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A bias in health research to favor understanding of diseases as they present
in men can have a grave impact on the health of women. This paper reports
on a conceptual review of the literature that used machine learning or NLP
techniques to interrogate big data for identifying sex-specific health dispar-
ities. We searched Ovid MEDLINE, Embase, and PsycINFO in October 2021
using synonyms and indexing terms for (1) “women” or “men” or “sex,” (2)
“big data” or “artificial intelligence” or "NLP", and (3) “disparities” or “dif-
ferences.” From 902 records, 22 studies met the inclusion criteria and were
analyzed. Results demonstrate that the inclusion by sex is inconsistent and
often unreported, although the inclusion of men in the included studies is
disproportionately less than women. Even though Al and NLP techniques
are widely applied in health research, few studies use them to take advan-
tage of unstructured text to investigate sex-related differences or disparities.
Researchers are increasingly aware of sex-based data bias, but the process to-
wards correction is slow. We reflected on what would be the best practices on
using big data analytics to address sex-specific biases in understanding the
etiology, diagnosis, and prognosis of diseases.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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1. INTRODUCTION

Recent advances in data science and digital epidemiology have unlocked an unprecedented
amount of data for analysis, and uncovered previously unseen sex-specific patterns that point
at marked differences in disease symptoms, progression, and care that disproportionately affect
women of all ages. In 2016, the NIH published a guidance document (1) and changed its policy for
reviewing proposals whereby accounting for “sex as a biological variable” became a required and
scorable aspect of the research strategy, highlighting that “an over-reliance on male animals and
cells may obscure understanding of key sex influences on health processes and outcomes.” The
statement from the NIH only highlights the tip of the iceberg: biases at the start of the research
pipeline impact our capacity to derive knowledge upstream compounding the problem even fur-
ther as the same biases continue at different levels. Thus, in pre-clinical research, male mouse
models are overall more represented than female models (2, 3, 4). The reason behind this practice
is a concern that the reproductive cycle can induce variability in the experimental design and a his-
torical presumption that sex does not matter, which continues to prevail despite the efforts of the
NIH and evidence to the contrary in several fields (2, 5, 6). Sex differences exist in every tissue and
every organ system in humans (7, 8). Further up, recruitment for clinical trials often avoids women
of childbearing age due to safety concerns, particularly in phase I and phase II trials. Even when
both sexes are included, sex-differences are often not reported. Consequently, some diagnoses and
treatments are not adequately developed or evaluated in women.

Because of seemingly routine research decisions such as which cell lines or animal models to
use, or even well-intentioned decisions such as protecting women in reproductive age, health re-
search has had and continues to have a recognized intrinsic bias that favors knowledge and under-
standing of common diseases as they present in men. This can have a grave impact on the health of
women. For example, the first scientific statement from the American Heart Association on acute
myocardial infarction in women was published only in 2016, reporting on trends and knowledge
gained over the prior 15 years. Before that, knowledge about how myocardial infarction presents
in women (9), and the signs and symptoms specific to women were not widely known or publi-
cized. As knowledge improved, there were marked reductions in cardiovascular disease mortality
in women (see Figure 1) (10), demonstrating the devastating impact that failure to recognize early
symptoms and other gaps in knowledge have on the affected population. Even despite recent ad-
vances, women are less frequently referred for appropriate treatment (9, 11). Indeed, the problems
in cardiovascular disease may be mirrored in other disease areas. Sex bias is known to exist in respi-
ratory diseases (12, 13, 14), neurological disease (15), diabetes, mental health disorders (16), cancer
(17), autoimmunity (18), as well as physiological processes such as pain sensitivity (19) and aging
of the brain (20).

The wide adoption of Electronic Health Records (EHRs) has resulted in large repositories of
clinical and genomic data from a broad and diverse set of patients and has opened the door to
studies at a scale never seen before. The use of such data for digital epidemiology could help allevi-
ate the effects of the early biases and address the sex-specific knowledge gaps by providing readily
available real-world data (RWD) for observational studies encompassing a diverse population to
derive real-word evidence (RWE). The United States Congress addressed RWE in the 21st Century
Cures Act of 2016. The Act required that the Food and Drug Administration create by 2018 a path-
way to allow RWE to support new drug indication and post-marketing surveillance (21).

