but this is not a difficult task,
as discussed in the preceding section. Thus, in either case (i.e., for one- and two-wave
curves), once a mathematical model is fitted to the data, the current stage of the epidemic
curve can be readily determined, according to the classification scheme discussed in Sec. [2]
In all cases, the name of the best fitted model and the corresponding epidemic stage of the
curve are shown in the legend box of the output plot. Additional relevant information,
such as the dates of the peaks of the daily curve as well as the starting date of the second
wave (when there is one), is also given in the output plot, as will be described in Sec. .
But before going into that, we would like to present the general backend structure of the
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Figure 4: Simplified schematic description of the workflow of the software behind the app Modinterv.

Modlnterv software.

4. Software system: backend structure

In this section we will explain in detail the workflow of the software behind the app
Modinterv and all the tools used in its implementation. A simplified schematics of the
functioning of the app is shown in figure [l A detailed description of the different app
components is given below.

4.1. Initialization

When the app is accessed (via browser or Android App), the user interface starts to
load and the square buttons that appear along the page will read “Loading Widgets...”,;
after a few seconds the text in the square buttons will change to “Show Widgets”. When
the user clicks any of these buttons, the text in all of them changes to “Initializing
Widgets...”; and after a short while a brief introductory text about the app appears,
along with a loading bar. While this loading bar appears, the machine learning model is
being trained (this procedure will be discussed in detail in a later section). Finally, after
a few more seconds, the rest of the app will be loaded and ready to be used, as explained
below.

4.2. User interface
The user interface of the App Modinterv was designed using objects called Widgets,
which are implemented in the Python module ipywidgets. This module offers a vast
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widgets.Floatslider(

value=7.5,

min=0,
widgets.ToggleButton( max=10.0,
value=False, step=0.1,

description='Test:"',
disabled=False,
continuous_update=False,

description="Click me’,

disabled=False,

button_style="", # ‘success’, 'info’, ‘warning’, ‘danger’ or "'
tooltip="Description’,

icon="check' # (FontAwesome names without the “fa-~ prefix)

orientation="horizontal",
readout=True,
readout_format=".1f",

+ Click me Test: 75
(a) Button Widget. (b) Slider Widget.
widgets.Checkbox( widgets.Dropdown(
value=False, options=['1', '2', '3'],

value="2",
description="Number:"',
disabled=False,

description="Check me',
disabled=False,
indent=False

) )

(O Check me Number: | 2 v

(¢) Checkbox Widget. (d) Dropdown Widget.

Figure 5: Illustrations of some of the Widgets from the iPywidgets module used in the app

miscellaneous of Widgets to accomplish the most diverse tasks. In the development of
the app Modinterv we have used only five types of Widgets, namely: HTML, Button,
IntSlider, Dropdown and Checkbox.

The HTML Widgets is used to display dynamic text throughout the app, avoiding
the whole page to be reloaded when the user changes the language (from Portuguese to
English or vice-versa). The other four Widgets are used to receive inputs from the user,
such as the type of the epidemic curve to be fitted (i.e., whether Cases or Deaths), the
Country, State or City chosen, the number of days in the epidemic curve to be considered
in the fit, among others. Illustrations of each widget are shown in figure

4.8. Data acquisition

The COVID-19 data for Countries used in the Modinterv are obtained from the database
made publicly available by the Johns Hopkins University [10], which lists in automated
fashion the number of the confirmed cases and deaths for each country in their database.
The data used for States and Cities in Brazil were obtained from the GitHub database
maintained by Wesley Cota [8], which is also automated and updated daily. Each time the
app is initialized, both databases mentioned are accessed and the data for all Countries,
States and Cities become available for the user.

4.4. Machine learning algorithm for detecting epidemic waves

The classification of curves that feature one or two epidemic waves is quite a challenge
to be implemented automatically in an algorithm using purely mathematical and com-
putational techniques. Although a trained human eye can easily identify when there are
multiple waves of infections in a given empirical epidemic curve, this is non-trivial task to
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be performed using purely mathematical quantities, such as derivatives, averages, etc. To
solve this issue, we have implemented a machine learning algorithm that, after trained,
classifies epidemic curves as having one or two waves.

The algorithm is based on the Python module scikit-1learn, which implements sev-
eral ML models. Among these models, we have selected three of them, namely: K-Nearest
Neighbors [18], Decision Tree [21] and Random forest [3]. These are all supervised learn-
ing models, which in this specific problem are used for binary classification. Each set of
entries related to an epidemic curve in the training dataset is labeled according to the
presence (label ‘yes’) or absence (label ‘no’) of a second wave of infections or deaths.

The database used to train the ML models is composed of cumulative curves generated
by the one- and two-wave beta logistic models described in Sec. [3] and the Appendices.
In order to achieve a diverse scenario of epidemic curves to train the ML algorithm, we
have used random parameters within their range of definition for each model. From each
generated epidemic curve, we select a set of representative points (as explained below)
to be passed to the ML models as features, together with a label, which is selected as
follows: if the corresponding curve was generated by a one-wave model, then the label is
no; whereas when the epidemic curve is generated by a two-wave model, the label chosen
in yes.

