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Abstract: 
 
Background: Human neuroimaging evidence suggests that cardiovascular disease (CVD) risk may relate 
to functional and structural features of the brain. The present study tested whether combining functional 
and structural (multimodal) brain measures, derived from magnetic resonance imaging (MRI), would 
yield a multivariate brain biomarker that reliably predicts a subclinical marker of CVD risk, carotid-artery 
intima-media thickness (CA-IMT).  
Methods: Neuroimaging, cardiovascular, and demographic data were assessed in 324 midlife and 
otherwise healthy adults who were free of (a) clinical CVD and (b) use of medications for chronic illness 
(aged 30-51 years, 49% female). We implemented a prediction stacking algorithm that combined 
multimodal brain imaging measures and Framingham Risk Scores (FRS) to predict CA-IMT. We 
included imaging measures that could be easily obtained in clinical settings: resting state functional 
connectivity and structural morphology measures from T1-weighted images.  
Results: Our models reliably predicted CA-IMT using FRS, as well as for several individual MRI 
measures; however, none of the individual MRI measures outperformed FRS. Moreover, stacking 
functional and structural brain measures with FRS did not boost prediction accuracy above that of FRS 
alone.  
Conclusions: Combining multimodal functional and structural brain measures through a stacking 
algorithm does not appear to yield a reliable brain biomarker of subclinical CVD, as reflected by CA-
IMT. 
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Introduction: 
  
Cardiovascular disease (CVD) encompasses many heart and vascular conditions that contribute to a 
primary cause of death for both men and women in the United States1. Atherosclerotic coronary artery 
disease is the most common CVD, with 50% of Americans older than 451,2 and 10% Americans ages 33-
45 living with some form of subclinical disease that prestages later clinical conditions1,3. In 2018, 13% of 
deaths in the United States were attributed to overt coronary artery disease1. Numerous complications of 
atherosclerotic CVD, including ischemia and myocardial infarction, contribute to the morbidity and 
mortality of the disease4,5. 
  
CVD outcomes, such as myocardial infarction and preclinical markers of CVD risk, have recently been 
associated with functional and structural features of macroscopic brain systems. Longitudinal studies, for 
example, suggest that baseline metabolic activity in the amygdala predicts future myocardial infarction 
and components of the metabolic syndrome6, and that baseline levels of stress reactivity in the 
rostromedial prefrontal cortex are associated with future major adverse cardiovascular events7. Moreover, 
structural MRI measures of brain aging (composite measures of ventricle size, sulcal size and white 
matter hyperintensities) and regional cerebral blood flow relate to individual differences in the magnitude 
of blood pressure lowering induced by antihypertensive medication8, as well as the longitudinal 
progression of blood pressure over multiple years9. Lastly, functional activation in insular, anterior 
cingulate, medial prefrontal, hypothalamus and brainstem regions measured in response to mental stress 
and emotional stimuli has been shown to predict clinical CVD events7, mental stress-induced blood 
pressure reactivity10, and carotid-artery intima-media thickness (CA-IMT), a surrogate measure of 
preclinical atherosclerosis11. 
 
At present, however, there is largely mixed evidence regarding the functional and structural brain imaging 
correlates of subclinical markers of CVD, particularly indexed by CA-IMT. Functional evidence shows, 
for example, that CA-IMT is associated with higher regional cerebral blood flow in some areas (medial 
frontal gyrus, putamen, and hippocampal regions, but also lower regional cerebral blood flow in other 
areas (lingual, inferior occipital, and superior temporal regions)12. Other findings indicate that CA-IMT 
associates with lower cerebral blood flow in gray matter and across the entire brain13. Separately from 
functional neuroimaging studies, there is structural brain imaging evidence indicating that CA-IMT is 
inversely associated with total brain tissue volume, as well as cortical tissue volume more specifically14,15. 
In parallel, however, other lines of evidence suggest no association between CA-IMT and total brain 
tissue volume or gray matter tissue volumes13. Lastly, some structural neuroimaging findings suggest an 
inverse association of CA-IMT and cortical thickness16, but again not all findings are consistent with the 
latter observations17. This heterogeneity in functional and structural brain imaging findings, as well as the 
isolated (unimodal) treatment of functional and structural brain imaging measures have created an open 
question as to whether the simultaneous (multimodal) modeling of functional and structural brain features 
would combine to predict a known marker of subclinical CVD and predictor of future clinical events; 
namely, CA-IMT. Moreover, whether such multimodal modeling would add to the prediction of 
subclinical CVD beyond established demographic, behavioral, and biological risk factors is unknown. 
 
