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Abstract:

Background: Inherited Metabolic Disorders (IMDs) are rare diseases where one impaired
protein leads to a cascade of changes in the adjacent chemical conversions. IMDs often
present with non-specific symptoms, a lack of a clear genotype-phenotype correlation, and
de novo mutations, complicating diagnosis. Furthermore, products of one metabolic
conversion can be the substrate of another pathway obscuring biomarker identification and
causing overlapping biomarkers for different disorders. Visualization of the connections
between metabolic biomarkers and the enzymes involved might aid in the diagnostic
process. The goal of this study was to provide a proof-of-concept framework for integrating
knowledge of metabolic interactions with real-life patient data before scaling up this
approach. This framework was tested on two groups of well-studied and related metabolic
pathways (the urea cycle and pyrimidine de-novo synthesis). The lessons learned from our
approach will help to scale up the framework and support the diagnosis of other less
understood IMDs.

Methods: Our framework integrates literature and expert knowledge into machine-readable
pathway models, including relevant urine biomarkers and their interactions. The clinical data
of 16 previously diagnosed patients with various pyrimidine and urea cycle disorders were
visualized on the top 3 relevant pathways. Two expert laboratory scientists evaluated the
resulting visualizations to derive a diagnosis.

Results: The proof-of-concept platform resulted in varying numbers of relevant biomarkers
(five to 48), pathways and pathway interactions for each patient. The two experts reached
the same conclusions for all samples with our proposed framework as with the current
metabolic diagnostic pipeline. For nine patient samples the diagnosis was made without
knowledge about clinical symptoms or sex. For the remaining seven cases, four
interpretations pointed in the direction of a subset of disorders, while three cases were found
to be undiagnosable with the available data. Diagnosing these patients would require
additional testing besides biochemical analysis.

Conclusion: The presented framework shows how metabolic interaction knowledge can be
integrated with clinical data in one visualization, which can be relevant for future analysis of
difficult patient cases and untargeted metabolomics data. Several challenges were identified
during the development of this framework, which should be resolved before this approach
can be scaled up and  implemented to support the diagnosis of other (less understood)
IMDs. The framework could be extended with other OMICS data (e.g. genomics,
transcriptomics), phenotypic data, as well as linked to other knowledge captured as Linked
Open Data.

Keywords: Clinical Metabolic Biomarkers; Purine and Pyrimidine metabolism; Urea
Cycle; Semantic Web Technologies; Network Data Analysis; Systems Biology.
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Background

Many enzymes are critically involved in the synthesis, degradation, and transport of

molecules in metabolic processes [1]. Malfunctioning of any of these enzymes often

results in a lack of or (potentially) toxic levels of metabolites, as well as affecting

other (downstream) pathways [2]. Figure 1 presents a schematic of the disturbed

biochemical reactions based on one impaired protein, leading to an altered

phenotype. These disorders are classified as Inherited Metabolic Disorders (IMDs) or

Inborn Errors of Metabolism [3]. A timely and accurate diagnosis of IMDs, currently

based on both symptoms and biomarkers measured in various bodily fluids, is

required to initiate therapies, which are sparsely available [4]. The current diagnostic

process starts with a metabolic pediatrician, who based on the phenotype of a

patient can request biochemical analysis on a patient sample (e.g. blood, urine).

After the sample has been collected and processed, several types of analysis can be

performed (e.g targeted metabolite assays, Whole Exome Sequencing (WES)),

which all require data processing and interpretation. The processed data is often

linked to existing database knowledge to arrive at a diagnosis. Methods to detect

genetic variants (WES) are useful for the diagnosis of specific classes of IMDs where

few or no specific metabolic biomarkers exist (e.g. mitochondrial disorders). This

technique has been found less sensitive and specific as compared to metabolic

measurements in newborn screening [5]. Furthermore, genetic profiles of patients

can also contain variants of uncertain significance (Figure 1); these variants can only

be classified as (likely) pathogenic when genomic, transcriptomic, proteomic,

metabolomic, and/or fluxomic data are integrated through pathway or network

analysis [6–8]. Targeted metabolite assays on the other hand are a valuable tool to

pinpoint which metabolic processes are disturbed, if the biomarkers for a disorder
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are known. These altered metabolites are used in newborn screening through dried

blood spot analysis.

Unfortunately, diagnosing IMDs using metabolites can be challenging due to the

commonly observed overlap between biomarkers, since the individual compounds

are often involved in more than one metabolic pathway and can therefore be

metabolized to various products. Furthermore, the diagnostic process can be quite

time-consuming, requiring a manual inspection by an expert in the field, who needs

to be familiar with all relevant metabolic conversion and their respective enzymes to

point out the malfunctioning protein. Last, current clinical diagnoses are lacking a

visualization of the connections between individual metabolic biomarkers and the

enzymes involved in their synthesis and degradation.

Therefore, this study provides a proof-of-concept framework for the integration

of metabolic interactions knowledge with clinical patient data, and identifies current

challenges for scaling up this approach. We hypothesize that the combination of this

knowledge and patient data in one visualization can aid in the diagnosis of IMDs, by

providing an overview of the processes relevant to the patient-specific deficient

protein. With this approach, the attention progresses from individual markers to

changes at the process level, which enables linking biological pathway knowledge to

clinical cases. This direct link shows which metabolic reactions are disturbed, which

proteins are related to these reactions, and potentially which specific protein is

impaired, aiding diagnosis. Furthermore, metabolic disturbances can be recognized

which cannot be attributed directly to the disorder, revealing potential blind spots in

existing clinical knowledge.
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Our framework was tested on two groups of IMDs, pyrimidine metabolism and

the urea cycle, with a well-understood molecular mechanism known for biomarker

overlap for several IMDs due to their common metabolite carbamoyl phosphate [9].

