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Abstract 

Functional MRI (fMRI) is one of the most common brain imaging modalities used for 

understanding brain organization and connectivity abnormalities associated with multiple 

sclerosis (MS). The fMRI signal is highly perturbed by head motion, which degrades data quality 

and influences all image-derived metrics. Numerous correction approaches have been proposed 

over the years to overcome the problems induced by head motion, however, despite a few efforts, 

there are still current and persistent controversies regarding the best correction strategy. The lack 

of a systematic comparison between different correction approaches motivates the search for 

optimal correction models, particularly in studies with clinical populations prone to characterize 

by higher motion. Moreover, motion correction strategies gain more relevance in task-based 

designs, which are less explored compared to resting-state and may have a crucial role in 

describing the functioning of the brain and highlighting specific connectivity changes.  

We acquired fMRI data from a group of patients with early MS and matched healthy 

controls (HC) during performance of a visual task, characterized motion in both groups, and 

compared the most used motion correction methods. We compared task-activation metrics 

obtained from models without motion correction, models containing 6 or 24 motion parameters 

(MPs) as nuisance regressors, models containing 6 or 24 MPs and motion outliers detected with 

FD or DVARS as nuisance regressors (scrubbing) and models with 6 or 24 MPs where motion 

outliers were corrected through volume interpolation. To our knowledge, volume interpolation is 

a frequently used approach but was never compared with other existent methods.  

Our results showed that there were no differences in motion between groups, suggesting 

that recently diagnosed MS patients do not present problematic motion. In general, models with 

6 MPs present higher Z-scores than models with 24 MPs, suggesting the 6 MPs as the best trade-

off between motion correction and preservation of valuable information. However, correction 

approaches differ between groups, regarding the combination of MPs with correction of motion 

outliers. Models with 6 MPs and outliers’ volume interpolation or scrubbing with FD presented 

higher Z-scores in the MS group, while models with 6 MPs and scrubbing with DVARS or volume 

interpolation were the best combinations for the HC group. Differences between groups in motion 

correction strategies draw attention to the intrinsic impact of MS on fMRI analyses, which should 

be carefully addressed. 

This work paves the way towards finding an optimal motion correction strategy, which is 

required to improve the accuracy of fMRI analyses, crucially in clinical studies in MS and other 

patient populations. 
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1. Introduction 

Resting-state functional MRI (rs-fMRI) has evolved to become one of the most common brain 

imaging modalities and has been critical for understanding fundamental properties of brain 

organization and connectivity abnormalities associated with diverse clinical conditions 

(Binnewijzend et al., 2012; Roosendaal et al., 2010; Schoonheim et al., 2010; van Duinkerken et 

al., 2012). Particularly, multiple sclerosis (MS) is a disconnection disease that is due to structural 

damage but also functional connectivity alterations, which has been extensively investigated with 

fMRI during rest (Eijlers et al., 2019; Meijer et al., 2020; Sbardella et al., 2015; Shu et al., 2016). 

However, task-designs target brain regions and networks that show distinct properties than in 

resting-state (Di et al., 2013; Schoonheim et al., 2015). Thus, task-fMRI may have a crucial role 

in describing the functioning of the brain, in highlighting specific connectivity changes, and thus 

in understanding this disease better. However, the blood oxygen-level-dependent (BOLD) signal 

measured with fMRI is highly susceptible to various sources of noise. 

Head motion is the main source of noise in the BOLD signal. Motion artifacts degrade data 

quality and influence all image-derived metrics such as task activation and connectivity estimates 

(Liu, 2016; Zeng et al., 2014). On the one hand, rs-fMRI studies have demonstrated that head 

motion can introduce systematic bias to connectivity estimates by creating spurious but spatially 

structured patterns in functional connectivity (Maknojia et al., 2019; Parkes et al., 2018; Power et 

al., 2014). On the other hand, in task-based fMRI studies, head motion is more problematic when 

it correlates with the experimental tasks leading to false brain activations. If not properly 

accounted for, head motion will bias the statistical results, reducing the sensitivity and specificity 

for detecting task-specific BOLD responses (Caballero-Gaudes and Reynolds, 2017; Power et al., 

2014; Seto et al., 2001). To obtain a “clean” signal with neuronal and biological validity is then 

important to mitigate the effects of head motion. This is crucial in studies with developmental or 

clinical populations, especially those that tend to move more, where diagnosis and monitoring 

need to be the most accurate as possible (Griffanti et al., 2016; Saccà et al., 2021). It has been 

reported that early diagnosed MS patients and patients with higher disability levels tend to move, 

while at rest, to a greater extent in the MRI scanner than control subjects (Boonstra et al., 2017; 

Saccà et al., 2019, 2018). Also, a task-based fMRI study has found a linear increase in motion as 

task difficulty increased that was larger among MS patients with lower cognitive ability (Wylie 

et al., 2014). Furthermore, activation in the sensory-motor cortex during performance of a 

complex bilateral finger tapping task was also found to be greater in control subjects compared 

to relatively healthy MS patients, as a consequence of head motion in MS (Lowe et al., 2006). 

However, the effects of head motion in task-fMRI studies of MS, especially in early stages where 

head motion can be less evident but still present, and considering other task designs, are not 

systematically explored. Namely, there is a lack of studies investigating and comparing the 
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efficacy of different methods to mitigate the impact of motion artifacts on fMRI measures, 

particularly in the context of MS. Apart from ensuring the participant remains as still as possible 

within the MRI scanner, there are a plethora of methods described in the literature to correct head 

motion effects in data processing. However, there is no consensus over the most appropriate 

approach (Zaitsev et al., 2015). In fact, a systematic evaluation of motion correction approaches, 

in resting-state, has shown an heterogeneous efficacy of different methods and suggest that 

different strategies may be appropriate depending on the context (Ciric et al., 2017). Due to the 

growing interest in using task activation studies and since these are more prone to motion artifacts 

compared to resting state studies, we focused this work on systematically comparing some of the 

most used strategies to correct head motion in a task-based fMRI study with patients with multiple 

sclerosis and healthy controls. 