To elaborate, a majority of studies on the brain correlates of CVD risk, particularly CVD markers such as 
CA-IMT, use conventional analytical approaches that include univariate correlation and regression 
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methods. A problematic feature of these methods is that they are not combined with out-of-sample 
validation testing, limiting inferences about model and sample generalizability. Moreover, these studies 
have historically relied on brain measures from a single neuroimaging modality, e.g., task-based or 
resting-state functional MRI, structural connectivity, metabolic activity via PET. Such unimodal analyses 
do not exploit or account for the distinct neurobiological properties of different neuroimaging modalities, 
that when combined may improve predictive power. Lastly, a focus thus far on the brain correlates of 
CVD risk has been on particular neural systems or networks, rather than all systems and networks across 
the entire brain. Taken together, it appears that integrating and combining whole-brain modalities into a 
transmodal machine learning model18,19 has the potential to overcome methodological limitations to 
improve the predictive utility and robustness of putative brain biomarkers of CVD risk to facilitate 
replication and generalization. 
 
In the above regards, an effective biomarker or multimodal brain correlate of CVD risk would have the 
following characteristics. First, it would take into account the unique variability inherent to the different 
measures derived from imaging modalities (e.g., cortical thickness, cortical surface area, and tissue 
volumes derived by structural MRI, as well as dynamic activity measures reflecting neural networks 
derived by functional MRI). Second, it would rely on either standard clinical brain imaging sequences 
(e.g., T1 weighted anatomicals) or MRI data acquisition sequences that are amenable to clinical contexts 
and testing in diverse populations of people (e.g., resting state fMRI). Third, it would reliably predict 
CVD risk, not just associate with it (e.g., out of sample validation testing). Finally, a reliable brain 
correlate of CVD risk would account for additional variability above-and-beyond that already accounted 
for by other established risk factors for CVD. To these ends, the present study examined whether 
morphological and basic functional measures derived from T1-weighted and resting-state fMRI data 
could be combined in a multimodal machine learning analysis framework to reliably predict inter-
individual variability in CA-IMT in a sample of neurologically healthy adults. For this we modified an 
identical multimodal machine learning approach used previously to predict “brain age”20 - a measure of 
brain aging when compared to chronological age that has been shown to correlate with numerous risk 
factors of CVD, including smoking and diabetes21. We then evaluated performance against the prediction 
of CA-IMT by Framingham Risk Scores22. 
  
 
Methods: 
  
Participants: 
Neuroimaging, cardiovascular, and demographic data were collected from N=324 healthy participants 
(ages 30-51, 49% female) from the Pittsburgh Imaging Project (see Table 1). All participants provided 
informed consent. The University of Pittsburgh Human Research Protection Office granted study 
approval. Detailed information about the study population has been published in Gianaros et al., 202011. 
This is the first report bearing on the multimodal prediction of CA-IMT from this sample and these results 
have not been published previously. 
  
Preclinical atherosclerosis: 
Carotid artery IMT was measured at three locations (distal common carotid artery, carotid artery bulb, 
and internal carotid artery) by trained ultrasound sonographers using an Acuson Antares ultrasound 
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device (Acuson-Siemens, Malvern, PA). Measurements were obtained on both the left and right carotid 
artery in three specific locations: 1) both the near and far walls of the distal common carotid artery, 
located 1 cm proximal to the carotid bulb (the location at which the near and far walls of the common 
carotid are no longer parallel and extending to the flow divider), 2) far wall of the carotid bulb, and 3) the 
first centimeter of the internal carotid measuring from the distal edge of the flow divider. These three 
measurements were then averaged bilaterally and across locations to calculate the mean CA-IMT, which 
was used as the outcome variable. Further information about measurement methods and test-retest 
reliability of CA-IMT measurements can be found in Gianaros et al., 202011. Figure 2A shows example 
images of IMT acquisition. Figure 2B shows the distribution of CA-IMT values in our sample, which is 
approximately normal. 
  