However, despite its wide use and availability for research, roughly 70%-80% of the data (22)
in EHRs is never used, as most published research that uses such repositories limits the study to
its structured portion (data in discrete fields, such as dates, ICD-10 codes, or test results, among
others). The much more abundant and information-rich portions of the records (the unstructured
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Figure 1

Cardiovascular disease mortality trends for men and women in the United States from 1979 to 2011. Reprinted
from Mozaffarian et al. (2015). Copyright © 2015 American Heart Association, Inc.

free text in the admission, progress, and discharge notes, and radiology or pathology reports) are
largely left untouched. Just as an example from the present study, in our MEDLINE search we found
67,424 papers as a result of our search of sex-specific keywords plus the keywords indicating ‘differ-
ences’ before adding the keywords of methods that could signal the use of unstructured data (such
as ‘nlp) ‘text mining’, ‘deep learning’ and others). Once those were added we ended up with only
469 papers from MEDLINE, which could indicate that unstructured data is likely utilized only in
less than 1% of the studies. This could be due in part to the many challenges that using the un-
structured data would present, including its inherent ambiguity, and to the fact that the methods
needed to extract and convert the free-text data are still developing and are not widely accessible
to the average health care professional researcher, particularly in relation to longitudinal data. In
addition, access to the unstructured portion of the records is more limited, and there are really not
many agreed-upon ‘best practices’ to do so. The motivation to use the unstructured text for filling
the gaps in knowledge is strong, however. Free text is generally preferred by clinicians (22), as it can
reflect their thought process and is perceived as more accurate, reliable, and understandable (23),
and allows them to express the complexities of diagnosis and interventions in clinical practice and
the ambiguity of symptoms (such as something being “more or less resolved”, or happening “often
over the last month”) in a way that is impossible with structured data (24).

Furthermore, careful design and systematic use of advanced Artificial Intelligence (AI) meth-
ods, such as Natural Language Processing (NLP) and Machine Learning (ML) could help address
the gaps in knowledge. This was demonstrated in a recently published retrospective observational
study using EHR data (25). The dataset included 10,840 clinical notes. In the study, a set of clinical
concepts was extracted from EHR structured and unstructured data using traditional query tech-
niques and artificial intelligence (AI) technologies. Performance was evaluated against manually
annotated cohorts. Accuracy was compared to pre-defined criteria for regulatory grade. Individual
concept occurrence ranged from 194 for coronary artery bypass graft to 4502 for diabetes mellitus.
For the structured data, the average recall and precision were 51.7% and 98.3%, respectively and
95.5% and 95.3% for the unstructured data, respectively. Thus, for each clinical concept, accuracy
for the strucutred data was below regulatory-grade, while the unstructured data met or exceeded
the criteria, with the exception of medications. In another study (26) the authors sought to quantify
the occurrence of serious and mild-to-moderate hypoglycemia using a large EHR database in the
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US, comparing estimates based only on structured data to those from structured data and natural
language processing (NLP) of clinical notes, using 844,683 clinical records. They found that the use
of NLP more than doubled the completeness of hypoglycemia capture overall relative to measures
from structured data, and increased capture of non-serious events more than 20-fold.

The use of these methods can also allow the integration of data not traditionally used in clinical
studies, such as the data in registries and regulatory data, or data that directly captures the patient
perspective, such as what is posted in Twitter, Reddit, or health forums. Although social media
text mining research for health applications is developing, the domain has seen a surge in interest
in recent years. Numerous studies have been published of late in this realm, including studies on
pharmacovigilance (27), medication non-adherence (28), toxicovigilance (29), foodborne illness
(30), and tracking infectious/viral disease spread (31, 32). The onset and spread of SARS-COV-2
causing the COVID-19 pandemic has been the impetus for new health related social media text
mining research to look at symptoms (33, 34, 35, 36, 37, 38) and potentially predict new outbreaks
(38, 39, 40). However, methods to determine the biological sex of a social media user are limited
and imprecise, and research using these alternative data has not yet reached the point where sex-
specific health outcomes can be accurately elucidated. We only found two papers that attempted
to do so (41, 52).