To apply the proper correction method, it is important to acknowledge the type of head 

motion we are dealing with. There are two main types: gradual head shifts, and sudden movements 

of the head known as motion outliers. The most common approach to compensate for head shifts, 

which is common in all fMRI preprocessing pipelines, is to realign all fMRI volumes to a 

reference volume, usually the first or the middle volume from the fMRI time series (Power et al., 

2015). The position of the head in space is estimated at each volume relatively to the reference 

volume using rigid body transformations where the head position is described at each timepoint 

by six motion parameters (MPs): translational displacements along X, Y, and Z axes; and 

rotational displacements of pitch, yaw, and roll. Then, these 6 MPs can be included as nuisance 

regressors in a General Linear Model (GLM) analysis of the fMRI data to account for the variance 

of the BOLD signal explained by the head shifts. However, because residual BOLD variance 

associated with head shifts can still be present, additional MP-derived regressors have been 

suggested although being less commonly used, namely the temporal derivatives of the MPs 

(Power et al., 2012) and the quadratic terms, resulting in a total set of 12MPs and 24MPs, 

respectively (Satterthwaite et al., 2013; Turner et al., 1996). Additionally, to gradual head shifts, 

motion outliers are more problematic and generate the most critical BOLD signal changes (Power 

et al., 2012).  These can be identified as spikes in the data time courses and cause large variations 

in image intensity. Such spikes are not accurately estimated using rigid body transformations, and 

thus the realignment step or the regression of the MPs fails to account for them. As a solution, 

several metrics have been proposed for describing subject motion and the detection of motion 

outliers, the most common being the Root Mean Squared head position change (RMS movement), 

the Framewise Displacement (FD), and the Derivative or root mean square VARiance over voxelS 

(DVARS), with the latter being a particular form of the RMS. (Power et al., 2012) compared the 

FD and DVARS metrics in terms of movement characterization and found that these provide very 

similar results, however it was unclear whether one index captures data quality better than the 

other. In any case, when these summary statistics are above a certain threshold for a particular 
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volume (e.g., values of 0.5 for FD and 0.5% ΔBOLD for DVARS), this volume is considered 

essentially unusable. Nonetheless, motion outliers can still be corrected through different ways, 

with the most common being censoring and scrubbing. Censoring is simply removing the outlier 

volumes most affected by the movement from the data, which might result in biased samples  

(Parkes et al., 2018). Scrubbing follows a model-driven strategy, whereby the volumes affected 

by extreme motion are identified and additional scan nulling regressors (with 1s at the volumes 

where motion spikes are detected and 0s elsewhere) are regressed out from the fMRI (Siegel et 

al., 2014). These can be either regressed out via GLM where the regressors are added directly in 

the GLM and accounted as covariates or nuisance regressors, or via multiple regression where the 

output residuals constitute the signal free of noise. Alternatively, volumes associated with motion 

outliers can be interpolated based on non-corrupted volumes (Caballero-Gaudes and Reynolds, 

2017; Mazaika et al., 2009; Mckechanie et al., 2019; Rudas et al., 2020). 

Despite all the worthy efforts, there is still no consensus regarding the optimal number of 

MP-related regressors to consider for tackling head shifts, nor the most appropriate additional 

approach to mitigate motion outliers (Zaitsev et al., 2015). In (Mascali et al., 2021), denoising 

pipelines including realignment/tissue-based regression with 24MPs, principal component 

analysis (PCA) or independent component analysis (ICA) methods (aCompCor and ICA-

AROMA, respectively), global signal regression, and censoring of motion-contaminated volumes 

were compared for task-based functional connectivity. In (Ciric et al., 2017) the same denoising 

pipelines plus spike regression (de-spiking) and scrubbing have been compared in a resting state 

framework, suggesting that different strategies may be appropriate depending on the context. The 

same methods were evaluated with data from clinical populations in (Parkes et al., 2018). 

However, the volume interpolation method was not addressed in these studies and comparisons 

of the same approach but with different motion detection metrics (e.g., FD vs DVARS) were not 

reported. Furthermore, the comparison of correction strategies in the context of MS is lacking. 

Activation and connectivity measures during task performance may have a crucial role in 

describing the functioning of the brain, highlighting specific connectivity changes, and thus 

understanding better this disease. Thus, it is crucial to investigate the interaction effect of the 

disease with motion correction strategies, to provide robust measures that might help to 

understand the pathophysiology of the disease and also serve as a tool for disease assessment of 

progression, ideally in a real-world clinical scenario. 

In this study we aim to characterize head motion and compare the most used correction 

strategies in clinical context using fMRI data collected from early diagnosed MS patients and 

healthy control subjects, during the performance of one visual passive task and one (more 

demanding) visual perceptual decision-making task. We started by computing head motion 

metrics for the two groups to study if there are relevant differences between early MS patients 

and controls. Next, we compared the most used strategies to correct the effects of head motion 
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and tested if the group has influence on the choice of the correction method. The strategies we 

compared are models with 6 and 24 MPs, mainly designed to deal with head gradual movements, 

and models with 6 or 24 MPs plus methods for tackling motion outliers to investigate if these can 

provide a better correction than models with only 6 and 24MPs. We compared scrubbing methods 

with two different motion outliers’ detection metrics, FD and DVARS, and volume interpolation. 

The best approach was determined based on the quality of the data analyses, given by activation 

and variance-explained metrics.  