Framingham risk: 
Framingham Risk Score (FRS) was calculated for each participant according to D'Agostino et al., 200822. 
This metric incorporates age, sex, smoking, hypertension and cholesterol data from each participant. Five 
participants had missing FRS data. For analysis purposes, these missing values were imputed using the 
mean FRS. Figure 2C shows the distribution of FRS. 
  
MRI data acquisition and processing:  
Functional blood oxygenation level-dependent images were collected on a 3 Tesla Trio TIM whole-body 
scanner (Siemens), equipped with a 12-channel phased-array head coil. Resting-state functional images 
were acquired over a 5-minute period with eyes open and the following acquisition parameters: FOV = 
205×205mm, matrix size = 64×64, TR = 2000ms, TE = 28ms, and FA = 90° (39 slices interleaved 
inferior-to-superior for each of 150 volumes, 3mm thickness, no gap). T1-weighted neuroanatomical 
magnetization prepared rapid gradient echo (MPRAGE) images were acquired over 7 min 17 sec with the 
following parameters: FOV = 256×208mm, matrix size = 256×208, TR = 2100ms, inversion time = 
1100ms, TE = 3.31ms, and FA = 8° (192 slices, 1mm thickness, no gap).  
  
Resting-state fMRI data were preprocessed using SPM12 and included slice-timing correction, 
realignment to the first image using a six-parameter rigid-body transformation, co-registration to skull-
stripped and biased-corrected MPRAGE images, normalization to standard Montreal Neurological 
Institute (MNI) space and smoothing using a 6mm full-width-at-half-maximum (FWHM) Gaussian 
kernel. Head motion at the individual participant image level was estimated via framewise displacement 
(FD) according to Power et al., 201523. 
  
Resting-state data were denoised, including six motion parameters, white matter (WM), cerebrospinal 
fluid (CSF), and global signal(GS). The first principal component for each of WM, CSF and GS was 
used. Data were also bandpass filtered with a range of 0.009 - 0.08 Hz. A functional correlation matrix 
was calculated using the Craddock 200 parcellation24 by first computing the average time series from the 
voxels within each of the 200 parcels, and then calculating the z-transformed Pearson correlation 
coefficient between pairs of parcel time series. The upper triangular elements were extracted from the 
functional correlation matrix to form a vector of 19,900 functional connectivity (FC) features for each 
participant. FD was regressed out and the final FC vector for each participant is comprised of the resultant 
residuals. 
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MPRAGE images were analyzed using FreeSurfer (v6), with 148 cortical thickness and cortical surface 
area measures from the thickness and area freesurfer files respectively, using the Destrieux Atlas25, as 
well as 67 subcortical volume measures directly extracted from the aseg.stats freesurfer file of each 
participant. 
  
Multimodal prediction of IMT:  
We adopted a transmodal approach to stacking learning for prediction of CA-IMT18,19. In machine 
learning, stacking is classified as an ensemble learning method and involves combining predictions from 
a set of models into a new meta feature matrix for subsequent input into a new model for final 
prediction20,26.  
  
As detailed in Figure 1, our model comprised a two-step process that used multiple output predictions for 
each participant from a first level support vector regression (SVR) model as the inputs into the second 
level random forest model. The set of first level SVR models used different groups of features, or 
channels, corresponding to 1) resting-state FC, 2) cortical surface area, 3) cortical thickness and 4) 
subcortical volume measures. Performance of the predictive models at the first and second levels of 
analyses was determined using cross-validation. This model was predicated on the work of Liem et al., 
201620, who used this transmodal approach to predict brain age. In order to validate our model 
implementation, we predicted brain age in our sample and compared the results to those presented in 
Liem et al., 201620.  
  