When speaking of women’s health, this study focuses on reported sex-specific differences in
studies of human disease that generally refer to biological sex. Further work may be needed to
identify gender disparities in health. Gender disparities are multifaceted and are related to the so-
cial status of women, as well as real and perceived biological differences and computational health
research (CHR) can aid in identifying them. These methods can also be used to develop models
that sidestep traditional gender biases, and develop models that can improve diagnosis, care and
ultimately health outcomes for all women. Going one step further, the scale of data that can be
used in CHR also allows for targeted examination of health outcomes among marginalized women.
It is among Black, Indigenous, and Latina women where we can expect to find the most signifi-
cant health disparities, but traditional health research is often underpowered to detect differential
outcomes among them. Overall, computational health research is not bound by sample size limi-
tations and can serve as a powerful tool to achieve equitable care for all women.

2. METHODS

In this paper, we aim to capture an understanding of how methods have been developed that inter-
rogate big data to identify sex-specific disparities in health, and reflect on what would be the best
practices for the purpose. To this end, we conducted a conceptual review of the literature. We had
a broad understanding of the concepts or themes we anticipated to provide our framework and we
anticipated that the literature would be too diverse to synthesize in a traditional systematic review.

The first stage of our review was to structure the question. We used a PICO (Population, Inter-
vention, Comparator and Outcome) format to structure the question and thus inform our inclusion
and exclusion criteria and search strategy. In terms of the population (P) we included both males
and females of any age with any disease or condition. Studies limited to just men and studies lim-
ited to just women were excluded. We also excluded all animal studies.

While within our question, there is no traditional intervention (I) as such we considered any pa-
per that had used artificial intelligence on any big data (structured or unstructured). We were par-
ticularly interested in machine learning (ML) or natural language processing (NLP). We excluded
studies that only investigated using Al on images or videos, or genomic data. We also excluded
studies that conducted only manual analysis of data or did not utilize any Al methods. We also
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excluded those that used Al solely to infer or predict sex or gender.

As for the comparator (C), all studies were required to compare males to females (or vice versa),
as we are interested in sex-specific differences. With regard to the outcome(s) (O), we included any
measurement of health disparities or differential health data by sex. We excluded those studies lim-
ited to other demographic data health disparities, such as race, social class or geographical region,
or that simply expressed a sex difference as a demographic characteristic of its study population
without further analysis of its impact on outcomes.

We searched Ovid MEDLINE, Embase, and PsycINFO on the 19th October 2021. Our search
strategy was broad, incorporating synonyms and indexing terms for women or men or sex (repre-
senting the population of the study (P) or the comparator (C)), big data or artificial intelligence (AI)
(representing the intervention (I)), and disparities or differences (representing the outcome(s) (O)).

We anticipated, however, that the study of sex-specific disparities is likely to be a secondary or
tertiary focus of many studies. Such studies will be difficult to identify given that gender is unlikely
to be mentioned in the title, abstract and even indexing in bibliographical records in databases
such as Medline and Embase. We therefore also conducted citation searches for all studies that met
our inclusion criteria as well as reference checking of any related reviews and our included studies.
Consequently, we acknowledge that the views and discussion of the current ‘state of the art’ in this
area presented here may be limited by being unable to uncover all examples in the literature.

The results of our searches were imported into an Endnote Library and then sifted by title and
abstract for potentially relevant studies. The full-text articles of any potentially relevant studies
were then independently assessed by two reviewers to ascertain whether they did indeed meet our
inclusion criteria.