2. Materials and Methods  

2.1 Participants 

All participants gave written informed consent to participate in the study after a full verbal and 

written explanation of the study. The study was approved by the ethics committees of the Faculty 

of Medicine of the University of Coimbra (reference CE-047/2018) and of the CHUC (reference 

CHUC-048-19), and the study was carried in accordance with the Code of Ethics of the World 

Medical Association (Declaration of Helsinki) for experiments involving humans. Patients were 

recruited and clinically assessed at the Neurology Department of the Coimbra Hospital and 

University Centre (CHUC) and met the criteria for MS diagnosis according to McDonald Criteria 

(Thompson et al., 2018). This study included 11 patients recently diagnosed with MS and 8 

healthy control (HC) subjects. Patients also underwent neuropsychological evaluation with the 

Brief International Cognitive Assessment for MS (BICAMS) (Langdon et al., 2012). 

Demographic data are presented in Table 1.  

 

Table 1: Demographic data of the participants. “F” stands for female, “R” stands for right. EDSS is the Expanded 

Disability Status Scale. 

Group Age Gender Handedness EDSS 

MS 32.18 ± 8.05 6F 11R 2.05 ± 0.52 

HC 30.75 ± 8.61 4F 8R - 

2.2 fMRI data acquisition   

Imaging was performed at the Portuguese Brain Imaging Network facilities (Coimbra, Portugal) 

on a 3T Siemens MAGNETOM Prisma Fit MRI scanner (Siemens, Erlangen, Germany) using a 

64-channel RF receive coil. fMRI data was acquired using a 2D simultaneous multi-slice (SMS) 
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gradient-echo echoplanar imaging (GE-EPI) sequence (6× SMS and 2×in-plane GRAPPA 

accelerations), with the following parameters: TR/TE = 1000/37 ms, voxel size = 2.0×2.0×2.0 

mm3, 72 axial slices (whole-brain coverage), FOV = 200×200 mm2, FA = 68°, and phase encoding 

in the anterior-posterior direction. A short EPI acquisition (10 volumes) with reversed phase 

encoding direction (posterior-anterior) was also performed prior to each fMRI run, for image 

geometric distortion correction. A 3D anatomical T1-weighted MP2RAGE (TR = 5000 ms, TE = 

3.11 ms; 192 interleaved slices with isotropic voxel size of 1 mm3) was also collected for 

subsequent image registration.  

2.3 Experimental Protocol 

The experimental protocol consisted of three functional runs: one run of a passive visual task, 

which was a functional localizer of the human middle temporal area (hMT+/V5, a low-level visual 

area well-known to respond to simple motion patterns), and two runs of a decision-making visual 

task of biological motion (BM) perception. 

The localizer run consisted of 10 blocks of 18 seconds, with each block comprising three 

periods: the first was a fixation period marked by a red cross positioned at the center of the screen 

for 6 seconds. During the second period, a pattern of stationary dots was shown for 6 seconds, 

followed by the third (and final) period during which the dots were moving towards and away 

from a central fixation cross at a constant speed (5 deg/sec) for 6 seconds.  

Biological motion stimuli were built based on human motion capture data collected at 60 

Hz, comprising 12 point-lights placed at the main joints of a male walker. Each BM perception 

run consisted of 12 blocks of 40 seconds: 4 or 5 blocks (depending on the starting block) of the 

point-light walker facing rightwards or leftwards (global biological motion), 4 or 5 blocks 

showing only the point-light located at the right ankle and moving rightwards of leftwards (local 

biological motion), and 3 blocks of point lights randomly positioned across the y axis, while 

maintaining their true trajectory across the x axis (scrambled motion). A total of 9 global, 9 local 

and 6 random blocks were presented during the two BM perception runs. After each stimulus 

presentation, the participants reported the direction of motion of the dots (left or right) by pressing 

one of two buttons.  

2.4 fMRI data preprocessing 

fMRI data were preprocessed using custom scripts in MATLAB®, using the SPM12 software 

with CAT12 and PhysIO toolboxes (Kasper et al., 2017), and FMRIB Software Library (FSL). 

The preprocessing pipeline included: 1) slice timing correction; 2) realignment of all fMRI 

volumes relative to the first volume; 3) correction of geometric distortions caused by magnetic 

field inhomogeneity, with FSL tool TOPUP (Andersson et al., 2003) using the reversed-phase 
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encoding acquisition; 4) bias field correction; 5) image registration (functional to structural); 5) 

segmentation of the T1 structural image (with CAT12 toolbox) to extract WM and ventricular 

CSF masks; 6) estimation of nuisance regressors (with PhysIO toolbox) such as cardiac and 

respiratory signals, WM and ventricular CSF average BOLD fluctuations and head motion (6 and 

24 MPs and motion spikes); 7) Regression of noise fluctuations. Then the “clean images” from 

the regression were brain masked and the preprocessing was completed with spatial smoothing 

with a 3 mm full-width-at-half-maximum (FWHM) isotropic Gaussian kernel and high-pass 

temporal filtering with a cut-off period of 24s and 80s for the localizer and BM tasks respectively.  

2.5 Motion quantification 

We characterized and compared head motion in both groups. For this characterization we 

individually computed the typical framewise displacement (FD), meanFD, the FD without 

considering the time series’ volumes affected by motion outliers, meanFD’, the FD considering 

only the time points where motion spikes were detected, meanFD’’, the number of spikes, and 

the amount of variance of the average BOLD signal explained by motion, computed through the 

𝑅𝑎𝑑𝑗 
2 (

𝐵𝑂𝐿𝐷

𝑀𝑜𝑡𝑖𝑜𝑛
) formula. 