Furthermore, pyrimidine disorders often present with nonspecific clinical symptoms

and a lack of a clear genotype-phenotype correlation [10–12], while urea cycle

disorders are often more specific (e.g. hyperammonemia, lethargy, vomiting, coma)

[13].

The presented framework highlights chances for the IMD field as a whole

regarding data integration and reuse, by showcasing that improving data and

identifier (ID) harmonization increases the integration of clinical data with pathway

knowledge and biomarker information. Furthermore, the framework could aid in the

diagnostic process of other (novel) IMDs and is adaptable to analyze different types

of IMDs and functional assays in the future, as well as integrating other types of

(omics) data analysis, e.g. transcriptomics, metabolomics, and fluxomics. By using

visualization techniques from common network approaches, the framework could

also be extended with information on drug targets or genetic variants, which could

allow for personalized medicine. Last, since this study combines several research

fields and demonstrates an interdisciplinary approach, this paper will address each

field individually with the hope of closing the gap between the data collection and

interpretation, data curation and modeling, and data processing and interoperability.

1. Methods

Workflow

Figure 2 shows the proposed workflow to connect clinical data to pathway models

and theoretical biomarker data. Knowledge from various databases had to be
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integrated into the framework, which is summarized in Table 1. All data processing

steps were captured in an RMarkdown script [14] in the R programming language

(version 4.1.3) [15], tested through RStudio (version 2022.02.2) [16], available at

https://github.com/BiGCAT-UM/IMD-PUPY.

Clinical Biomarker Data

Biomarker data from 22 patients previously diagnosed with a pyrimidine or urea

cycle IMD was collected through two targeted chemical assays in urine [17,18];

metabolite concentrations were reported in μmol/mmol creatinine and patient age in

months. Four patients were removed from this study, due to missing data for the AA

panel (patients labeled B, C, P, and Q). The same assays were used to collect

reference data from other patients suspected of having an IMD, however with no

apparent IMD as assessed by selective metabolic screening. Reference data for

purines and pyrimidines (PUPY panel) included 4853 samples selected over ten

years; amino acids (AA panel) 1872 samples over five years. The reference data

was categorized in five age categories; data from the overarching category 0 to 16

years was used if no reference value was available for a specific age category. For

the 88 chemical biomarkers present in the patient data, four were disregarded from

further data analysis due to missing reference data: n-carbamyl-aspartate

(CHEBI:32814), allantoin (CHEBI:15676), cytosine (CHEBI:16040), and cytidine

(CHEBI:17562). The patient and reference data was annotated with corresponding

ChEBI [19] identifiers (IDs) or Wikidata [20] IDs when no ChEBI ID was available.

Patient data was anonymized and five biomarkers were disregarded: allopurinol

(used as treatment) and its metabolite oxypurinol; argininosuccinic acid anhydride

(ASA-anhydride) (obsolete after switching the separation method from anion
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exchange chromatography to UHPLC-MS/MS for AA analysis [18]); and CysHCys

and 2,8-dihydroxyadenine (metabolites without a ChEBI ID). Table 2 details the

sample size, diseases, and corresponding age ranges used in this study. No patients

or their caregivers have objected to the anonymous use of their leftover material

from routine diagnostics for laboratory development and validation purposes.

Pathway models

Since the clinical patient data also included metabolites from the purine pathway,

IMDs in this group were added to the analysis to serve as control data points.

Machine-readable versions of the purine, pyrimidine, and urea cycle metabolic

pathways were created using the pathway editor and curation tool PathVisio (version

3.3.0) [21], as well as pathway models (PWMs) on biomarkers, visualizing several

markers missing from the main pathway models. All proteins were annotated with

UniProt IDs [22], and directed Rhea IDs [23] for the metabolic conversions.

Corresponding ChEBI IDs [19] from Rhea were used to annotate the substrate and

product metabolites. IMDs were annotated with OMIM disease IDs [24]. Data on the

created PWMs was deposited in WikiPathways [25] and retrieved from RDF data

format (Resource Description Framework [26]) through the WikiPathways SPARQL

endpoint [27] (data from September 2021 [28]).

Selection of Relevant Biomarkers (in PWMs)

All biomarkers were compared to the lower or upper reference values; below the

lower limit indicated a decrease (negative change) and above the upper limit

indicated an increase (positive change). Biomarker values in between or exactly

equal to the reference values were designated as unchanged. Missing biomarker
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data (null-values) were disregarded, as well as patient or reference concentration

data being equal to zero. All resulting calculated values were log(2) transformed to

show proportional changes, resulting in a log2FC. The changed biomarkers were

compared against existing PWMs to find missing entries through the WikiPathways

SPARQL endpoint (data from September 2021).