To do so, we first split the data such that 80% were used for training and the remaining 20% for testing. 
Next, we used five-fold cross-validation during the training stage to generate out-of-sample SVR 
predictions for each channel on the training set data. We used a previously tuned parameter, C, for this 
type of data from 20. As input into the second level, the out-of-sample predictions from the training set as 
well as the test set predictions were stacked across channels, forming new matrices of 80% observations x 
4 channels and 20% observations x 4 channels, respectively. The second level random forest model was 
then tuned for the tree depth hyperparameter and trained using five-fold cross-validation to generate out-
of-sample predictions on the new training matrix and tested on the new test matrix to generate the final 
predictions for brain age. Performance of the single-channel and stacked models was then evaluated by 
comparing participant’s chronological age with the participant’s predicted brain age in the out-of-sample 
test data. Prediction error was measured using the coefficient of determination, R-squared, and the root 
mean squared error (RMSE). All predictive analyses were performed using scikit-learn27. 
  
Once validated using age, this analysis pipeline was used to predict IMT as the target outcome variable. 
An additional fifth channel consisting of a participant’s FRS was included in this pipeline. Since over 
parameterization is not a concern with a single feature model, simple linear regression (LR) was used for 
the single channel prediction of IMT from FRS. Thus, five single channels (four brain measures plus 
FRS) were stacked as input into the second level random forest model. Performance was similarly 
evaluated through comparison of observed IMT values with the predicted IMT values in the out-of-
sample test data.  
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We subsequently evaluated and compared model performance on IMT prediction for every possible 
combination of single data channels, again using the coefficient of determination, R-squared, representing 
model goodness-of-fit as the measure of model performance. 
  
Finally, in order to test robustness of our analysis and confirm that results were not dependent on a 
particular training/testing data split, we generated 100 random training/testing splits, using different 
random seeds, for analysis through our cross-validated, channel combination implementation. Final model 
performance was evaluated using the median of the Pearson correlation coefficient, coefficient of 
determination, RMSE and Bayesian information criterion (BIC) values of each partition. 
 
 
Results: 
 
We first wanted to confirm previously reported patterns in our data set. Our primary outcome measure, 
mean CA-IMT, was measured using ultrasound (Fig. 2A; see methods). Consistent with the assumptions 
of our statistical models, these CA-IMT values across our sample were approximately normally 
distributed (Fig. 2B), with a slight skew, in ranges consistent with an unbiased sample across the 
population (Stein et al., 2008).  We next wanted to replicate the well established relationship between 
FRS and CA-IMT28,29. FRS values were approximately normally distributed (Fig. 2C). As expected the 
linear regression of the association between FRS and IMT confirms a positive association, with a Pearson 
correlation coefficient of r=0.3857, p<0.001. Taken together, these results are in line with the literature 
and constitute a replication of effects shown previously28–30. 
 
In order to validate the feasibility of our transmodal stacking approach, we first attempted to replicate the 
findings of Liem et al., 201620 and predict chronological age using morphological brain measures as well 
as resting-state functional connectivity. This prior study was able to predict chronological age from the 
same imaging measures used here, with an accuracy of +/- 4 years.  Implementing our own version of the 
pipeline, applied it to our sample, revealed an association between chronological age and predicted brain 
age that was positive and equivalent in magnitude to the original report, with a Pearson’s correlation 
coefficient of r = 0.5246 and coefficient of determination, R-squared = 0.2732 for the hold-out test set. 
Figure 3 shows the observed versus predicted scatter plot for chronological age and brain age. Our age 
prediction error (~4 years) approximated that of the results presented in Liem et al., 201620, confirming 
the validity of our stacking approach.   
 