FD is a scalar quantity to express instantaneous head motion and it is computed through the 

time series of the 6 MPs obtained during the motion correction step (Power et al., 2012). The FD 

is expressed by:  

 

𝐹𝐷𝑖 =  |∆𝑑𝑖𝑥| + |∆𝑑𝑖𝑦| + |∆𝑑𝑖𝑧| + |∆𝛼𝑖| +  |∆𝛽𝑖| +  |∆𝛾𝑖|, (1) 

 

where ∆𝑑𝑖𝑥 =  𝑑(𝑖−1)𝑥 −  𝑑𝑖𝑥 , and similarly for the other motion parameters, 

𝑑𝑖𝑥 , 𝑑𝑖𝑦, 𝑑𝑖𝑧, 𝛼𝑖𝑥 , 𝛽𝑖𝑥,𝛾𝑖𝑥   

 

The FD was obtained with PhysIO toolbox. We computed the FD without considering the 

motion spikes and the FD considering only the spikes to understand how much the spikes would 

contribute to degradation of the BOLD signal due to intense movements. The number of spikes 

was given by the number of points detected by FD with motion above 0.5 mm. 

DVARS is a measure computed from the data itself and does not depend on the MPs. It 

represents how much the intensity of a volume changes in comparison to the previous one (Power 

et al., 2012). The DVARS metric is given by:  

 

𝐷𝑉𝐴𝑅𝑆 (∆𝐼)𝑖 =  √〈[∆𝐼𝑥(�⃗�)]2〉 =  √〈[𝐼𝑖 (𝑥)⃗⃗⃗⃗⃗ − 𝐼𝑖−1 (𝑥)⃗⃗⃗⃗⃗]
2

〉, (2) 
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 where 𝐼𝑖 (𝑥)⃗⃗⃗⃗⃗  is the image intensity at locus (𝑥)⃗⃗⃗⃗⃗ on frame i and angle brackets denote the 

spatial average over the whole brain. The DVARS was computed with FSL tool 

fsl_motion_outliers, and motion outliers were identified by thresholding the DVARS at the 75th 

percentile plus 1.5 times the inter-quartile range. 

We also computed the 𝑅𝑎𝑑𝑗 
2 (

𝐵𝑂𝐿𝐷

𝑀𝑜𝑡𝑖𝑜𝑛
) measure as an additional metric to quantify motion 

between groups, which was estimated by the coefficient of determination adjusted for the degrees 

of freedom, defined according to (Montgomery et al., 2012):  

 

𝑅𝑎𝑑𝑗 
2 (

𝐵𝑂𝐿𝐷

𝑀𝑜𝑡𝑖𝑜𝑛
) = 1 − 

𝑁 − 1 

𝑁 − 𝑃 − 1
 

∑ 𝜀𝑖
2𝑁

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

 (3) 

 

where �̅� is the average BOLD signal, N is the number of volumes and P the number of 

motion regressors; ε denotes the residual of the model under analysis, which is described by 𝜀 = 

𝑦-𝛽X, where 𝑋 is the matrix containing the MPs, and β the associated weights estimated using a 

GLM framework. For each method (combination of MPs with scrubbing/interpolation) we 

computed the percentage of variation of the BOLD signal without motion correction explained 

by the motion regressors. The higher the value of 𝑅𝑎𝑑𝑗
2 , the more variance of the BOLD signal is 

explained by motion, so the better is the method in capturing and correcting for head motion 

effects on the data.  

Here, we tested 6 and 24 MPs because they represent the two extreme cases complexity-wise 

(Maknojia et al., 2019). The 6 MPs were obtained during realignment and the 24 MPs which 

correspond to squares of the 6 MPs and temporal derivatives were obtained with PhysIO toolbox. 

Then we compared the different correction methods between groups based on quality metrics 

(described below). The goal is to identify which strategy, among the combination of 6 MPs or 

24MPs with scrubbing with FD, scrubbing with DVARS or volume interpolation is better to 

mitigate the effects of motion. Models with only 6 and 24 MPs were mainly designed to 

understand which set of MPs is better for dealing with gradual movements. To correct the impact 

of gradual head motion, 6 MPs and 24 MPs are regressed out from the BOLD signal in the 

regression step of the preprocessing pipeline. The scrubbing method was implemented by 

identifying the head spikes, through FD and DVARS with the thresholds mentioned above, with 

1’s and 0’s elsewhere in the design matrix. Then these regressors are also regressed out from the 

BOLD signal in the regression step of the preprocessing pipeline. Volume interpolation was 

implemented with ArtRepair toolbox as the final step of the preprocessing where the affected 

volumes were firstly identified by FD with a threshold of 0.5mm and then interpolated based on 

non-corrupted volumes. Finally, a signal free of motion-related noise is ready to be integrated in 
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a General Linear Model (GLM) framework to obtain the statistical maps where the quality metrics 

will be computed to compare the different correction approaches.  

2.6 Statistical Analysis  

 The GLM framework was used to map the regions involved in our perceptual task. It is basically 

a linear regression represented by:  

 

𝑦 = 𝑋𝛽 +  𝜀 (4) 

 

with y the time series from one voxel, X the design matrix, β the model parameters, ε, the normally 

distributed error (or residuals) with zero mean (Pernet, 2014). Onsets and durations of each 

experimental condition were included in the model of the BOLD signal as regressors of interest 

representative of our tasks. For the localizer task we ended up with two regressors representing 

periods showing static points and moving points whereas for the BM tasks three regressors 

representing periods showing global biological motion, local biological motion, and scrambled 

motion were added to the model. These regressors were built based on unit boxcar functions with 

ones during the respective periods, and zeros elsewhere and convolved with a canonical, double 

gamma hemodynamic response function (HRF). The HRF-convolved regressors were then 

included in a GLM that was subsequently fitted to the fMRI data. After the fitting, the β weights 

are estimated, which represent the relevance of each regressor in explaining the variance of the 

data. Here, we set out to study brain regions that are activated when visual motion is present. 