Theoretical Biomarker Data

Since the chemical assay for pyrimidine metabolites also measures purine

compounds, we collected theoretical biomarker data for both pathways, in addition to

the urea cycle. Potentially relevant biomarkers for these disorders were retrieved

manually from IEMbase [29] V 2.0.0 (accessed on 2021-08-05) through their HGNC

gene name as HMDB IDs [30], including the sample matrix, and positive or negative

concentration change. The latter was converted to a numeric scale for each of the

five provided age categories. The biomarkers in IEMBase were represented through

arrows (and some other characters) to show relative increases or decreases rather

than numeric values. These visualizations were converted to a numeric scale (from

-3 to +3) according to these rules:

Visualization Conversion Visualization Conversion Visualization Conversion

↑↑↑, ↑↑, ↑ +3, +2, +1 ↑ - ↑↑, ↑↑ - ↑↑↑ +1.5, +2.5 n to 1, n to 2 +0.5, +1.5

↓↓↓, ↓↓, ↓ - 3, -2, -1 ↓-↓↓, ↓↓-↓↓↓ -1.5, -2.5 n, +- 0

Correlations between individual metabolic biomarkers and diseases were visualized

in a heatmap (Euclidean distance) with the gplots package (version 3.1.1,

https://cran.r-project.org/package=gplots); positively changed biomarkers were

colored red (using three shades to show mildly, high, and very high), negatively

changed markers blue (again in three shades); markers which were not altered for a
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disease were colored white. Disorders without any biomarker data for a specific age

category were removed from the visualizations.

Relevant Biomarker overlap

All biomarkers were manually linked from ChEBI IDs (patient and pathway model

data) to their corresponding HMDB IDs (theoretical biomarker data). The patient

biomarker data was converted to the same scale as the theoretical biomarkers

(values for log2FC above 3 or below -3 were set at 3 and -3, respectively). The

patient data was visualized together with the theoretical biomarker visualization,

removing small changes (log2FC between -0.05 and 0.05).

Pathway Selection

Relevant pathways were found through a query against the WikiPathways SPARQL

endpoint matching the changed biomarkers. The pathways were sorted based on the

highest number of matching biomarkers. A maximum of three pathways were

selected, based on including most unique biomarkers.

Data visualization

The data for each patient was visualized with the network analysis tool Cytoscape

[31] (version 3.9.1), by using the Cytoscape REST API [32] (version v1) and

WikiPathways App for Cytoscape [33] (version 3.3.10) through R. The absolute

highest value for the log2FC was used to determine the color scale, using a

five-point scale to accommodate for small changes (values between -1.5 and 1.5)

and high (abnormal) biomarker values. If no value was available for a node within the

network, the fill color was set to gray.
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Data Interpretation

For each patient, the network data visualization (framework step 7) and relevant

biomarker overlap heatmap (step 5) were provided to two Laboratory Specialists in

Biochemical Genetics, after which narrative feedback on a potential diagnosis was

collected.

2. Results

A framework was designed to visualize clinical biomarker data for IMDs through their

metabolic interactions. In order to explain the findings of this interdisciplinary study,

this section is divided in three paragraphs, so that experts from different research

fields can directly find the information most relevant to them, while also being able to

switch outside of their expertise.

Clinical geneticists, metabolic pediatricians, biologists, and chemists

This group of experts is mainly responsible for the data collection and interpretation

(e.g. Metabolic Pediatricians, Laboratory Specialist), and are involved at the direct

start of the diagnostic pipeline and the final diagnostic step. Our framework was

tested on data from 16 patients with a variety of pyrimidine and urea cycle IMDs and

is summarized in Table 2. In total 88 clinical markers were measured in urine

samples, 34 through the PUPY panel (purines and pyrimidines) and 54 by the AA

panel (amino acids). Theoretical biomarkers for the investigated phenotypes were

obtained from an online database (IEMbase), finding 27 unique metabolic

biomarkers relevant for urine samples. Table 3 shows the number of (significantly

altered) biomarkers linked to reference data for each patient, as well as the number
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of biomarkers found in a metabolic pathway. Two laboratory specialists in

biochemical genetics used the data visualizations from our framework to arrive at an

IMD diagnosis, by combining the heatmap showing theoretical biomarkers and

related enzymes with the network biomarker data visualization.

Figure 3 shows the theoretical biomarkers for their respective IMD class

(purine, pyrimidine, urea cycle) and data for one patient (age category 0-1 year,

diagnosed originally with DPYD, in purple, labeled patient I) as a heatmap.

Comparing theoretically changed biomarkers to patient data is the first step in

selecting potentially relevant phenotypes and affected proteins, and can be used to

imply which biochemical reactions or pathways are disturbed. Rows indicate

individual phenotypes (right axis), and are clustered (left axis) based on their

overlapping biomarker profiles (bottom axis). The top left of Figure 3 shows that for

example the first two rows representing SLC25A15 and OTC (both urea cycle

disorders) are clustered together, due to their overlapping biomarkers orotic acid

(HMDB0000226) and homocitrulline (HMDB0000679). However, for SLC25A15 an

excessive amount of homocitrulline is produced and a small increase in orotic acid

can be noted, while for OTC both metabolites are increased in a similar amount.

Disorders clustered together can be difficult to diagnose, due to marginal changes in

or low numbers of known biomarkers, and overlap between the markers. The sample

obtained from patient I showed four additionally changed biomarkers compared to

the theoretical values; however no direct relation to the theoretical biomarker profile

of DPYD was observed.

Regarding all patients, the biomarker profile of only four patients clustered

with a potential gene of interest (Table 3 last column), with three patients (labeled A,

E, K) closely resembling the theoretical biomarkers for their corresponding disorder
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DPYD. Interpreting the remaining patient data with knowledge of the biochemical

interactions between the biomarkers is needed to arrive at a diagnosis.