In order to evaluate our primary aim of determining whether clinically obtainable brain imaging measures 
boost the prediction accuracy of individual differences in markers of CVD risk, we applied our stacked 
learning approach to predicting CA-IMT. Figure 4 shows the distribution of four different metrics for 
each random Monte Carlo data partition for both the single channel predictions of CA-IMT, as well as 
every possible channel combination for the second level random forest prediction of CA-IMT. Panel A 
shows Pearson correlation coefficients, r values, panel B shows RMSE values (with the horizontal dotted 
line representing the standard deviation of CA-IMT in our sample, 0.084 mm), panel C shows coefficient 
of determination, R-squared values, and panel D shows BIC values. 
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Across all panels, the blue bars show the first level SVR and linear regression CA-IMT predictions using 
the single channel brain measures. Figure 4A shows that FRS has the largest median Pearson correlation 
coefficient, r = 0.3732, with the brain measures showing much smaller associations (resting-state FC 
median r=-0.0338, cortical SA median r=0.0970, cortical thickness median r=0.1263, subcortical volume 
median r=0.1145). Figure 4B demonstrates that the single channel predictions of CA-IMT from the brain 
measures had the largest median RMSE values (resting-state FC median RMSE=0.0869 mm, cortical SA 
median RMSE=0.0868 mm, cortical thickness median RMSE=0.0862 mm, subcortical volume median 
RMSE=0.0.0974 mm), and were higher than the standard deviation of CA-IMT (Figure 4B). The single 
channel FRS prediction of CA-IMT had the lowest RMSE out of all models, with a median 
RMSE=0.0778 mm, and was the only single channel model with an RMSE value beneath the standard 
deviation of CA-IMT in our sample. Figure 4C shows that median R-squared values for the single 
channel brain measure predictions of CA-IMT are all negative, indicating that our model does not 
appropriately predict CA-IMT using brain measures. However, the median R-squared values for single 
channel prediction of CA-IMT using FRS is positive (0.1377), indicating that FRS accounts for nearly 
14% of the variance in CA-IMT. Figure 4D shows a large range of BIC values for the single channel 
predictions of CA-IMT, with FRS being the most negative (resting-state FC median BIC = 82,454, 
cortical SA median BIC = 306.18, cortical thickness median BIC = 305.06, subcortical volume median 
BIC = -38.99, FRS median BIC = -332.89). Note that BIC reflects the amount of information lost by a 
model, so lower values are better. This confirms the results from panels A-C, demonstrating that the FRS 
single channel model is preferred over the single channel brain measure models. 
  
In all panels, the yellow bars show the second level random forest CA-IMT predictions from the channel 
combinations comprised of brain measures only. Figure 4A shows the median Pearson correlation 
coefficients, which ranged between r=0.0328 and r=0.1143. Stacking only the brain measures did not 
improve performance accuracy over the best single channel brain measure. Figure 4B shows the RMSE 
values, which hovered around the standard deviation of CA-IMT, and slightly improved upon the RMSE 
values of the single channel brain measures. Figure 4C shows that median R-squared values for the 
channel combination predictions of CA-IMT using only brain measures are all negative, albeit less 
negative that the R-squared values from the single channel brain models. This indicates that our model 
does not appropriately predict CA-IMT using brain measures. Figure 4D shows improved median BIC 
values for the channel combination predictions of CA-IMT using only brain measures compared to that of 
the single channel brain measure models, ranging from BIC=-312.89 to BIC=-314.22. However, these 
BIC values do not improve upon the median BIC value from the single channel FRS model, indicating 
that a combination of brain measures will not be a better feature selection choice than FRS. 
  
In all panels of Figure 4, the green bars show the second level random forest CA-IMT predictions from 
the channel combinations that include FRS. Individually, some brain measures perform above chance in 
predicting IMT, specifically the morphometry measures from T1, when looking at the correlation between 
observed and predicted values. However, the effect size is smaller compared to that of the single channel 
FRS model. In Figure 4A, the median predicted vs. observed correlation values for the channel 
combinations that include FRS were more than three times that of the maximum value of the channel 
combinations that only include brain measures, ranging between r=0.3436 and r=0.3727. Figure 4B shows 
that the inclusion of FRS resulted in a reduction in median RMSE values, hovering around 0.079 mm. 
Figure 4C demonstrates positive median R-squared values for the channel combination predictions of 
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CA-IMT that include FRS, ranging between R-squared=0.09 and R-squared=0.11, though all are lower 
than that of the single channel FRS model. Similarly, Figure 4D shows median BIC values that are 
smaller than that of the channel combinations that only include brain measures, but larger than that of the 
single channel FRS model, ranging between BIC=-320.90 and BIC=-322.23. Adding in FRS resulted in 
an overall increase in performance across all metrics shown in Figure 4. However, this is solely driven by 
FRS, as none of the channel combinations that include FRS perform better than FRS alone. These results 
indicate that brain measures do not assist in the prediction of CA-IMT beyond FRS. 
 