We extracted the following data from the studies that met our inclusion criteria, the disease or
condition studied, the purpose, data source and cohort size of the study, the gender distribution,
the AI methods including features/predictions, annotation and validation, the results of the study
and whether separate models were used for males and females and code made available. We then
summarized the included studies according to the attributes of the studies.

3. RESULTS

Our search returned 902 unique records (1331 records before deduplication) and after reviewing
the abstracts, 62 references were included for screening of the full text. After review of the full text,
22 studies met our inclusion criteria and were included while 40 were excluded. The main reason
for exclusion was the study did not use any machine learning or NLP techniques. Other reasons,
in order of prevalence, were the reference retrieved was only an abstract or was not an original
research article, the data used was exclusively from our excluded criteria, the reported ML study
only classified users by gender, and the population did not meet our inclusion criteria.

We analyze next the reviewed studies based on their knowledge area, data sources, the applica-
tion of Al methods, and the proportion of men and women in the study samples.

3.1. Knowledge Area

Prescription rates: These have been identified in women and men while controlling for confound-
ing factors such as sociodemographic, clinical (e.g., psychiatric comorbidities and substance use),
neutropenia, functional factors (e.g., problems with occupation), and clinical monitoring (43).
Symptom Presentation: Differences in symptom presentation at first episode psychosis (FEP)
have been studied using NLP and ML in EHRs (44) and diagnosis and clinical manifestations of
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COVID (45) and tinnitus (46), Friedreich’s ataxia (FRDA) (47) and Alzheimer’s disease (48). Using
the data output from medical devices, sex-specific differences were examined for gait kinematics
in patients with knee osteoarthritis (49) and heart rate variability (50). The importance of gen-
der balance in sample sets for identifying phenotypic characteristics for diagnosis has also been
emphasized with a study on sex differences in autism (51). The presentation of mental illness dis-
closure on social media was assessed by sex (52).

Risk Predictors: Studies have differentiated the risk of suicide attempt and self-harm (53),
metabolic syndrome (54) initiation of cannabis use (55), the risks of loneliness (64), obesity (56),
musculoskeletal disorders (57) and opioid use post-treatment (58) using EHRs, as well as other
datasets.

Treatment: Only two studies found sex-specific differences in treatment, specifically indicated
in the treatment of COVID (45) and in treating the effects in tinnitus (46).

Prognosis: The study of disparities in prognosis is of particular importance. Sex-specific differ-
ences in survival were identified using machine learning algorithms in lung cancer patients (Wang
2021), and those undergoing cardiac surgery (60).

Comorbid Conditions: Sex-specific differences in multimorbidity networks were examined us-
ing a large set of EHR data (61).

3.2. Data Sources

The data sources for the studies were varied, with most utilizing information from EHRs or other
clinical databases. Within these studies, the majority only included structured data in their mod-
els (47, 48, 49, 50, 58, 59, 60, 61, 62) while a few incorporated both structured and unstruc-
tured data from these resources (45, 43, 44, 63). Another source of data was surveys, question-
naires, or interviews, where again the majority of studies used only structured data in their models
(46, 53, 54, 51, 57), with only one study applying NLP methods and used both structured and un-
structured data (64). Two of the studies (52, 56) explored data retrieved from Twitter, using NLP
methods to detect and extract relevant information and machine learning methods for classifica-
tion of the tweets.

The majority of the included studies employed only machine learning techniques (15/22,
68.2%) to uncover gender disparities. These included traditional machine learning methods such
as Support vector machine (SVM) (49, 50, 51), classification tree analysis including random for-
est (53, 58, 60), XGBoost (59) and C4.5 (47), regression models RIDGE (46) and logistic regression
(59, 55) or other regression models, such as Multivariate adaptive regression splines (MARS) (57).
Other studies used artificial neural networks, including self-organizing maps (SOM) (48, 61), and
AutoCM (54). One study used topic modelling to identify disease disclosure (52). Two of the in-
cluded studies (2/22, 9.1%) applied NLP techniques only to extract information from the free text
of EHRs (44, 63). The remaining studies (5/22, 22.7%) used both NLP to identify and extract infor-
mation and machine learning methods for classification or prediction (43, 41, 45, 52, 64).