Note that this label provides an answer to the following question: Does this curve
exhibit a second wave? FEach time the user selects a type of data (cases or deaths) and
a location, the corresponding set of points selected from the chosen empirical curve is
passed to the already trained ML algorithm and the same question is asked. The train-
ing database can be found online at https://gist.github.com/ArthurAraujoBrum/
12d867cc198f1ac2e3730ad067eed46d.

Before passing the points to the machine learning models, the curves (both the ones
from the training database and the empirical ones) are normalized, so that the last point
of each curve is assigned the value 1, instead of the actual number of cases or deaths.
This procedure helps the ML models to learn and, after they have learned, to compare
new curves to the ones already trained, by eliminating the great difference between the
number of cases or deaths in distinct locations.

In order to speed up the process, for each epidemic curve (either in the training or
classifying stages), we feed into the ML algorithm only a set of 20 points equally spaced
along the curve. As an example, we show in Figs. [6a] and [6D] the empirical epidemic curve
and the set of selected points (without rescaling), respectively, for the cumulative number
of COVID-19 deaths in Brazil up to 08/03/21 .

It is important to note, however, that these selected points are used only by the
ML algorithm to identify whether the corresponding curve (from which the points were
extracted) has one or two waves of infections. Once that decision is made, the subsequent
numerical fits are performed using the entire curve (without rescaling), as discussed next.

4.5. Numerical fitting

If the ML algorithm identifies the chosen curve as having two waves, then the two-wave
growth model is applied. If instead the curve is classified as having only one wave, then
the four one-wave models are tested, according to the sequence described in Sec. 3] so as
to decide which one is the most suitable for the chosen dataset.

In all numerical fits, for both the one-wave and two-wave models, the app employs
the Levenberg-Marquardt (M) algorithm to solve the non-linear least square optimiza-
tion problem, as implemented in the 1mfit package for the Python language, which has
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Figure 6: Selection of points from epidemic curvers to be passed as input for the machine learning models.

a built-in routine for estimating the errors of the fitted parameters via the covariance
matrix [I7]. The results of the fitting procedure are deemed acceptable when the errors
in the parameters are smaller than the estimated values themselves; otherwise, a warn-
ing message is displayed to alert the user that the corresponding numerical fit should be
viewed with some caution because of large errors in one or more parameters.

In the case of one-wave models, all free parameters are constant in time, so that a
straightforward fitting procedure is performed: the empirical data and the specific model
to be fitted are passed onto the LM routine, which then returns the estimated parameters
and their errors. The number of parameters to be fitted depends on the chosen model. As
discussed in , the BLM has five parameters, {r, ¢, o, p, K'}; the GRM requires
four parameters, {r, ¢, a, K}; the GM contains three parameters, {r, o, K}; whereas the
g-exponential has only two parameters, {r,q}. The epidemiological meaning of these
parameters are discussed in [Appendix A] Because there are several parameters to be
fitted, special care must be taken concerning the issue of over-fitting [27]. To minimize
this risk, the parameters of the one-wave models are restricted to certain allowed ranges.
More specifically, we have found that the restrictions p > 1,0 < ¢ < 1,0 < a <1, and
0 < r < 1 are useful criteria to reduce over-fitting; see discussion in [Appendix A.5|

The numerical fitting of the two-wave model is more challenging because now all
parameters {r, q, a, p, K'} become functions of time. As briefly mentioned in Sec. |3| and
discussed in more detail in each model parameter varies in time as a logistic-
like function, going from an initial value corresponding to the first wave to a final value
representing the second wave. In addition, the logistic function contains two additional
parameters: the transition time, ¢;, and the rate of transition, p;, between the first and
second waves. The fitting procedure in this case is performed in two steps, as follows. In
the first step, we give an initial educated guess for the possible location of the transition
time, t1, between the first and second waves. We then fit the data up to this time with
the one-wave BLM. The parameters found in this first step are then used as initial guesses
for the parameters {r1, ¢1, a1, p1, K1} relative to the first wave of the full two-wave model.
Initial guesses for the respective parameters corresponding to the second wave are chosen
arbitrarily within their respective range. With these initial guesses, we then carry out the
LM numerical fit of the entire empirical data using the complete two-wave model, thus
obtaining the two sets of estimated parameters, {r;, ¢;, a;, p;, K;}, for i = 1,2, as well the
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time, t1, and rate, p, of transition between waves. The LM routine also returns the error
for all estimated parameters.

Notice that for the two-wave model one would have in principle a total of 12 free
parameters to be determined. With such a large number of parameters, extra steps must
be taken to minimize over-fitting issues. First, we impose the same range restrictions
on the parameters r;, ¢;, «;, and p;, for ¢ = 1,2, as in the one-wave case; see above.
Furthermore, the parameters as and p, are kept fixed at unity, since we observed that
letting them free tends to cause over-fitting. This can be explained by the fact that the
parameter « is connected with the asymmetry of the daily curve around a peak, while
p governs the decay rate after the peak [27]. However, there are often less points in the
second wave [24], so that estimating these parameters for the second wave is arguably less
reliable. Hence we prefer to set ap = po = 1 to reduce overfitting.