 
Discussion: 
 
Our goal for this study was to evaluate whether structural and functional brain measures from standard, 
clinically accessible MRI scans (T1 and resting-state fMRI) could be used to boost prediction of a marker 
of preclinical CVD above what is achievable from more standard clinical metrics, namely the FRS. 
Results show that our stacking algorithm is a sound methodology. We also see a strong association 
between FRS and CA-IMT, as expected. By comparison, we fail to find an improvement in our model 
predictions when using these brain measures individually, or in combination. 
 
Alignment of our work with prior literature is seen in a few different ways. Firstly, we replicate existing 
findings that demonstrate a substantial relationship between FRS and CA-IMT28–30. Secondly, our 
methodological approach replicates that of Liem et al., 201620 in a new sample, validating stacked 
learning as a useful tool for predicting individual differences from MRI-based measures. Finally, our 
results confirm some of the findings in the neuroimaging literature, namely that individually, cortical 
thickness and brain volumes are associated with CA-IMT14–16. However, these associations are weak in 
comparison to that of FRS and do not add to that model’s predictive power. Our findings also contrast 
with prior literature showing no association between CA-IMT and structural brain measures, including 
cortical thickness and brain volumes13,17, though it is possible that differences in the demographic makeup 
of the sample populations preclude direct comparisons.  
 
Our failure to detect a reliable prediction of CA-IMT from the sole functional measure, resting-state FC, 
contrasts with recent work from our group showing reliable prediction of CA-IMT using task-based fMRI 
measures11. This contrast is particularly revealing. Resting state FC is a passive measure reflecting global 
intrinsic brain networks31,32. Thus, targeted recruitment of specific brain networks during stressful or 
engaging tasks is likely necessary in order to use such functional brain signals as a predictor of individual 
differences in CA-IMT33. Indeed, this type of task-based functional brain measure could boost the 
predictive power of FRS. However, there is a vast body of tasks that needs to be explored before this type 
of functional data can be incorporated into our stacking model.  
  
An important consideration when interpreting our findings relates to our sample population. It is possible 
that the study selection criteria may have restricted the range of subclinical CVD present in the sample, 
which could partly explain the failure of multimodal brain measures to predict CA-IMT. We note, 
however, that FRS explained a moderate amount of the variance in CA-IMT across individuals (see 
Figure 4). Notwithstanding, a useful future direction would be to replicate and extend our approach in a 
more diverse sample, spanning a range of preclinical and clinical phenotypes of CVD. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 2, 2022. ; https://doi.org/10.1101/2022.01.31.22270191doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.31.22270191
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

  
It is also possible that predictive performance in the present study was limited by the use of CA-IMT, 
which has been suggested to have limited performance in the prediction of clinical CVD outcomes34,35. 
Nevertheless, evidence from intervention trials indicates that CA-IMT progression is an important 
outcome measure, especially for the detection of early pathophysiological vascular changes36. Moreover, 
it has been noted that carotid ultrasound is feasible in nearly all persons, relatively inexpensive, is 
associated with the incident (future) development of atherosclerotic plaques37,38. In these regards, CA-
IMT is regarded as a surrogate measure of the atherosclerotic disease process that predicts later CVD 
events5,37,39,40. Taken together, while CA-IMT has advantages as a subclinical CVD marker, it is possible 
that predictive performance from MRI measures could be improved by using other subclinical disease 
markers, such as coronary calcium scores or omnibus metrics based upon CA-IMT, such as arterial 
stiffness and endothelial function, which reflect vascular morphology and function41. 
  