3.3. The Application of Al Methods

The ways in which NLP or ML are applied vary considerably. Some studies use text mining or NLP
to extract data from unstructured or free text from sources such as EHRs. This is the case for a
study on the diagnosis and clinical management of COVID-19 using EHRs from Spain (45), a study
on clinical presentation and illicit substance use during first episode psychosis in London, England
(44), another study on reasons for discontinuation of lipid-lowering medications in patients with
chronic kidney disease in the U.S. (63) and another on clozapine prescription in schizophrenia in
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London, England (43). In each of these cases statistical analysis was then conducted using the data
extracted.

Most of the studies explored the role of sex-specific differences in the creation of classification
or prediction models for a variety of conditions including, Alzheimer’s disease (48), autism(51),
cancer (59), cardiovascular disease (47, 60, 63), musculoskeletal disorders (57), substance use (44,
55, 58), mental illness (43, 52, 62, 64) obesity/physical activity (41, 54) and tinnitus (46). Within
these studies, nine developed separate models for males and females finding these models were
better able to discriminate sex-specific determinants of the trait of interest.

One study used machine learning (ML) methods to identify physiological differences between
males and females that may be missed using traditional statistical techniques. This study exam-
ined sex differences in gait in a gender-matched study to identify differences between healthy and
osteoarthritis patients (49). This study found complex relationships amongst variables that may
not be discovered using inferential statistics and differences that were identified only using sex-
specific comparisons (49). Another study examined sex-specific differences in heart rate variability
from touch stimulus (50), noting that the SVM classifier achieved higher accuracy when the models
were trained and deployed on gender specific cohorts.

Disease differences by sex were also studied to find the health disparities in disease diagnosis
to understand multimorbidity networks (61). A summary of the studies included in the review can
be found in Table 1 and the Al methods and results in Table 2.

Table1 Summary of studies including data source, cohort size and gender distribution

Study Disease/Condition Data Source Cohort Size Gender Distribution
Baron-Cohen et al. Autism Questionnaire 715 Cases:178 M, 217 F; Controls: 152 M, 168 F
Gradus et al. Suicide risk EHR 279286 Cases: 10 152 M, 3951 F; Controls: 130 591 M, 134 593 F
Tokodi et al. HF patients EHR 2,191 1637 M, 554 F

Busto Serrano et al. Musculoskeletal disorder Survey 43500 21922 M;21 578 F

Davis et al. Post treatment opioid use Structured clinical data 1126 508 F 618 M

Vigna et al. Metabolic Syndrome Interview/questionnaire 210 68 M; 142F

Wang et al. Lung cancer SEER database 28458 13458 M; 15000 F

Spechler et al. Drug and alcohol use Survey, EHR 1587 Cannabis use: 207 M, 158 F; Comparator: 538 M, 678 F
Gradus et al. Suicidal Ideation Survey 2238 1062 M; 1099 F

Ghorbani et al. FRDA Structured clinical data 600+ Not reported

Cesare et al. Physical activity level Twitter 481 146 267758 M; 213 388 F

Badal et al. Loneliness Interviewsassessments 88 29 M; 51 F

Niemann et al. Tinnitus questionnaire 1628 800 M; 828 F

Grossi etal.. Alzheimer’s Disease Structured clinical data 211 68 M; 143 F

De Choudhury et al. Mental health Twitter 1208727 133608 M, 192 265 F
Ancochea, et al. COVID-19 EHR free text 4780 2337 M; 2443 F

Wesley et al. Schizophrenia EHR structured and free text 2244 1441 M; 803 F

Irving et al. Substance use EHR structured and free text 3350 2092 M; 1258 F

Morrison et al. Chronic kidney disease EHR structured and free text 14034 5675 M; 8359 F