Thus, the areas associated with these conditions were localized according to the contrasts [motion 

- static] and [global BM motion + local BM motion + scrambled motion - baseline] for the 

localizer and BM runs, respectively. We used family wise error (FWE) correction for multiple 

comparisons based on Random Field Theory (RFT), and we only considered activations as 

significant those with a threshold of p < 0.05, with a cluster-level threshold of p < 0.05. One GLM 

was estimated for each participant and for each run, thus each participant ended up with 9 

statistical maps per run: i) map with no motion correction. The only preprocessing step related to 

motion was realignment of the volumes to the first volume of the temporal series. These maps act 

as control to see how much movement was corrected with the different correction methods; ii) 

map with 6 MPs; iii) map with 24 MPs; iv) map with 6 MPs and scrubbing with FD; v) map with 

6 MPs and scrubbing with DVARS; vi) map with 6 MPs and volume interpolation; vii) map with 

24 MPs and scrubbing with FD; viii) map with 24 MPs and scrubbing with DVARS; ix) map with 

24 MPs and scrubbing with volume interpolation. From the resulting activation maps, the quality 

metrics were extracted. 
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2.6.1 Quality Metrics 

The maximum (Z-max) and mean (Z-mean) Z-score values were extracted from each statistical 

map in each subject. The Z values indicate the sensitivity of the model in detecting brain regions 

that are associated with our tasks. The higher the values of Z, the higher is the goodness of fit of 

the GLM explaining data variation, thus higher is the accuracy of the motion correction method. 

We decided to average the Z-score values of the three runs (one run of localizer task and two runs 

of BM task) because the Z-score values were very similar across the runs and the regions that 

activate in each one are identical, as expected because participants performed visual motion tasks 

in both. 

2.6.2 Comparisons 

To statistically compare the amount of head motion between groups, a t-test was applied to 

measures of FD, number of spikes, and 𝑅𝑎𝑑𝑗 
2 (

𝐵𝑂𝐿𝐷

𝑀𝑜𝑡𝑖𝑜𝑛
). To evaluate the performance of the 

correction methods tested here, models of analysis of variance with repeated measures for the 

quality metrics, Z-max and Z-mean, were used. To compare the strategies mostly used to correct 

the gradual head shifts, a two-way mixed MANOVA (one between-subjects and one within-

subjects factor) was performed. Similarly, to compare the strategies for correcting motion 

outliers’ effects and to study if scrubbing or volume interpolation methods are worth adding to 

the models with only 6 or 24MPs for correction of gradual shifts, a three-way mixed MANOVA 

(one between-subjects and two within-subjects factors) was performed. The between-subjects 

factor in the two comparisons is Group, which has two nominal unrelated or independent 

categories: Multiple Sclerosis (MS) and control (HC) participants. For the first comparison, the 

within-subjects’ factor is the MPs (number of motion parameters), with two levels (6 MPs and 24 

MPs) and for the second comparison, the within-subjects’ factors are the MPs and motion outliers’ 

Correction Method, with three levels (INTERP, FD and DVARS). 

3. Results 

3.1 Motion characterization 

Motion characterization, evidencing FD measurements, 𝑅𝑎𝑑𝑗 
2 (

𝐵𝑂𝐿𝐷

𝑀𝑜𝑡𝑖𝑜𝑛
) and the number of 

spikes for both groups, is represented in Figure 1. T-tests for these metrics revealed that no 

statistically significant differences were found between MS patients and controls (significance 

threshold, corrected for multiple comparisons, of p-value = 0.004): 𝑝(𝑅𝑎𝑑𝑗 
2 (

𝐵𝑂𝐿𝐷

6𝑀𝑃𝑠
)) = 0.36; 

𝑝(𝑅𝑎𝑑𝑗 
2 (

𝐵𝑂𝐿𝐷

24𝑀𝑃𝑠
)) = 0.15; 𝑝(𝑅𝑎𝑑𝑗 

2 (
𝐵𝑂𝐿𝐷

6𝑀𝑃𝑠+𝐼𝑁𝑇𝐸𝑅𝑃
)) = 0.38; 𝑝(𝑅𝑎𝑑𝑗 

2 (
𝐵𝑂𝐿𝐷

24𝑀𝑃𝑠+𝐼𝑁𝑇𝐸𝑅𝑃
)) = 0.06; 
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𝑝(𝑅𝑎𝑑𝑗 
2 (

𝐵𝑂𝐿𝐷

6𝑀𝑃𝑠+𝐹𝐷
)) = 0.38;  𝑝(𝑅𝑎𝑑𝑗 

2 (
𝐵𝑂𝐿𝐷

24𝑀𝑃𝑠+𝐹𝐷
)) = 0.06; 𝑝(𝑅𝑎𝑑𝑗 

2 (
𝐵𝑂𝐿𝐷

6𝑀𝑃𝑠+𝐷𝑉𝐴𝑅𝑆
)) = 0.18; 

𝑝(𝑅𝑎𝑑𝑗 
2 (

𝐵𝑂𝐿𝐷

24𝑀𝑃𝑠+𝐷𝑉𝐴𝑅𝑆
)) = 0.004; p(meanFD) = 0.99;  p(meanFD’) = 0.37; p(meanFD’’) = 

0.49; p(#Spikes) = 0.31; 

 

Figure 1: Motion quantification. Violin plots of motion metrics for both groups. R2 describes the amount of BOLD 

signal variation (without motion correction) explained by each set of regressors describing motion. meanFD is the mean 

framewise displacement, meanFD’ is the mean FD without considering motion outliers, meanFD’’ is the mean FD 

considering only the motion outliers and #Spikes is the number of motion spikes. Red and blue represent the groups of 

MS patients and HC, respectively. The dots and vertical lines in each group represent the mean ± standard deviation. 

Both distributions are quite similar, evidencing no differences in motion metrics between groups, as supported by t-

tests. 