Figure 4 shows the data visualization for patient I on the pathways selected

for this patient: ‘Biomarkers for pyrimidine metabolism disorders’ (left) and ‘Purine

metabolism’ (right) pathways. As expected for DPYD, the pyrimidine pathway which

includes the DPD protein shows the most relevant metabolic changes for this patient.

Two metabolites (thymine, uracil) which are directly converted by DPD show

elevated levels; one direct downstream metabolite of thymine (5-OH-methyluracil)

also shows a high concentration. Two downstream metabolites of DPD

(dihydrouracil, beta-alanine) are found to be within the healthy reference values,

whereas (S)-beta-aminoisobutyrate also downstream of DPD shows a decreased

concentration. The second selected pathway on purine metabolism shows elevated

levels of SAICA-riboside, which was not expected for this disorder and might suggest

physiological immaturity.

In total, nine disorders out of the 16 patient samples were diagnosed with the

correct IMD, whereas for four patients the visualization suggested further informative

assays (see Table 6). These latter patients included one case of Dihydropyrimidine

dehydrogenase deficiency (DPYD - patient E), and three cases of Ornithine

Transcarbamylase deficiency (OTC - patients G, R, and S). Samples from patients

under treatment, e.g. patient H (diagnosed with hyperornithinemia-

hyperammonemia- homocitrullinuria (HHH) syndrome, also known as ornithine

translocase (SLC25A15) deficiency) receiving citrulline, were difficult to diagnose

since the framework cannot distinguish between abnormal biomarker values due to

treatment or caused by the IMD. Patient J (diagnosed with Beta-ureidopropionase

deficiency, UPB1D) was not correctly diagnosed by both experts, which we attribute
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to the very mild disturbances in the biomarker patterns. Last, patient O (diagnosed

with Ornithine Transcarbamylase deficiency, OTC), showed an unexpectedly higher

value for arginine rather than ornithine.

Data(base) curators and modelers

This section describes the data curation and modeling aspects of this study; often an

invisible layer in the diagnostic process however an important influence on the

results of a diagnosis. Out of the 88 biomarkers measured through the targeted

metabolic assays, two could not be annotated with one unified database ID from

ChEBI. Six new pathway models were created for this project, to provide

interoperability between the metabolic interactions relevant for the studied IMDs and

the clinical biomarker data. Table 3 details how many relevant clinical biomarkers

were missing from any PWM from the WikiPathways database (framework step 3),

the pathway’s coverage of biomarkers relevant for each patient (pathway), and the

highest total of markers covered by one pathway. Table 4 describes the content of

each pathway, regarding proteins, metabolites, interactions, and described disorders.

There were seven markers not part of any pathway model (previously existing or

newly created) with the corresponding ChEBI IDs: 28315, 40279, 17755, 43433,

89698, 49015, 61511, which can be used for future curation. The available

theoretical reference data for urine samples with a database identifier (HMDB) left 23

unique biomarkers, linked to 25 individual IMD phenotypes. Nine disorders were

missing theoretical urinary biomarker data, and for one disorder the molecular

mechanism is still unclear, therefore missing a specific protein connection.

Programmers, data scientists, and bioinformaticians
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The last group addressed in this section provides the glue that holds the analysis

section of the diagnostic pipeline together, and is responsible for data processing

and interoperability. Theoretical biomarker data was collected for all IMDs in the

pyrimidine and urea cycle pathway; biomarkers for the purine pathway were included

to represent true negative values. In total, 17 purine, 10 pyrimidine, and 8 urea cycle

IMDs were included (35 disorders in total) in the PWMs. The annotated data from

framework step 1 (Figure 2) was used to find relevant pathways for visualization,

which led to 171 pathways in total, including one or more distinct biomarkers. Fifteen

of these pathways contain 10 or more markers, displayed in Table 5, which could

potentially be ideal candidates for the data visualization.

By only querying the pathway data for relevant biomarkers (instead of all markers in

a panel), a customized visualization was created for each patient. The selection of

the top three pathways containing the highest number of unique markers was

performed using SPARQL-queries. One pathway for three patients was selected

manually, aiming to include relevant metabolic interaction containing biomarkers with

the largest change. Table 6 shows which pathways ended up in the top three for

each patient, as well as which biomarkers were not part of the visualization after

selecting the top three.

3. Discussion

Our proposed framework is based on the combination of clinical data, online

available biomarker information, and metabolic reaction models. This framework

creates the possibility to visualize clinical biochemical data on the pathway level,

allowing for a more detailed interpretation of the connections between the different

markers. The developed framework was designed for individual patient analysis and
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optimized for pyrimidine and urea cycle disorders with biomarkers measured through

targeted assays. We believe this framework can be extended to other IMDs and

more biological matrices. Also, several challenges should be taken into account

before scaling up the framework. This section is again divided in three paragraphs,

to describe the challenges for data collection and interpretation, data curation and

modeling, and data processing and interoperability.