Kalgotra et al. multimorbidity EHR structured data 22.1 million 9.9m M; 12m F

Nardelli et al. Heart rate variability (HRV) HRYV series from ECG 32 16 M; 16 F

Phinyomark et al. Osteoarthritis of the knee Structured clinical data 143 Cases: 45 M. 55 F; Controls: 18. M, 25 F

3.4. Study Samples

Among the papers reviewed, the proportion of women included varied significantly and in a two
instances sex was not reported (47, 52). Most studies included more women than men (48, 54,
55, 61, 64), several more balanced samples (46, 59, 50, 53). In two studies (62, 55), which have a
majority of male participants in the outcome group but the majority of participants female in the
comparison group.
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Table2 Summary of Al methods and results of included studies

" Separate
Study er.mw_\w\_“ -”M Mw:_ Al Approach Features/ Predictors Validation Results whwn\_m\_m
pattern of
Baron-Cohen et al. ML SVM 10-fold CV X Yes
correct responses Females (Control vs Autisic): Acc 72.2%; AUC 0.729,
Gradus et al. ML RE CART 1339 predictors 10-fold CV Female: AUC 0.87; Male: AUC .77 Yes
N Demographic and . 1 year Mortality: AUC of 0.728
Tokodi et al. ML CIRF clinical data 10-fold CV 3 year mortality: AUC 0.732 Yes
Multivariate adaptive . Male: Sensitivity 66.81%, specificity 70.83%
Busto Serrano et al. ML regression splines NA 80/20 split Female: Sensitivity 69.84%, specificity 70.35% Yes
. Prediction error rate:
Davis et al. ML CRwith LASSO, RSF Demographic and 10-fold CV Male 37.7% (accuracy = 62.3%) Yes
Female 43.2% (accuracy = 56.8%)
Auto Semantic
Vigna et al. ML Connectivity Map NA NR NA Yes
(AutoCM)
- . Acc =0.9075(one year survival)
Wang et al. ML xm_% _H_mmmmmo D mm_ﬂmﬁww% Mca NR Acc = 0.7565 (three-year survival) Yes
g Acc =0.7179 (five-year survival)
elastic net regularization questionnaire responses, brain . S . . _ ;
Spechler etal. ML with logistic regression imaging, genetic information (SNPs) 10-fold CV Males: AUC=0.65-0.74: Females: AUC = 0.74-0.82 Yes
Gradus et al. ML random forest NA NR ROC-AUC: Male= 0.91, Female = 0.92 Yes
Ghorbani et al. ML C4.5 algorithm Demographic and clinical data 10-fold CV Acc: 65.3% correctly classified, (kappa = 0.30). No
Cesare et al. Both methods from Cesare, 2017 Gender prediction: names NA Gender prediction: F1 score: 0.84 No
Qualitative loneliness:
. linguistic (TF-IDE sensitivity =0.90 and specificity=1.00.
Badal etal. Both IBM NLU tools; NN NA sentiment and emotions) Quantitative loneliness: No
vity=0.57 and specificity=0.89
LASSO, RIDGE, SVM, gender, tinnitus-related
Niemann et al. ML RE gradient boosting trees distress, depression, and 10-fold CV Acc=72% No
8 g trees treatment response
ietal MI If izing M M Demographic and NA NA N
Grossi etal. L Self Organizing Maps (SOM) ical data ?
De Choudhury et al. Both LIWC, topic modelling linguistic manual validation Validation oMu_ na%___ﬂ_wmv«‘mw mm%h kappa=0.87 No
EHRead; ML and deep N F-score: 0.64 "PCR-confirmed COVID-19"
Ancochea, etal. Both learning (not specified) text 75/12/13 split F-score: 0.80 in all cases (not PCR) No
. Demographic and L.
Wesley et al. Both GATE or TextHunter for NLP clinical data gold-standard dataset Precision 0.836; recall 0.727 NA
: BTG ari ; : . Manually validated Precision: (0.64-0.99, mean=0.86) and
Irving et al. NLP CRIS suite of NLP algorithms NA NLP output substance algorithm (0.87-0.97, mean=0.92) NA
sensitivity of 86.5% and
Morrison et al. NLP TextMiner NA NA aspecificity of at least 91.9% NA
(results from prior study)
Stronger comorbidities
Kalgotra etal. ML Self Organizing Maps (SOM) NA unsupervised among females Yes
(t value = 12.67, p < 0.0001)
All Subjects: accuracy = 58.07%
. - Males: accuracy = 70%
Nardelli et al. ML SVM HRV series NR Females: accuracy 84.38% Yes
for the group of women
. All subjects: Acc =of 86.05 %
. PCA with SVM ) 10-fold cross § . Acc =0l 86.(
Phinyomark et al. ML Classifier Gait measures validation method Male (Healthy vs OA): Acc = 98.75 % Yes