3.2 Correction Methods Comparison 

The quality metrics of the models, group mean Z-max and Z-mean, for models with only MPs 

regressors for correction of gradual shifts are shown in Table 2. In Table 3 we present the metrics 

for the models with the combination of MPs for correction of gradual shifts and motion outliers’ 

correction methods.  

The two-way interaction of the two-way mixed MANOVA was non-significant, p = 0.168. 

Subsequently, the between-subjects’ effect of Group was significant (p = 0.005 for Z-max and p 

= 0.007 for Z-mean) and the main effect of MPs was also significant (p < 0.001), with pairwise 

comparisons showing higher Z-scores for maps with 6 MPs. This means that using 6 MPs is better 

than using 24 MPs regardless of the group. Figure 2 shows mean activation maps of models 

containing 6 and 24 MPs for each group.  
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The three-way interaction from the three-way mixed MANOVA was significant, p = 0.003, 

and the main effect of Group was also significant, p = 0.011 for Z-max and p = 0.018 for Z-mean, 

meaning that the group has influence on the correction approach. As the three-way interaction 

was significant, we fixed the groups and performed a two-way MANOVA in each (two within-

subjects factors: MPs and Correction Method) to check what is the best approach for correction 

of gradual shifts and motion outliers in each group. In the MS group, the two-way interaction was 

non-significant, p = 0.607, which means that there aren’t significant differences between 

combinations of MPs and motion outliers’ correction method. Again, the main effect of MPs was 

significant, p < 0.001. For the HC group, the two-way interaction was significant, p = 0.002, 

which suggests that the combinations of the number of MPs with the motion outliers’ correction 

method might yield different results. Similarly, to the MS group, in the HC group the main effect 

of MPs was significant, p < 0.001. Following the rationale given by the first comparison, that 

using 6 MPs is better than using 24 MPs and given the fact that the main effect of MPs of these 

two MANOVAs performed in each group was significant, with pairwise comparisons showing 

higher Z-scores for 6 MPs in both groups, we proceeded with one-way MANOVAs (one within-

subjects factor: Correction Method) in each group for models with 6 MPs to determine what is 

the best motion outliers’ correction method. In the MS group, the one-way MANOVA showed 

that the effect of Correction Method is significant, p = 0.013. Pairwise comparisons revealed that 

the best correction method seems to be volume interpolation, however differences between 

volume interpolation and FD are not statistically significant (p = 1). The difference between 

DVARS and FD is statistically significant, p = 0.011, with FD performing better than DVARS. 

In the HC group, the one-way MANOVA revealed that the effect of Correction Method was 

significant, p = 0.035. The pairwise comparisons showed that the best method was DVARS, 

however the difference between DVARS and volume interpolation is non-significant (p = 0.076). 

Also, the difference between DVARS and FD although significant is small (p = 0.046).  

Figure 3 illustrates mean BOLD signal inside the Z-max cluster, located in the visual region 

hMT+, before and after motion correction and mean FD time courses for one participant of each 

group. 

 

Table 2: Metrics to assess the quality of the models using motion correction of gradual head shifts with 6 MPs and 24 

MPs. Values are presented as mean ± standard deviation in each group of participants. 

Correction Group Z-max Z-mean 

6MPs 
MS 8.55 ± 0.60 6.72 ± 0.50 

HC 7.96 ± 0.89 6.30 ± 0.63 

24MPs 
MS 8.26 ± 0.78 6.53 ± 0.56 

HC 7.56 ± 1.07 6.10 ± 0.62 
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Table 3: Metrics to assess the quality of the models using a combination of 6 MPs or 24 MPs with each method to 

correct the motion outliers’ effects. Values are presented as mean ± standard deviation in each group of participants. 

“INTERP” stands for volume interpolation models, “FD” are the models with scrubbing using FD as the outliers’ 

detection metric, “DVARS” represents the models with scrubbing using DVARS as the outliers’ detection metric. 

   Metrics 

Correction MPs Group Zmax Zmean 

INTERP 

6MPs 
MS 8.54 ± 0.62 6.73 ± 0.51 

HC 7.99 ± 0.87 6.31 ± 0.63 

24MPs 
MS 8.26 ± 0.78 6.54 ± 0.57 

HC 7.59 ± 1.05 6.12 ± 0.61 

FD 

6MPs 
MS 8.53 ± 0.60 6.72 ± 0.50 

HC 7.85 ± 1.02 6.27 ± 0.65 

24MPs 
MS 8.25 ± 0.77 6.52 ± 0.51 

HC 7.53 ± 1.10  6.07 ± 0.65 

DVARS 

6MPs 
MS 8.49 ± 0.61 6.69 ± 0.51 

HC 8.28 ± 0.75 6.55 ± 0.56 

24MPs 
MS 8.20 ± 0.75 6.48 ± 0.56 

HC 7.85 ± 0.96 6.26 ± 0.57 

 

 

Figure 2: Group mean activation maps, resulting from the contrast [motion – no motion] in all runs. On the left are 

represented activation maps resulting from models with 6 MPs for each group. On the right are represented the 

activation maps resulting from models with 24 MPs for each group. Results are presented at a voxel p-value < 0.05, 

FWE corrected for multiple comparisons. Color bar scale represents t-values. The t-value is the result of the statistical 

test (t-test) in each voxel and measures the size of the difference calculated between the BOLD signal in the presence 

of motion stimuli and the BOLD signal during the absence of motion stimuli. The higher the t-value the most correlated 

is the BOLD signal with the specified contrast in a given brain region, thus more sensitive is that (group of) voxel(s). 