4.6. Classification of the epidemic dynamical stage

Once the numerical fit has been performed for a chosen empirical curve and the pa-
rameters of the corresponding growth model are determined, the app then computes the
points ¢; that characterize the distinct acceleration regimes of the curve; see Sec. [2l As
shown in[Appendix Al in the case of single-wave models the characteristic points ¢; are all
given by analytic expressions in terms of the model parameters; whereas in the case of the
two-wave model, the two sets of characteristic points {tEI), tEH)}, one for each wave, are
computed numerically, after interpolating the theoretical curve with a spline and deter-
mining the corresponding zeros of the second, third, and fourth derivatives; see Sec. [2.2]
Recall that each set of characteristic points divides the respective epidemic wave into five
acceleration regimes, namely: i) increasing acceleration; ii) decreasing acceleration; iii)
increasing deceleration; iv) transition to saturation; and v) saturation. As discussed in
Sec. , by comparing the final time, ¢;, of the last point of the empirical data (assumed
to be the ‘current time’) with the computed characteristic points ¢; that define the above
regimes, the app then determines the current stage of the epidemic in that location. The
corresponding stage for the chosen epidemic curve is then informed by the app in the
legend box of the output graph, which shows the empirical data and the fitted curve,
together with additional relevant information obtained from the fit, as will be discussed

in Sec. Bl

4.7. Creating an interactive user interface

The code for the Modinterv app was written using iPython notebooks, a versatile cloud
computing environment that allows for developing codes whithout the need to install all
dependencies, as one would usually do when compiling codes directly from one’s own
computer. Unfortunately, iPython notebooks are not well suited for sharing with public
users, because it does not have a user-friendly interface. Furthermore, in order for the
users to be able to compile the code and access the app, every one of them would need
to have editing permission, which could lead to undesirable results.

Thus, in order to generate an interactive webpage that could be accessed by the
users with a customizable, user-friendly interface and with the code running in a backend
separate from the interface, we have used nbinteract, a Python module that creates an
static HTML that allows widgets to remains interactive by using Binder servers as the
computational backend. The HTML file produced then has to be hosted in a server to be
publicly accessible on the internet. The HTML page thus produced for the Modinterv app
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can be currently accessed via the address http://fisica.ufpr.br/modinterv. Below
we shall explain the contents of the app, as accessed via this homepage.

5. Software system: output graphs and interaction with user

As already mentioned, the Modinterv app allows the user to select the type of epidemic
curves (i.e., either Cases or Deaths) to be analyzed as well the location of interest. To
help the user choose the location of interest, the app is structured into two main sections:
i) Countries and ii) States and Cities in Brazil and the US. The app also allows the user
to choose how the output graphs are displayed on screen as well as to generate figures to
be downloaded. A brief explanation of the app features is given below.

5.1. Countries section

In the first section of the app, the user can analyze the curves of cases and deaths for
countries. After the user selects from corresponding dropdown menus the type of Data
(Deaths or Cases) and the chosen Country, a preview with the respective accumulated
curve (red circles) is generated for the total number of deaths/cases as a function of time,
measured in days from the first death/case.

After clicking the button Perform fit, a text box with the message Computing will
appear, and soon after a new graph with the model fit (black curve) superimposed on
the data (red circles) will be displayed below the original preview plot. The name of the
selected country is shown in the plot title, together with the date up to which the empirical
data was considered, while the model that best fits the data is indicated in the legend
box. The plot also shows colored vertical lines corresponding to the characteristic points
t; that define the five acceleration regimes of an epidemic wave, as explained in Sec. [2]
The number of such vertical lines displayed will depend, of course, on the number of waves
and the specific evolution stage of the empirical curve under analysis. In particular, for
the case of two waves, the beginning of the second wave is also shown as a black dot on
the fitted curve, from which it is drawn a dashed black vertical line to mark the separation
between the first and second waves. In the legend box of the plot, the app also shows
complementary information, such as i) the calendar date of the first case/death and ii)
the dynamical stage of the epidemic, according to the classification scheme presented in
Sec. 2l Furthermore, if the corresponding fit was performed with the two-wave model,
i.e., if the empirical data was classified as having two waves, then the starting date of the
second wave is also shown on the legend box.

Besides the information displayed on the plot of the fitted cumulative curve, the user
has a few additional options to further analyze the results of the fitting process. First,
checking the checkbox Check to display/hide the daily curve shows the empirical
daily curve (red circles) together with the theoretical daily curve (black curve), where the
latter corresponds simply to the time derivative of the mathematical fit for the cumulative
curve. Second, checking the checkbox Check to display the parameters of the fit
will produce a second plot of the cumulative curves (both empirical and theoretical), but
now showing the estimated parameters of the best fitted model together with their errors.
Third, moving the slider Time Range gives a short term prediction, ranging from 7 up
to 28 days after the last data point, for the number of extra cases/deaths during the
selected period ahead. The total cumulative number of cases/deaths at the end of this
period is also shown. Fourth, the user has the option to choose the scale on both the x-
Axis (horizontal axis) and y-Axis (vertical axis) between the linear and logarithmic scales.
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Finally, clicking on the buttons Generate Figure File will generate the link for downloading
the files with the figures, where the formats png and eps are supported.