The brain imaging modalities we used may have further constrained predictive performance, creating the 
possibility that other imaging modalities may capture brain features that are more reliably associated with 
subclinical CVD (e.g., arterial spin labeling for the assessment of cerebral blood flow and diffusion 
imaging for the assessment of white matter morphology)42.  
  
In addition, our cross-sectional findings do not rule out the possibility that baseline brain measures could 
forecast future (prospective) changes in disease endpoints, as has been found previously. Baseline 
amygdalar activity has been shown to predict future occurrence of CVD events6, changes in visceral 
adipose tissue43 as well as risk of Takotsubo syndrome44. Levels of stress reactivity within the 
rostromedial prefrontal cortex are also associated with future adverse CVD events7. 
 
In summary, the present cross-sectional human neuroimaging findings suggest that subclinical CVD 
reflected by CA-IMT does not reliably relate to a combined brain biomarker generated by stacking 
functional and structural features of the brain. Rather, CA-IMT predicted by FRS alone outperformed 
aggregate and individual MRI measures. In these regards, combining multimodal functional and structural 
brain measures by prediction stacking may not have utility in otherwise healthy midlife adults to 
characterize the neural correlates of subclinical CVD indexed by CA-IMT. 
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Table 1: Sample characteristics (N=324; 164 Men, 160 Women). BMI = body mass index, BP = blood 
pressure, HDL = high-density lipoproteins, CA-IMT = carotid artery intima-media thickness, FRS = 
Framingham risk score. 

Characteristic Mean or (%) SD 

Age (years) 40.30 6.28 

Race (%) 
     Caucasian 
     African-American 
     Multiracial/ethnic 

 
66.00 
28.40 
5.60 

  

BMI (kg/m2) 26.93 5.07 

Smoking status (%) 
     Never 
     Former 
     Current 

 
62.65 
20.06 
17.28 

  

Seated resting systolic BP (mm 
Hg) 

120.80 10.01 

Seated resting diastolic BP (mm 
Hg) 

72.63 8.75 

Seated resting HR (bpm) 74.10 9.63 

Glucose (mg/dL) 88.34 9.75 

HDL (mg/dL) 50.73 16.06 

Triglycerides (mg/dL) 94.43 56.94 

CA-IMT (mm) 0.61 0.08 

FRS 5.35 5.99 
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Figure 1: Prediction stacking model schematic, with linear SVR  and linear regression used in the 
unimodal predictions and random forest used in the multimodal prediction. FC = functional connectivity, 
SVR = support vector regression, LR = linear regression, RF = random forest. 
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Figure 2: A) Left panel shows carotid artery IMT acquisition using ultrasound. Middle and right panels 
show example ultrasound images with the IMT indicated. B) Raincloud plot showing distribution of IMT 
(mm) in our sample. C) Raincloud plot showing distribution of FRS in our sample. D) Scatterplot 
showing the linear regression of FRS on IMT. Line of best fit shown in blue. FRS = Framingham Risk 
Score. 
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Figure 3: Scatterplot showing correlation between participants’ chronological age and predicted brain age 
according to multimodal model. Blue line represents the line of best fit. 
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Figure 4: For all panels, blue bars show single channel predictions of IMT. Yellow bars show channel 
combination predictions that include only brain measures. Green bars show channel combinations 
predictions that include FRS. Error bars indicated 95% confidence intervals (calculated using 1000 
bootstrap iterations). Channel combinations are indicated numerically with 1 = resting-state FC, 2 = 
cortical SA, 3 = cortical thickness, 4 = subcortical volume, 5 = FRS. FC = functional connectivity, SA = 
surface area, FRS = Framingham Risk Score. Median values for the Monte Carlo simulation for single 
channel and every possible channel combination prediction of mean CA-IMT: A) Pearson correlation 
coefficient, r, B) RMSE (horizontal dotted line represents the standard deviation of CA-IMT in our 
sample, 0.084 mm), C) coefficient of determination, ￼and D) Bayesian information criterion. 
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