Clinical geneticists, metabolic pediatricians, biologists, and chemists

Our developed framework enables the visualization of clinical biomarker profiles with

biological pathway knowledge, by connecting individual markers to changes on the

process level. This approach shows which metabolic reactions are disturbed, which

proteins are related to these reactions, and potentially which specific protein is

impaired, aiding diagnosis. Existing data interpretation approaches often require a

manual inspection of pathways and interactions, which do not include the clinical

data. Furthermore, metabolic disturbances can be recognized which cannot be

attributed directly to the disorder, revealing potential blind spots in existing clinical

knowledge. However, the data integration needed for this approach requires

database identifiers; therefore we advise the (rare) disease community to include

these identifiers (from a publically available database) for each compound measured

through a metabolic assay. The developed framework is extendable with in-house

biomarker data, knowledge from other databases or literature, and additional data

from blood samples or other relevant matrices. Even though recent advances in

clinical urinary biomarker measurements [17] have aided in the diagnosis of some

IMDs, most markers are currently not used for newborn screening [34] due to limited

detectability of these biomarkers in dried blood. The inclusion of an additional matrix
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could provide a broader overview of the metabolic disturbances in a patient and lead

to a more comprehensive isolation of the involved metabolic interactions. The

framework also leaves room for manual selection of potentially relevant pathways by

experts, which could be aided by reviewing the patient-specific heatmap which

visualizes theoretical biomarkers. Our framework could be enhanced by selecting the

top three pathways covering the most unique biomarkers while prioritizing the

markers with the highest log2FC. Currently, diagnostic laboratories for inborn errors

of metabolism often report exact metabolite concentrations in diagnostic patient

reports; Z-scores are (rarely) used as a measure to compare patient values to a

control population. The pathway and network models used in our framework

normally report (log)-fold changes (log2FC) to compare two groups (diseased versus

control) or z-scores as a measure for over-representation of pathway entities such as

metabolites. We believe that laboratory specialists would benefit from learning to

interpret this type of data and visualization as a new diagnostic tool. In this study, the

network model helped to easily diagnose 9 out of 16 patient samples, and pointed in

the correct direction or suggested follow-up analysis for 4 patients. These numbers

are similar to the original diagnostic outcome for the metabolite pipeline; the

remaining 7 out of 16 patients could previously only be diagnosed with additional

tests (e.g. protein loading test, WES, clinical information). Patient H (previously

diagnosed with ornithine translocase (SLC25A15) deficiency with the main biomarker

homocitrulline, HMDB0000679) was found difficult to recognise, both through the

original metabolic pipeline and our framework. This issue was most likely due to the

administered treatment with citrulline, highlighting the importance of not only clinical

but also medication information for a proper diagnostic workflow. As in any other

computational framework, only data from untreated persons should be used. For the
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validation of a recently implemented diagnostic tool called targeted urine

metabolomics (TUM) [35], similar samples were used as discussed in our study.

When comparing the data interpretation from TUM and the developed framework, we

can deduce that comparable interpretations were reached. This agreement was also

found for the Ornithine Transcarbamylase deficiency (OTC) cases, which remains

difficult to diagnose in women since the disorder is X-linked causing an atypical

biomarker pattern. Patient O is an example of such, where we hypothesize that the

cyclic metabolic conversion of arginine, argininosuccinate, and ornithine into one

another could be the cause of this unexpected pattern. To understand these atypical

cases of OTC and corresponding biomarker patterns, data from more patients is

required and we recommend other laboratories to share their data on IMDs if

possible. Sharing (more) rare disease patient data would also help to understand the

effects of ethnicity, age range, or sex on the molecular mechanism of IMDs.  For

future studies, the interest should shift to measuring metabolite fluxes [2] over a

longer timespan to better understand how for example protein intake triggers

decompensation [36].

Data(base) curators and modelers

The presented framework highlights chances for the IMD field as a whole regarding

data integration and reuse, one of the cornerstones of data modeling. Our framework

leverages on data and identifier (ID) harmonization to increase the machine

readability of existing IMD data. This harmonization was required for the integration

of clinical data with pathway knowledge and biomarker information. All metabolites in

the assays were annotated manually based on their (Dutch) name; using persistent

IDs to annotate data is a key aspect to enable open science [37], and ultimately
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leads to FAIR data [38]. This annotation could not be completed for all biomarkers in

the targeted assays based on their name (e.g. CysHCys, a disulfide from cysteine

and homocysteine); drawing the chemical structure and converting the structure to a

SMILES [39] could be used to annotate this compound. Creating pathway models

(PWMs) annotated with resolvable IDs for the entities within the pathway [40] were

crucial for data analysis and visualization [41]. Several initiatives merge pathway

information [42,43] based on gene and protein content, rather than metabolites and

chemical reactions, which makes them unsuitable for IMD metabolic data analysis.

Furthermore, this reaction information is scattered over publications in images and

text [44] as well as various databases [45], which requires dedicated curation time to

arrive at a pathway model covering all relevant interactions. The lack of naming

standardization in databases and papers for metabolic conversions cause issues in

data curation, despite the IUPAC-nomenclature rules [46] and available software to

translate IUPAC names to chemical structures [47] and vice versa [48]. Connecting

all disease IDs to their counterpart protein ID and data from the IEMbase [29] could

only be performed manually. To facilitate data integration and comparison on an

automated basis, we advise providing programmatic access to biomedical

databases, for example through an API [49] or SPARQL endpoint [50]. We found that

some syndromes (e.g Lesch Nyhan and Kelley Seegmiller; pyrimidine

5’-nucleotidase superactivity and pyrimidine 5’-nucleotidase I deficiency) were

treated as individual disorders by one database, while the other combines the

information on both disorders in one entry, which hampers data interoperability. In

order to distinguish between these individual disorders based on only theoretical

biochemical markers, more discriminating values are needed.
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Programmers, data scientists, and bioinformaticians

By using visualization techniques from common network approaches, the developed

framework is ready for extension with other data relevant for the diagnostic pipeline,

e.g. genetic variants or drug-target knowledge. Furthermore, other types of (omics)

data can be integrated into the workflow, for example transcriptomics, metabolomics,

and fluxomics. Due to the use of semantic web technologies (RDF), other

knowledge captured as Linked Open Data can also be used to extend our approach.