To see a new type of data or choose a different country, the user only needs to select
the desired options from the corresponding dropdown menus. After a new selection is
made, the button Perform fit has to be clicked again to produce the fitted plot for the
newly chosen empirical data.

5.2. Section of States and Cities in Brazil and the US

In the second section of the app, the user can analyze the death and case curves for
states and cities in Brazil and states and counties in the United States (US). First, the
user must select the chosen Country (Brazil or US), after which the Type of data (Deaths
or Cases) has to be selected. The user then needs to select the type of Region (States or
Cities) and the desired state or, if the option Cities was selected for Region, the desired
city (in Brazil) or county (in the US). Again, a preview graph will be generated with the
selected data for the chosen location. The rest of the procedure is as explained in the
Country section.

6. Illustrative examples

In this section we demonstrate the Modinterv application for locations with one and
two waves of infections and discuss each step of the process.

6.1. Example with two waves

As of this writing, a significant number of countries have experienced three (or more)
waves of COVID-19, but we can still find some countries that present only two waves of
infections. For this example, the user can go to the first section of the app and select from
the Data menu the type of epidemic curve to be analyzed (in this case we chose Deaths)
and the desired Country. Once the country is selected (Slovakia, in our case), a preview
of the chosen epidemic curve is displayed, as shown in Fig. [[] After that, the user can
proceed to click the button Perform Fit shown at the bottom of the preview plot, see
Fig. |7l after which a small bar written Computing will appear and, soon after, the result
of the numerical fit will be shown, as illustrated in Fig. 8

Just above the output plot of the numerical fit, there are two checkboxes written Check
to display/hide the daily curve and Check to display the parameters of the
fit, respectively; see Fig. [8l Checking the first checkbox will produce the corresponding
daily epidemic curves (both empirical and theoretical), as shown in Fig. |§] In this figure,
the red dots correspond to the daily number of deaths and the black line is the time
derivative of the theoretical cumulative curve shown in Fig. [§ Also shown in the plot of
the daily curves are the locations (black dots) of the peaks of the first and second waves,
with the corresponding calendar dates for the peaks being given in the legend box; see
Fig. [9]

Checking the second checkbox yields a more detailed output of the numerical fit,
showing the values of the fitted parameters and their respective errors, as illustrated in
Fig. [0} The values K; and K, of the first and second plateaus, respectively, are also
shown in the legend box of the plot, as determined from the fitted two-wave model; see
Sec. [Appendix Bl The interpretation of these two parameters must, however, be done
with care. More specifically, when the computed errors for the parameters K; and K, are
reasonably small, as in the example shown in Fig. [0} one can then tentatively use the
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Figure 7: Preview output graph of the app Modinterv after selection of the type of Data (Deaths) and
Country (Slovakia).
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Figure 8: Output of the numerical fit of the epidemic curve (Deaths) for the selected country (Slovakia).

difference AK = K5 — K7 as a rough estimate of the excess of cases/deaths owing to the
second wave of infections [24].

6.2. One-wave example

To this day, practically every country has experienced at least a second wave of
COVID-19 infections. This means that a single-wave growth model cannot describe the
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Figure 10: Detailed output of the numerical fit shown in Fig. indicating the values of the fitted
parameters with their respective errors.

COVID-19 epidemic curves for these countries up to the present time. In order to demon-
strate the Modinterv for the case of one wave only, we can use a feature implemented in
the app that allows the user to truncate the epidemic curve at a past date and perform
the corresponding numerical fit only up to that date.

Let us consider, as an example, the case of Brazil. In order to go back to a time where
we had only one epidemic wave, we can slide backwards the slider written Time fit. The
preview plot is then automatically updated showing the empirical data only up to the
selected date, which is shown in the corresponding legend box of the plot as the Date of
last point.

After we choose an appropriate date up to which there is only one wave, we can click
the Perform Fit button, which will lead to the same steps discussed in the two-wave
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Figure 11: Numerical fit for the cumulative number of deaths in Brazil up to a time (11/04/2020) when
there was only one wave of infection.

example above, but now the numerical fit will be performed with one of the four single-
wave growth models discussed in Sec. [3] An example of this procedure is shown in Fig. [11],
where the final date was chosen to be 11/04/20. The epidemic curve up to that date does
indeed contain only one wave, which is best fitted with the Richards model, as shown in

Fig. [11]

7. Conclusion

In this paper we have described an automated software application, , called Modinterv,
that enables the user to analyze COVID-19 epidemic curves of cases and deaths for differ-
ent countries around the world as well as for states and cities in Brazil and the USA. The
application uses epidemic data available in several public databases. Once a location and
the type of data (i.e., either cases or deaths) are selected, the app automatically fits the
empirical data with a general class of mathematically growth models for curves with one
or two waves of infections. From the best fitted mathematical model, relevant information
about the progress of the COVID-19 epidemic in that location can be inferred.