We can observe slightly higher extent of significant activations in the maps with 6 MPs.
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Figure 3: (left) Time courses of the BOLD signal, before motion correction and after motion correction with each approach, and mean FD for one participant from the HC group. (right) Time 

courses of the BOLD signal, before motion correction and after motion correction with each approach, and mean FD for one participant from the MS group. Measurements of FD allow the 

identification of spikes in the data, e.g., close to 300s (HC participant) and 350s (MS participant). Through the R2
adj formula, which indicates the amount of variance of the average BOLD signal 

without motion correction that is explained by motion regressors, we can compute how much motion effect is possible to remove with each correction method. The higher the values, the more 

motion contributions are removed, although too much variance might be removed with many motion parameters, including information not related to motion.
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4. Discussion 

There is a lack of consensus regarding which is the best approach to mitigate the effects of head 

motion in fMRI data. Reaching a consensus on the best strategy is even more important in the 

clinical context to produce reliable interpretations and foster clinical application. In this study we 

compared different strategies to compensate for head motion in fMRI data in a group of MS 

patients and a group of HC performing two visual tasks. We found that the group has influence 

on the choice of the motion correction approach, with 6 MPs combined with either volume 

interpolation or scrubbing with FD being the best correction approaches in the MS group, while 

6 MPs combined with either scrubbing with DVARS or volume interpolation are the best 

correction approaches in the HC group.  

We started by characterizing head motion in the two groups to study if the presence of disease 

affects motion occurrence. This comparison revealed that no significant differences in head 

motion were found between MS patients and HC, i.e., early diagnosed patients do not move more 

than the HC participants. While previous studies found clear evidence of greater motion in 

patients with MS than in HC subjects (Saccà et al., 2018; Wylie et al., 2014), our results may be 

due to the fact that the participants in this study are in early stages of the disease, have lower 

levels of EDSS and therefore do not show physical disabilities. Furthermore, in this study patients 

with MS are cognitively preserved, while others have investigated patients with cognitive 

impairment and suggest that healthy individuals and cognitively preserved patients with MS may 

process the cognitive task with enough efficiency that cerebral resources remain available for 

remaining still (Wylie et al., 2014). These authors have also shown a linear increase in movement 

of patients with MS and HC (to a less extent) as task difficulty increased. In this case, it might 

happen that our task is not demanding enough for these effects to stand out. Regarding the metrics 

we used to compare motion between groups, in addition to the well-known FD, we computed two 

variations of FD to investigate if the overall motion observed in each participant was mainly due 

to gradual head shifts or due the observation of motion outliers (abrupt motion spikes). The violin 

plots of these metrics show that values of FD without considering the points where motion outliers 

were detected are very similar to the conventional FD (all time points) values, supporting that in 

this cohort the abrupt movements of the head were not very problematic in overwhelmingly drive 

overall motion quantification. Nevertheless, it can be interesting and useful to check these motion 

metrics before deciding which correction approach should be put into practice. 

Next, we compared the most commonly used strategies to correct the effects of head motion. 

In this comparison we aimed to study: 1) if the group has influence on the choice of the correction 

method; 2) if including temporal derivatives of MPs would improve the correction of gradual 

movements; 3) if models with only these MPs regressors would be enough to compensate for all 
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the head motion, even for the more abrupt movements; 4) if not, which combination, between 

number of MPs and scrubbing with FD, scrubbing with DVARS and volume interpolation would 

correct better the effects of motion outliers. These analyses are particularly relevant in task-related 

and resting-state (rs) functional connectivity fMRI studies, which are rapidly increasing in clinical 

research (Goto et al., 2016). Particularly, MS is a disconnection disease that is due to structural 

damage but also functional connectivity alterations, with fMRI representing a gold-standard 

technique to investigate it (Tahedl et al., 2018). Previous studies have shown that group 

differences in head motion between control and patient groups cause group differences in the 

resting-state network with rs-fMRI (Lee et al., 2013; Maknojia et al., 2019; Saccà et al., 2019; 

Song et al., 2012). This raises the importance of these processing steps in functional connectivity 

studies, where one wants to study functionally connected networks throughout the brain that are 

correlated only due to the stimulation or cognitive processing, in task-based fMRI, or due their 

intrinsic functional organization at rest, not because of head motion. To our knowledge, there is 

a lack of this kind of studies in the MS context. No study has so far focused on determining the 

extent at which the effects of different motion correction approaches differ between groups in 

clinical studies of MS. Thus, more than reporting head motion differences, the investigation of 

which correction method is more suitable for these special cases is warranted, to obtain the most 

reliable results as possible.  

The comparison between motion correction approaches considering only 6 or 24MPs, which 

are mainly designed to mitigate the effects of gradual head movements, revealed that higher Z-

score values are obtained when considering 6 MPs regardless the group, which means that using 

6 MPs is better than using 24 MPs. This suggests that task-specific brain regions are detected with 

higher sensitivity and less biased by noise due to a better motion correction when using 6 MPs 

relatively to using 24 MPs. The activation maps resultant from the GLM analysis show that maps 

with 6 MPs have larger activations (more activated voxels) than maps with 24 MPs. These results 

are consistent with literature reporting that adding temporal derivatives can result in loss of 

degrees of freedom and therefore loss of valuable information (Yang et al., 2019). In the context 

of this visual motion task, correcting head shifts with 6 MPs seems to be enough to cover the 

effects of gradual movements.  