However, this data integration requires automatable access to pathway content and

open licenses; a lack herein prohibits data extraction and acquiring all relevant

interactions for the studied biomarkers. Seven out of the 83 markers could not be

found in any of the consulted pathway data. Several pathways overlap in terms of

content, which could conceal potentially relevant pathways. Large pathways in terms

of node size and captured reactions contain more biomarkers, however at a larger

distance, diminishing a clear biological cause and effect path visualization. The data

interpretation could be hindered when a biomarker was present only as a substrate

or product, which could miss relevant up or downstream reactions. In order to

overcome a mismatch of biomarkers and pathway data, clinical biomarker IDs could

be converted to their corresponding neutral molecular structure InChIKey [51] ID or

by performing substructure matching [52]. We want to encourage harmonizing the

information in phenotype databases, for example by using existing ontologies such

as the Human Disease Ontology [53], Human Phenotype Ontology [54], or Nosology

for Inherited Metabolic Disorders [55]. The log2(change) data of patients was

converted to the -3 to +3 scale from IEMBase, where the contribution of highly

altered biomarkers to the correlation might get obscured. Furthermore, since not all

clinical data could be visualized directly in one PWM (due to the biomarkers being

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 12, 2023. ; https://doi.org/10.1101/2022.01.31.21265847doi: medRxiv preprint 

https://paperpile.com/c/JwjBDw/PTlfG
https://paperpile.com/c/JwjBDw/uvBnS
https://paperpile.com/c/JwjBDw/JVn9y
https://paperpile.com/c/JwjBDw/xAIkO
https://paperpile.com/c/JwjBDw/IKCeW
https://doi.org/10.1101/2022.01.31.21265847
http://creativecommons.org/licenses/by/4.0/


spread over multiple models), other approaches will be needed to overcome the

boundaries imposed by individual models. Reactome pathways were excluded from

the analysis, since the model conversion [56] from the native Reactome pathway

models to the WikiPathways RDF leads to unconnected biomarkers hampering

visualization. Other possibilities to automatically visualize pathway data in the

network tool Cytoscape are the Reactome Cytoscape Plugin [57] and Cytoscape for

KEGG [58], the former is not optimized for metabolic data and the latter includes

proprietary data access. Two other pathway apps, CyPath2 [43] and cy3sabiork [59]

could not be automated.

4. Conclusions

With this study, we show the potential of a Systems Biology approach combining

semantic web technologies for data linking and network analysis for data

visualization, to directly connect biological pathway knowledge to clinical cases and

biomarker data. The presented framework is adaptable to different types of IMDs,

difficult patient cases, and functional assays in the future, which opens up the

possibility for usage in the diagnostic pipeline. Information on treatment and clinical

conditions remains important for accurate diagnosis, as well as expert interpretation

of all information combined into this framework. Furthermore, several steps in the

framework are now highly dependent on the manual curation of data and databases

requiring expert knowledge of the information therein. The issues highlighted in the

discussion section should be overcome in the future to allow our developed

framework to be easily used for other IMDs, by adding persistent identifiers to

(clinical) biomarker data, allowing automatable data downloads from relevant

databases, and creating computer-readable pathway models from pathway figures.
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HPRT1: Hypoxanthine phosphoribosyltransferase 1
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NAGS: N-acetylglutamate synthase
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OTC: Ornithine carbamoyltransferase

PNP: Purine nucleoside phosphorylase

PRPPs (class of enzymes): Ribose-phosphate diphosphokinase

PRPS1: Phosphoribosyl pyrophosphate synthetase 1

RRM2B: Ribonucleotide reductase regulatory TP53 inducible subunit M2B

SLC25A13: Solute carrier family 25 member 13

SLC25A15: Solute carrier family 25 member 15 (ornithine translocase)

TK2: Thymidine kinase 2

TPMT: Thiopurine S-methyltransferase

TYMP: Thymidine phosphorylase

UBP1: Upstream binding protein 1

UMPS: Uridine monophosphate synthetase

XAN2 (gene: XDH): Xanthine dehydrogenase

XO (gene: MOCOS): Molybdenum cofactor sulfurase
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Tables and Figures

Figure 1: Overview of biochemical interactions involved in IMDs (top left); the current diagnostic
procedure, and challenges in diagnosis using targeted metabolite or WES data for heterogeneous
patient populations.