One important information that can be obtained from the fitted models, as imple-
mented in the Modinterv, is the dynamical stage of the epidemic in the chosen location.
Our methodology allows for a finer classification scheme of the different growth regimes
of an epidemic curve by considering five main acceleration regimes, as explained in Sec. [2|
This should be compared, in contrast, with the common way to track epidemics evolution
in terms of the effective reproduction number R;, where we recall that B, > 1 (R; < 1)
implies that the epidemic is accelerating (decelerating). Although R; is widely used by
epidemiologists and public health authorities, this quantity has nonetheless some draw-
backs [2 1, 25]. For example, as R, essentially represents a measure of the epidemic
acceleration, it cannot by itself distinguish between regimes of increasing or decreasing
acceleration (for the same value of the acceleration). In this context, it is therefore useful
to have additional tools to obtain a fuller description of the epidemic evolution, say by
also analyzing its different acceleration regimes, as implemented in the Modinterv.
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Furthermore, the classification scheme implemented in our application can provide
relevant information to health authorities not only in regard to the current stage of the
epidemic in the place of interest but also to its likely evolution in the near future. More
specifically, by analyzing how recently the epidemic curve entered its current dynamical
regime, one can also make some prediction as to when it is likely to progress to the next
stage (if it has not entered the final one). Such an information can help the authori-
ties in their decision making process regarding, say, the implementation or relaxation of
non-pharmacological interventions [25]. Moreover, by relying on a general class of flex-
ible growth models, from which the points separating the different acceleration regimes
can be easily computed, the classification of a given epidemic curve can be performed
automatically (i.e., without human assistance) by the software, thus making the method
easily accessible to any interested person and without requiring specific mathematical
knowledge.

The application also provides additional relevant information about the course of the
epidemics which cannot be easily obtained from a visual inspection of neither the raw
empirical data nor its moving-average smoothed version. For example, for epidemic curves
with two waves the app provides from the fitted mathematical model a more precise
estimate not only for the starting date of the second wave but also for the dates when the
two peaks occurred. This information can, in turn, be useful for government and health
authorities, as they can compare these relevant points in the epidemic evolution with the
corresponding containment measures in place at those particular times. We believe this
type of analysis can help one to understand the underlying reasons for the pattern changes
of the epidemic curve.

The current version of the Modinterv app is limited by practical reasons to epidemic
data that contain only up to two infection waves. Work is currently underway to extend
the app to process data with more than two waves. Our software was primarily designed to
process COVID-19 data, but given its general structure it could be readily applied to data
from other infectious diseases. In this regard, and as an interesting research perspective,
one can thus envisage a general purpose platform to analyze data for different diseases.
Technically, this would be rather simple to implement. The main requirement /difficulty
is that the relevant empirical data be available in public repositories.
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Appendix A. Single-wave growth models

As mentioned in the main text, if the machine learning module of the Modinterv decides
that the selected empirical curve exhibits only one wave, meaning that it can be described
by a sigmoidal curve as shown in Fig. (a), then the app selects among four mathematical
growth models which one best fits the data. These models and their main characteristics
are described below.

Appendiz A.1. The beta logistic model

For the case of an epidemic with one fully developed wave of infection, we model
the time evolution of the cumulative quantity (cases or deaths) by means of the beta
logistic model (BLM), which defined by the following ordinary differential equation (ODE)

27, 23]:
s © _eur - (C9)T, .

where C(t) is the cumulative quantity at time t. Here we assume that the model pa-
rameters {r, ¢, a, p, K'} are all constant in time, in which case they can be interpreted as
follows: r is the growth rate at the early stage; ¢ controls the initial growth profile and
allows to interpolate from linear growth (¢ = 0) to sub-exponential growth (¢ < 1) to
purely exponential growth (¢ = 1); the exponent p controls the late-time growth rate, with
p > 1 implying a slow-decaying polynomial rate, whereas p = 1 yields a fast exponential
decay; the exponent « controls the degree of asymmetry with respect to the symmetric
S-shape of the standard logistic curve; and, finally, K is the final size of the epidemic,
meaning that C(t) = K, for t — oco. Equation must be supplemented with the
initial condition

C(0) = Cy, (A.2)

for some given value of Cj.
The BLM admits an analytic solution [27] in implicit form given by

t=f(C) = f(Co), (A.3)

where

f(c):%zm <p,1;q;1+ 1;";(%)“) (A4)
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with o F}(a, b; ¢; x) being the Gauss hypergeometric function. Equation (A.3]) describes a
sigmoidal curve, whose inflection point is located at the time t, = t. given by

=1 (k) (A5)

q+ ap)t/e

For completeness, we also quote here the characteristic points t; and t3, corresponding to
the points of zero jerk, C'(t) = 0, of the BLM, which are given by ¢, 3 = f(Kx3), where
[25]:

1/a
oz2p—|—€—oz<p—4qu:\/Z)
_ A6
13 4a2p? + 6 + 2ap(—1 + 4q) ’ (4.6)

with 6 and A being given by 0 = 2q(—1+2¢) and A = 4pq(—1+2q)+p*(1—2a+a?+8aq),
respectively. One can also compute the point ¢, of maximum jerk, i.e., C'(t) = 0, but in
this case the expression is rather long and so it is given separately in [Appendix C]