The traditional and common analyses use only a set of MPs as regressors to correct motion 

effects. However, to answer the question if models with only MPs regressors would be enough to 

compensate for all the head motion, even for the more abrupt movements, a third analysis was 

performed in which models with combinations of MPs and motion outliers’ correction methods 

were considered. The Z-score values are very similar between the models with only the MPs 

regressors and the rest of the models combining MPs with detection and correction of motion 

outliers. At a first glance this might mean that it's not worth adding additional methods to 

compensate for the effects of more abrupt movements. However, actually because of that 
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similarity and the fact that there is no considerable decrease in Z-values, which would suggest 

loss of valuable information, we consider that adding methods such as scrubbing, or volume 

interpolation are indeed crucial to eliminate residual noise and to compensate for putative motion 

outliers’ effects. The 𝑅𝑎𝑑𝑗 
2 values indicated in Figure 3 with an example of original and corrected 

time courses for one participant of each group also suggest that adding such methods help, indeed, 

to compensate for extra motion contributions without loss of signal of interest. This third analysis 

revealed that the motion correction approach differs between groups. This could be explained by 

the fact that motion outliers can happen at different moments in time between groups, e.g., if in 

one group the motion outliers always happen in periods of a stimulation condition, and in the 

other group always in fixation, this could lead to different corrections. Nonetheless, this is not the 

case in our study, as the number of motion outliers during stimulation or fixation periods between 

groups is approximately the same (described in supplementary material). More importantly, 

although the movement can be the same (in general, or even in outliers), the neuronal response 

behind the BOLD signal and its dynamics might be different between groups, so it wouldn’t be 

completely surprising that if the signal is by nature different between groups, then the motion 

correction of that signal might also yield different results. In fact, differences in neuronal 

responses behind the BOLD signal between MS and HC were recently described in the literature 

(Hubbard et al., 2016; Stickland et al., 2019; West et al., 2021). Activation maps with higher Z-

scores ended up being those that result from models with 6 MPs and volume interpolation or 6 

MPs and scrubbing with FD for the MS group, and models with 6 MPs and scrubbing with 

DVARS or 6 MPs and volume interpolation for the HC group. To our knowledge there are no 

studies of which strategy is best to correct motion outliers, with a direct comparison in the same 

data, between scrubbing, which is a modelling strategy, and volume interpolation, although the 

two approaches are widely used. Thus, it is important to discuss the impact of modelling motion 

outliers and interpolation in the data. Modelling motion outliers through scrubbing is a widely 

used technique to correct sudden movements of the head, however it creates temporal 

discontinuities. Interpolation overcomes this problem and avoids side effects in the high pass 

filtering step (Michielsen et al., 2011). However, volume interpolation induces synthetic data, and 

the duration of the censored segment, as well as the type of interpolation (linear, Fourier, wavelets 

or splines), may produce different effects that further depend on the choice of these parameters 

(Caballero-Gaudes and Reynolds, 2017). These effects and the negative impacts of using 

interpolation must be further investigated. This analysis also allowed us to directly compare the 

performance between motion outliers’ detection metrics, FD and DVARS. FD seems to perform 

better in the MS group while DVARS is preferable in the HC group. It is presently unclear whether 

one index captures data quality better than the other (Power et al., 2012). Indeed, the choice of 

one of them, given the ease of producing either measure, is left unresolved. Hence, there was a 
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need to systematically compare them in the same data in combination with different number of 

MP regressors. 

Apart from more traditional ways to deal with head motion, there are other techniques that can 

be implemented. Data driven strategies, namely algorithms such as PCA or ICA, which first 

decompose the data into a set of components, then the corrected fMRI data are obtained by 

removing the contribution of motion-related components (Caballero-Gaudes and Reynolds, 2017; 

Liu, 2016). Also, external optical tracking systems that constantly measure the position of the 

head or the use of dedicated sequences with navigator echoes or active markers are such examples 

(Caballero-Gaudes and Reynolds, 2017; Maknojia et al., 2019). However, here, we focused our 

study on these commonly and easily applicable methods, since we wanted to apply them in a 

clinical context where method implementation should be as easy and less time consuming as 

possible. We acknowledge the relatively limited sample size; thus, these results should be seen as 

suggestive regarding the recommendations to future studies. As to our knowledge, there are no 

fMRI studies with focus on MS to identify the best approach for correcting head motion, so this 

work is a first and crucial step towards this goal. Here, volume interpolation shows its relevance 

as it matches the performance of the common scrubbing methods, and results in the MS group 

suggest that volume interpolation may even outperform these methods. As MS can cause 

alterations in brain activity, which could influence the results, validation of these results is needed 

in future studies, namely in other healthy/patient cohorts alone with more data and considering 

other task designs. Nevertheless, with our results, we suggest that the optimal method, which 

reflects the best compromise between homogeneity of methodology between groups and 

performance, is the combination of 6 MPs with outliers’ interpolation. Moreover, this study 

represents a first step towards a more standard procedure for head motion correction in fMRI 

studies in this context. 

5. Conclusions 

In this study we characterized head motion in patients with early MS and healthy controls 

and compared different techniques to tackle head motion in task-based fMRI data to reach a 

consensus on the best strategies to use. While there were no differences between groups in motion 

quantification metrics, data analysis of quality metrics such as Z-score values were different 

between groups. Models with 6 MPs and volume interpolation or 6 MPs and scrubbing with FD 

were the best correction methods for the MS group, while models with 6 MPs and scrubbing with 

DVARS or 6 MPs and volume interpolation were the best correction methods for the HC group. 

This study is the first to systematically investigate the best approach for correcting head motion 

in MS, through comparison of commonly used and easy to implement approaches to correct head 

motion effects such as motion regression, scrubbing and volume interpolation. Our results pave 
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the way towards finding an optimal motion correction strategy, which is required to improve the 

accuracy of fMRI analyses, crucially in clinical studies with patient populations.  
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Supplementary Material 

 

 

Figure S1: (left) Violin plots of number of motion outliers during stimulation periods. (right) Violin plots of number 

of motion outliers during fixation periods. Red and blue represent the groups of MS patients and HC, respectively. The 

dots and vertical lines in each group represent the mean ± standard deviation. Both distributions are quite similar, 

evidencing no differences in number of motion outliers during stimulation or fixation periods between groups, as 

supported by t-tests (p-value (#Spikes_STIM) = 0.84; p-value (#Spikes_FIX) = 0.60, corrected for multiple 

comparisons). 
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