Figure 2: Depiction of workflow to interpret clinical data of IMDs through network analysis; each circle
refers to a specific step within the Materials and Methods Section.
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Figure 3: Visualization of theoretical overlap between biochemical urine markers for individual IMDs
in the purine, pyrimidine, and urea cycle pathways. Rows are linked to individual phenotypes (right
axis), and clustered (left axis) based on their overlapping biomarker profiles (bottom axis). Protein names
correspond to the following disorders: ADA: Adenosine deaminase deficiency, SLC25A13: Citrin deficiency, ARG1: Arginase
deficiency, DGUOK: Deoxyguanosine kinase deficiency, CPS1: Carbamoyl phosphate synthetase I deficiency, NAGS:
N-Acetylglutamate synthase deficiency, NT5C3A: Pyrimidine 5-nucleotidase superactivity, AGXT2:
Beta-aminoisobutyrate-pyruvate transaminase deficiency, SLC25A15: Ornithine transporter deficiency, OTC: Ornithine
transcarbamylase deficiency, APRT: Adenine phosphoribosyltransferase deficiency, ADSL: Adenyl- succinate lyase deficiency,
ATIC: AICAr transformylase/IMP cyclohydrolase deficiency, UMPS: Orotic aciduria type I, ASL: Argininosuccinic aciduria, ASS1:
Citrullinemia type I, XAN2: Xanthinuria, Type II, XO: Xanthinuria, Type I, PNP: Purine nucleoside phosphorylase deficiency,
HPRT1_less: Kelley-Seegmiller syndrome, HPRT1: Lesch-Nyhan syndrome, PRPS1: Phosphoribosyl pyrophosphate
synthetase 1 superactivity, DPYD: Dihydropyrimidine dehydrogenase deficiency, DPYS: Dihydropyrimidinase deficiency, UPB1:
Beta-ureidopropionase deficiency HMDB IDs resemble these metabolites: HMDB0000026: N-Carbamyl-beta-alanine,
HMDB0000034: Adenine, HMDB0000052: Argininosuccinate, HMDB0000071: Deoxyinosine, dIno, HMDB0000076:
Dihydrouracil, HMDB0000079: Dihydrothymine, HMDB0000085: Purine nucleoside phosphorylase, HMDB0000101:
Deoxyadenosine, HMDB0000143: Galactose, HMDB0000157: Hypoxanthine, HMDB0000226: Orotic acid, HMDB0000262:
Thymine, HMDB0000289: Uric acid, HMDB0000292: Xanthine, HMDB0000300: Uracil, HMDB0000401: 2,8-Dihydroxyadenine,
HMDB0000635: Succinylacetone, HMDB0000679: Homocitrulline, HMDB0000797: SAICA riboside, HMDB0000904: Citrulline,
HMDB0000912: Succinyladenosine, HMDB0002299: beta-aminoisobutyrate, HMDB0062179: AICA riboside. Additional
biomarkers relevant for this specific patient (not part of IEMbase data): HMDB0000489: N-Aspartylglucosamine,
HMDB0000469: 5-(Hydroxymethyl)uracil, HMDB0000721: Gly-pro, HMDB0002166: (S)-Beta-aminoisobutyrate.
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Figure 4: Network visualization of biochemical markers for patient I (diagnosed with DPYD). Left:
selected section of pyrimidine biomarkers pathway; Right: selection of purine metabolism pathway.

Table 1: Overview of Databases and tools used within the workflow

Database/tool
[reference]

Description Workflow
Step

ChEBI [19] Chemical Entities of Biological Interest (ChEBI) is a freely
available dictionary of molecular entities focused on
'small' chemical compounds.

1-3, 5-7

Wikidata [20] Wikidata is a free and open knowledge base that can be
read and edited by both humans and machines

1

UHPLC-MS/MS [18] Ultra High-Performance Liquid Chromatography-Tandem
Mass Spectrometer is a chemical technique combining
the physical separation capabilities of liquid
chromatography with the mass analysis capabilities of
mass spectrometry.

1

PathVisio [21] PathVisio is a free open-source pathway analysis and
drawing software that allows drawing, editing, and
analyzing biological pathways.

2

UniProt [22] UniProt is a freely accessible database of protein
sequence and functional information, many entries being
derived from genome sequencing projects.

2

Rhea [23] Rhea is an expert-curated knowledge base of chemical
and transport reactions of biological interest - and the
standard for enzyme and transporter annotation in
UniProtKB.

2
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OMIM [24] Online Mendelian Inheritance in Man (OMIM) is a
comprehensive, authoritative compendium of human
genes and genetic phenotypes that is freely available.

2

WikiPathways [25] WikiPathways is a database of biological pathways
maintained by and for the scientific community.

2, 4, 6, 7

WikiPathways SPARQL
Endpoint [27]

The semantic web format of the WikiPathways database,
using the Resource Description Framework (RDF) as
data format which can be queried through the
SPARQL-query language.

2, 4, 6, 7

HGNC (gene ID) [60] The HGNC is a resource for approved human gene
nomenclature.

4

HMDB [30] The Human Metabolome Database (HMDB) is a freely
available electronic database containing detailed
information about small molecule metabolites found in
the human body.

4, 5

Cytoscape (REST API)
[32]

Cytoscape is an open-source software platform for
visualizing complex networks and integrating these with
any type of attribute data. cyREST is a
language-agnostic, programmer-friendly RESTful API
module for Cytoscape, allowing for programmatic access
to Cytoscape features.

7

GitHub (github.com) GitHub is a web-based hosting service for version control
using git.

1-8

Table 2: Sample size sorted on disease classification and age range. The patient labels (A to T) are
included per relevant age category. The HGNC name for the gene linked to the disorder is provided if
deviating from the common abbreviation. The # indicates if a patient has received treatment.

Age range (years) →
Diseases ↓

0-1 1-5 5-16 16+

Pyrimidine - Full name (Abbreviation, OMIM-ID, HGNC name)

Beta-ureidopropionase deficiency
(UPB1D, 613161, UPB1)

1 (J)

Dihydropyrimidine dehydrogenase
deficiency (DPD, 274270, DPYD)

1 (I) 1 (A) 1 (E) 1 (K)

Urea cycle - Full name (Abbreviation, OMIM-ID, HGNC name)

Argininosuccinic aciduria (ASLD,
207900, ASL)

2 (M, N) 2 (L, T) 1 (F)

Citrullinemia Type I (ASS1, 215700) 1 (D)

Hyperornithinemia-hyperammonemia-ho
mocitrullinuria syndrome (HHHS,
238970, SLC25A15)

1 (H#)
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Ornithine Transcarbamylase deficiency
(OTCD, 311250, OTC)

1 (G) 2 (R, S) 1 (O)

Table 3: Overview of biomarker data per patient, including number of altered biomarkers and
coverage thereof in pathways models, as well as theoretical biomarker clustering information for the
investigated phenotypes and corresponding genes (‘-’ indicates that no closely related gene could be
found through clustering).