The BLM described above is one of the most general growth models, from which many
other known models emerge as special cases [23], 27]. For instance, for ¢ = p = a =1
the BLM recovers the Verhulst’s logistic model [29], which yields a symmetric sigmoidal
curve. However, as most epidemic curves (especially for COVID-19) are not symmetrical,
the standard logistic model turns out to be too simple to capture the complexity of a
human epidemic dynamics, hence this particular case will not be considered further here.
Three relevant particular cases of the BLM are as follows (from the more complex to the
simpler): i) for p =1 but ¢ # 1 and « # 1, the BLM reproduces the so-called generalized
Richards model [6]; ii) if in addition to p = 1 one sets ¢ = 1 but keep « # 1, one gets the
Richards growth model [20]; and iii) the case p = 0 yields the g-exponential model. For
epidemic curves with only one wave, the Modinterv app implements separately the BLM
and these three particular cases, as illustrated in Fig. [3

Among the four one-wave growth models implemented in the Modinterv, the BLM is
the most complete one, in the sense that it is capable of describing the entire epidemic
curve from beginning to end in a rather flexible way. This model is therefore applicable
to epidemic curves that are already in the late growth phase, where the growth profile
approaches a leveling plateau, whose value is represented by the parameter K (which we
recall corresponds to the total number of cases or deaths at the end of the epidemic).
This saturation regime is characterized by the parameter p, so that for p > 1 the curve
approaches the plateau in a slow, subexponential way, whereas only for p = 1 does the
curve approach the plateau exponentially fast [26]. The BLM is also the most demanding
model in terms of the numerical fitting procedure, since we have to determine five param-
eters, namely: (r,q, a,p, K). In particular, only when the final ‘tail” of the epidemic curve
is relatively well formed does the BLM converge (i.e., one obtains a reliable estimate of
the parameter p.)

For a given empirical curve with only one wave, the Modinterv first applies the BLM. In
situations where the BLM does not converge, indicating that the epidemic is still probably
in the intermediate phase or at most entering the transition to saturation regime, see
Fig. [[a), the Modinterv then tries to fit the data with the next less complex model,
namely the generalized Richards model (GRM) [28], which is described below.
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Appendiz A.2. The generalized Richards model

The generalized Richards (GRM) model is obtained from Eq. (A.1]) by setting p = 1,
so its defining ODE is given by

The solution of this equation has the same implicit form of Egs. and , after
putting p = 1. Hence the characteristics points, ¢;, = = 1, ..., 4, for the GRM are obtained
from the same formulas as for the BLM, only setting p = 1.

The GRM is in general suitable for epidemic curves that are well past the inflection
point t., but which dot not yet display a well formed plateau. In this case, setting p =1
reduces the number of fitting parameters in comparison with the BLM. Nonetheless, for
the GRM one still needs to determine four free parameters, namely (r,q,«, K). In the
Modinterv, if no good convergence is obtained for neither the BLM nor the GRM for a given
empirical data, then the next simpler model, namely the Richards model, is employed, as
discussed next.

Appendiz A.3. The Richards model

The Richards model (RM) [20] can be obtained as a particular case of Eq. (A.1)) after
setting p = ¢ = 1, which yields the following ODE:

2 —rew|i-(42)]. (A8

Historically, Richards [20] proposed the above model as a modification of Verhult’s logistic
model, where the new parameter o was introduced so as to allow for asymmetric growth
profiles. We recall that the logistic curve, which is recovered after setting a@ = 1 in
, is symmetric with respect to the inflection point. The exponent « thus controls the
asymmetry of the curve, i.e., how it deviates from the linear region (around the inflection
t.) and starts to bend towards the plateau. For epidemiological reasons, it is sensible to
restrict the values of a to the range 0 < o < 1 [2§], in which case the epidemic curve
bends slower towards the plateau than the logistic curve. Note, however, that within the
above allowed range of «, the higher the o the sharper the bending.

One major difference of the RM with respect the two previous models (BLM and
GRM) is that the RM admits an explicit solution in the following form [2§]:

_ K
{1+ aexp|[—ar(t — tc)]}l/C“

o(t) (A.9)

where the inflection point t, = t. can be obtained in terms of the initial condition Cj via
the relation: Cy = K/[1 + avexp (art,)]"® or, alternatively,

a5 ) a0

One can also obtain explicit expressions for the points of zero jerk for the RM [25]:

1 <oz+3j:\/oz2+60z+5>

tis=1t.——1 A1l
1,3 , n 9 ( )
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The expression for the point ¢4, of maximum jerk for the RM can be obtained from the
corresponding result for the BLM, given in [Appendix C] after setting ¢ = p = 1.

The RM has three free parameters, namely (r, «, K), to be numerically determined
from a fitting to the empirical data. It is therefore the simplest model that can describe
an asymmetric sigmoidal curve, meaning that it has the least number of free parameters
(among the ones implemented in the Modinterv). This particular feature renders the RM
a rather robust model. For instance, the RM is mostly appropriate for curves that are
still in the intermediate phase, that is, when the cumulative curve is in the near-linear
regime, meaning that the curve has just past or is about to pass the inflection point, see
Fig. [Ia). Nevertheless, this model can be also suitable for curves that are already in the
late growth phase, but for which neither the BLM nor the GRM provide a good fit to the
data.