Male (Healthy vs OA): Acc = 98.75 %
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4. DISCUSSION

Sex and gender have a profound impact on the diagnosis, progression, care of illness and health
outcomes among women (5). Identifying and addressing sex- and gender-related issues in health
care is a crucial step towards achieving health equity (65). This research is a global priority named
within the WHO’s Sustainable Development Goals, and a steppingstone to promoting human
rights, and achieving health for all (66).

However, there is increasing recognition that the current attention paid to gender bias in health
is suboptimal (67) and this appears to extend to computational health research. Our review demon-
strates that while CHR, and AI specifically has been used to study a variety of aspects of health
care, there have been relatively few cases where such techniques have been used to investigate sex-
related differences or disparities. While researchers are becoming increasingly aware of male data
bias, where data collected, analysed and used in decision making has a bias towards men (5), this
process towards correction is slow. We can be careful not to repeat these mistakes i n computa-
tional health research. Future studies of big data from real-world settings, however, may help us to
distinguish between sex differences and gender disparities driven by bias, sexism or gendered hier-
archy. As some differences are explained by underlying biology, others are actually disparities that
result from inadequate or inappropriate care, or differences in social-economic factors or lifestyle
factors (such as alcohol consumption, diet, smoking, and exercise) (68, 69). CHR methods and big
data can be useful tools to disentangle the two.

Artificial intelligence should be performed on large scale data to make stronger sex-specific
inferences. We know that sex-specific differences exist but we need more detailed information to
inform prevention, diagnosis, treatment and clinical management. Big data has the potential to
decompose gender related heterogeneity leading to more personalised informed decision making
in healthcare.

4.1. Potential Biases in Studies and Implications for Good Practices

Surprisingly, among the papers reviewed, the inclusion by sex is inconsistent and often not re-
ported. In the majority of the studies, the inclusion of men is often disproportionately less than
women (64, 48, 61, 55, 54), except for a few that have more balanced subgroups (53, 50, 46, 59).
There are two exceptions (55, 62), which have a majority of male participants in the outcome group
but the majority of participants female in the comparison group. In two other studies (52, 47), the
distribution of males and females was not reported. The gender-skewed data distributions, if not
transformed, may lead to spurious findings in gender-specific differences, therefore challenging
the validity of the studies and resulting in biases in generating understanding of the etiology, diag-
nosis and prognosis of diseases. For example, autism research normally involves male dominated
study samples; (51) used a sex-balanced sample of men and women with Autism and found the
absence of typical sex difference in eye test. As (49) postulate, the lack of consensus in previous
studies with respect to certain diseases could be due to the results of mixed-gender cohorts. Thus,
it may be a good practice to generate gender-specific models. Moreover, gender is undoubtedly
confounded with other variables such as age in the etiology of diseases (49). When creating sub-
groups for research purposes, researchers should inspect gender systematically in relation to other
variables rather than as considering it a standalone factor.
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4.2. Next Steps

Thoughtful use of big data can aid our understanding of women’s health needs. Automated meth-
ods can be deployed to identify gender-based disparities in diagnosis and care (66). This is a pow-
erful tool to achieve equity in diagnosis, care and health outcomes for women, across a variety of
health domains.