It may happen, however, that the the RM does not provide a good convergence (mean-
ing that the errors in the parameters are too large to be acceptable). This often happens
for curves that are in the early growth phase, when the acceleration is still growing. In
such cases, because of the paucity of data, the RM has a natural difficulty in estimating
when the inflection will occur (in the future). Thus, for the RM to be acceptable we
require the current time ¢; (i.e., the final time of data) to be greater than the point ¢; of
maximum jerk. If, however, we find that ¢; < ¢;, we conclude that the epidemic curve is
still in the stage of increasing acceleration, in which case the g-exponential model is more
appropriate, as described next.

Appendiz A.4. The g-exponential model

As already anticipated, for curves that are in the early growth phase, i.e., when the
acceleration is still increasing, the g-exponential model is used. This model is obtained
by taking p = 0 in equation (|A.1)), which gives

dcC

—=rlcoy, (A.12)

whose solution is function

Ct) =[G+ (1= qrt] /" = Cye, (Crl—t_q) , (A.13)
0

where the function e, () = [1 + (1 — ¢)2]*/~9 is known in the physics literature as the
the g-exponential function [19].

The g-exponential model thus has only two free parameters, namely (r,q). The pa-
rameter r is the (generalized) growth rate; whereas the parameter ¢ characterizes the
dynamical regime of the growth process. Here one has three distinct regimes, namely: i)
for ¢ = 0 one has a linear growth; ii) for 0 < ¢ < 1 the curve has a subexponential growth;
and iii) if ¢ = 1 the growth is purely exponential. In general, a subexponential regime
is associated with mitigation measures, while an exponential growth is expected when no
containment measure is adopted at the beginning of the epidemic [2§].

When the epidemic curve is in the g-exponential regime (i.e., increasing acceleration),
it is not possible to make long-term forecasts. At best, one can make short term estimates,
like the doubling time, Ty, which corresponds to the number of days (counted from the
date of the last data point) that it will take until the number of cases or deaths reaches
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Figure A.12: Time dependence of the generic parameter ((t) of the two-wave model, as defined by
the logistic function given in . The dashed line represents the linear approximation to the logistic
function, where the inclined straight line meets the upper and lower horizontal lines at the points ¢; £2/p1,
where t; and p; are respectively the transition time and rate between the two plateaus; see text.

the double of the present value, assuming that the curve will continue to follow the g¢-
exponential trend. It is not difficult to show [25] that T, is given by

: Gy’
Ta(t)=(277-1 [t + —] . (A.14)
( ) (1—q)r
Thus, the doubling time in the g-exponential model grows linearly in time for ¢ < 1;
whereas it remains constant, i.e., Ty = (In2)/r, for the purely exponential growth (¢ =
1). The fact that Ty increases linearly in time (for ¢ < 1) is a direct manifestation of
the subexponential growth. When the Modinterv chooses the ¢-exponential for a given
epidemic curve, it also quotes the value of T}, in addition to the fitted parameters (r,q),
as will be discussed later.

Appendiz A.5. Parameter ranges

As a final remark about the above single-wave models, it is important to note here
that the parameters r, ¢, and « are restricted to certain allowed ranges. First we recall,
that in the BLM one must have p > 1, to ensure a polynomial decay (for p > 1) of the
daily curve after the peak [27], with an exponential decay occurring only in the limit
p = 1. Similarly, the exponent ¢ is limited to the range 0 < ¢ < 1, as ¢ > 1 would imply a
super-exponential growth which is not justified on epidemiological grounds. Furthermore,
it is expected for biological reasons that the asymmetry parameter o should be restricted
to the interval (0,1) [30, 28]. We also restrict the values of the growth rate r to the range
(0,1), as we observed that values of r outside this interval tend to be an indication of
possible over-fitting. In other words, in our numerical implementation of the single-wave
models we impose the following range restrictions: p > 1,0 < ¢ < 1,0 < a < 1, and
0<r<l

Appendix B. Multiple-wave growth models

The two-wave model implemented in the Modinterv is described by the BLM equation
(A.1]), but where now we assume that all parameters depend on time, that is, r = r(t),
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qg =q(t), a = at), p = p(t), and K = K(t). To capture the two distinct growth
regimes (corresponding to the first and second waves, respectively), we propose that
these parameters, here generically represented by the symbol ((t), obey the following
logistic-like equation:

d¢ ! B B
@ h-a (€ —=G)(&=0), (B.1)
whose solution, with the condition ((t1) = ({1 + (2)/2, is of the following form:
(t)=a+ (CQ—;Q) ll + tanh (M)} , (B.2)

where (; and (, represent the corresponding parameter values for the first and second
waves, respectively. A schematic of the generic parameter ((¢), as defined in (B.2]), is
shown in Fig. . The parameter t; in determines the transition time between
the first and second wave; whereas the parameter p; characterises how rapid this transition
is, so that the larger the parameter p; the quicker the transition towards the second-wave
regime. Note that the characteristic time scale ¢; and the corresponding transition rate p;
are the same for all parameters. This is justified because an overall change in the epidemic
dynamics, brought about, say, by a relaxation of control measures or by a change in the
population behavior (or both), is expected to affect simultaneously all epidemiological
parameters.

The two-wave model described above can be naturally extended to include an arbitrary

number, N, of waves, by assuming that the time dependence of the parameters is as follows
[24]:

(= r 52 60 [ (2-2)] ®s

Considering that the standard BLM has a set of five parameters, i.e., ( = {q,r, o, r, K, p},
it then follows that the BLM for two waves, i.e., with each parameter varying in time
as in , has a total of TN — 2 free parameters for a given N. The large number of
parameters (as N increases) makes it difficult to devise an automated fitting procedure
for the N-wave model with an arbitrary N. For this reason, the current version of the
Modinterv is limited to up to two waves only.

Appendix C. Points of maximum jerk

In order to compute the point of maximum jerk for the BLM, as given by Eq. ,
one needs to find the roots of the equation ('(t) = 0. This equation has three roots,
namely: i) a point of maximum jerk in the accelerating phase; ii) a point of minimum
jerk; and iii) a point of maximum jerk in the decelerating phase. In the classification
scheme presented in Sec. 2| we only need the third such root, which was denoted there
by the symbol t4. Using a software (such as Mathematica) for algebraic computation, the
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desired root can be explicitly obtained, as follows:

1 1
t, = 121/ _ (2‘32< 3—') 2 (a2p? (31a? + 20(63q — 22) + 13
! (denom( Vvterml 2 (V8 i Ozp(ozp ( o” +2a(63¢ )+ )

+ ap® (—14a” + « (378¢% — 289q + 35) + a*(8¢ — 7) + 26¢ — 14)
+p (o +o® (—77¢° + 56 — 5) + 13¢° + 2 (189¢° — 223¢* + T0q — 3)
+a’(6 — 14q) — 14q +4) — 3¢ (6¢° — Tq +2) (3a — Tq + 3))) + 4 (a’p(7Tp — 1)

+4ap (9¢* — Tq + 1) + o’p(p(18q — 7) + Tq — 3) + 3¢ (6¢° — Tq + 2))
1/

+92/3; (@ n z) \S/term1>> ,
where terml = term2 + term3, and

term2 = 3a'p® (p* (70¢> — 92¢ + 28) + p (360¢* — 1015¢” 4 845¢> — 238¢ + 12)

—3q (678¢" — 1295¢" 4 868¢° — 231 + 18) ) + o’p (2p” (35¢° — 69¢° + 42¢ — 8)

+9pq (30" — 119¢° + 144¢% — 70 + 12) — 54¢2 (6¢% — Tq + 2)2>

+ 2a%p? (154p® — 120p* + 21p — 1) + 3a"p® (p*(90q + 56) + 3p* (528¢> — 399¢ + 32)

—2p (602¢° — 451q + 56) + 28¢> — 14¢ — 4) + 3a’p” (p* (70 — 46) + p* (540¢° — 903¢” + 394q — 28)
+p (—1656¢" + 2401¢> — 1170¢> + 238¢ — 26) + 12¢ (—42¢° + 67¢* — 35¢ + 6))

+ 3a®p® (2p*(279¢ — 91) — 49p°(4g — 1) + p(49 — 106g) + 14q — 6)

+ ap?® (T0p" + 3p* (360¢> — 189g — 19) + 3p* (756¢" — 987¢° + 216¢ + 49)

+p (—4228¢° + 4971¢> — 15964 + 90) + 27¢ (64 — 7q +2))

term3 = 3v/3 (—a®p® (6a°p® + a®p*(18¢ — 7) + 2ap (9¢° — Tq + 1)

+q (64° — 7 +2))” (p* (250° + a* (319347 — 2534 + 482) + o? (2473¢ — 2114q + 425)

+a® (8232¢% — 9554¢° + 3990¢ — 644) + 20°(217¢ — 88) + 4a(56q — 29) + 4)

—2p° (70 + 7ot (T7¢* — 61¢ + 12) — 4 (28¢° — 29¢ + 7) — o® (1249¢* — 1533¢” + 365¢ + 42)
+ a (—2473¢% + 3171¢> — 1142¢ + 84) + o (—12348¢" + 19108¢° — 9667¢” + 1715 — 63)
+a°(103g — 42)) +p* (a° + 2473¢* — 4228¢° — 2a* (103¢” — 84q + 15) + 2284¢>

—18a® (168¢* — 201¢* + 70q — 6) + a® (—8471g* + 13076¢" — 7154¢> + 1680q — 159)

+2ar (12348¢° — 23885¢" + 15344¢° — 3213¢> — 126¢ + 54) — 336q — 28)

+ 4pq (6¢° — 7q + 2) (343¢> — 54ar (9¢> — Tq + 1) — 396¢° — 9a°(Tq — 3) + 63q + 27)

9 9 9 1/2
~108¢* (60>~ 7g+2)°) ) ",
and

denom = ¢(2 — 7q + 6¢%) + 2p(1 — 7q + 9¢*)a + p*(—7 + 18¢)a* + 6p°a’.
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