Automated methods should also be used to investigate the interplay of gender with race and
ethnicity in diagnosis and health care. Computational methods with big data analyses offer a
unique opportunity to apply an intersectional lens to analyses, which can be difficult to accom-
plish with traditional survey methods. Intersectionality, a framework theorized by feminist legal
scholar Kimberlé Crenshaw, help us to not only identify and address disparities, but can keep re-
searchers from reproducing gender health disparities in our work (70). Public health scholar Lisa
Bowleg has distilled the core tenets that are relevant to health research (71), which we apply to
computational health research. Social identities like race, ethnicity, and gender are intersecting
and multidimensional and should be examined accordingly. For example, the experience of Black
women with health care should be examined specifically, rather than as the compounded experi-
ences of white women + Black men. Analytic approaches using big data often allow for this level of
specificity. As there are many social identities, intersectionality guides our research efforts to focus
on the historically oppressed and marginalized peoples in order to achieve equity. Finally, rather
than treating gender, race and ethnicity as individual predictive factors, we can shift our focus to
understand how social identities interact with social systems embedded with racism and sexism.
After all it is the interactions with social systems that produce the disparate health outcomes, but
rather social identities themselves (71).

We should use big data to identify bias in diagnosis, treatment and outcomes among women,
focusing on Black, Indigenous and Latina women. For example, large scale studies using EHR often
have large enough sample sizes to conduct intersectional analyses of women with various racial
and ethnic identities. Machine learning can also be used to develop models that perform better tan
the standard of care for BIPOC women specifically, and in turn women broadly (66, 72). Computa-
tional approaches should be used to uncover and address bias in traditional standards of care.

There are some challenges. In a recent review of 164 studies that used EHR to develop machine
learning models, 24% of studies did not report gender, and 64% did not report race/ethnicity (73).
The computational health studies that include gender, typically do not report race and ethnicity
data (73). When gender, race and ethnicity are excluded, it is impossible to identify gender dis-
parities at large, and distinct outcomes among Black, Indigenous and Latina women, groups for
whom we anticipate finding the largest disparities. Social identity omissions can also inadvertently
worsen existing disparities. For example, while machine learning is based on language models that
don’t include language used by Indigenous or Black women, those groups are systematically ex-
cluded from disease monitoring, and potentially from future allocations of resources and care.

These omissions can also introduce bias into machine learning models (75). (75) warn that
even small amounts of bias in machine learning models can significantly impact the public’s health,
as those biases are magnified across the population (75).

Measuring gender, race, and ethnicity is challenging, particularly when those identities are pre-
dicted using social media language or geolocation (74). However, there are best practices which are
superior to excluding gender, race and ethnicity from computational health. When developed cor-
rectly, machine learning and Al modeling can help identify and develop automated workarounds
for long held biases that drive many disparities, and ultimately to provide better care for all women
(75, 66). We can learn from the emerging conversation about errors in the widespread misuse of
race in medical corrections (76). There is also a research need dedicated to across the gender spec-
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trum including intersex, transgender and nonbinary individuals (77, 78, 79).

4.3. Limitations

This work is limited as we did not make a distinction between gender disparities driven by gender
identity vs. those driven by biological sex difference. Further research is necessary in this area.
As mentioned above, we also were unable to conduct a comprehensive search of the literature, al-
though we will have identified key papers in this area indexed in MEDLINE, Embase and PsycINFO.

4.4. Conclusions

Big data holds many promises. The potential for a deeper understanding of what are the differ-
ences and what are the disparities between men and women could help improve health outcomes
for patients. Therefore, for patients this could mean more appropriate care, for the clinician better
evidence for making targeted decisions and for the policy maker the ability to make more equi-
table and effective policies. Understanding gender health disparities will help to inform decision-
making, not at the individual patient level but also at the health policy level and help to provide a
more equitable society.
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