HGNC Name
Disorder

Patient
Label

Biomarkers
with

reference
data

Altered
biomarkers

Amount of Biomarkers not in
any pathway (ChEBI IDs;

corresponding names)

Total amount of
relevant pathways

(First pathway
biomarker coverage)

Closest related
gene(s) through

clustering
(additional

biomarkers)

UPB1D J 65 15 1 (27596; 3-Methyl-histidine) 37 (5) DPYS/UPB1
(8)

DPYD

A 61 16 - 47 (6) DPYD (13)

E 54 12 2 (35621, 86498; AABA,
Hydroxylysine)

41 (5) DPYD (9)

I 60 7 2 (17261, 70744;
N-Aspartylglucosamine,

Gly-pro)

9 (4) - (4)

K 45 5 - 10 (3) DPYD (3)

ASL

F 52 12 2 (86498, 27596;
Hydroxylysine,

3-Methyl-histidine)

23 (4) - (7)

L 50 15 2 (27596, 17261;
3-Methyl-histidine,

N-Aspartylglucosamine)

31 (4) - (10)

M 56 30 2 (17261, 27596;
N-Aspartylglucosamine,

3-Methyl-histidine)

75 (14) - (25)

N 61 36 2 (27596, 17261;
3-Methyl-histidine,

N-Aspartylglucosamine)

76 (15) - (28)

T 58 32 3 (27596, 17261, 86498;
3-Methyl-histidine,

N-Aspartylglucosamine,
Hydroxylysine)

77 (12) - (28)

ASS1 D 59 16 1 (49015; Piperideine
carboxylic acid)

46 (7) - (12)

SLC25A15 H 61 48 6 (27596, 35621, 86498,
17261, 70744, 50599;

3-Methyl-histidine, AABA,
Hydroxylysine,

N-Aspartylglucosamine,
Gly-pro, 1-Methyl-histidine)

77 (16) - (40)

G 67 19 2 (35621, 27596; AABA,
3-Methyl-histidine)

26 (8) - (10)

O 55 42 5 (50599, 86498, 27596,
35621, 17261;

1-Methyl-histidine,

77 (15) - (37)
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OTC Hydroxylysine,
3-Methyl-histidine, AABA,
N-Aspartylglucosamine)

R 62 43 4 (27596, 17261, 86498,
35621; 3-Methyl-histidine,
N-Aspartylglucosamine,
Hydroxylysine, AABA)

78 (16) - (35)

S 62 36 4 (27596, 86498, 17261,
35621; 3-Methyl-histidine,

Hydroxylysine,
N-Aspartylglucosamine, AABA)

74 (15) - (29)

Table 4: Amount of unique DataNodes (proteins, metabolites) and disorders captured by each
pathway model. Uniqueness counts based on unification to HGNC names (Proteins), ChEBI IDs
(Metabolites), and OMIM URLs (Disorders).

Model Name PWM ID #Proteins
(HGNC)

#Metabolite
s (ChEBI)

#Interactions
(Rhea)

#Disorders
(OMIM)

Purine metabolism and
related disorders

WP4224 22 61 51 17

Pyrimidine metabolism
and related diseases

WP4225 17 41 33 15

Urea cycle and related
diseases

WP4571 9 16 7 9

Urea cycle and associated
pathways

WP4595 24 35 23 12

Biomarkers for urea cycle
disorders

WP4583 12 29 10 -

Biomarkers for pyrimidine
metabolism disorders

WP4584 15 39 29 -

Table 5: A total of fifteen pathways contain a high amount of biomarkers for both assays, with at best
46 markers included in one individual pathway model. %-sign indicates which pathways were not
found in the top three relevant pathways for any patient.

Pathway
ID

Title of Pathway ChEBI IDs In
PW

WP3604 Biochemical pathways: part I% 46

WP4042 Nucleobase catabolism% 21

WP4225 Pyrimidine metabolism and related diseases 18

WP1936 Transport of inorganic cations/anions and amino
acids/oligopeptides%

17

WP4584 Biomarkers for pyrimidine metabolism disorders 17

WP1935 Transport of bile salts and organic acids, metal ions and amine
compounds%

17

WP3925 Amino acid metabolism 15
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WP4224 Purine metabolism and related disorders 14

WP4082 Nucleotide salvage% 14

WP1938 tRNA aminoacylation% 13

WP1937 Transport of vitamins, nucleosides, and related molecules% 12

WP4792 Purine metabolism 12

WP4595 Urea cycle and associated pathways 11

WP4022 Pyrimidine metabolism 10

WP4583 Biomarkers for urea cycle disorders 10

Table 6: Top three pathways containing most unique biomarkers, as well as which biomarkers were
not covered by the top three pathways (however were part of a PWM). # indicates different pathways
cover the same amount of unique metabolites leading to a manual selection of the most relevant
pathway. - indicates no third pathway was selected.

HGNC
Name
Disorder

Patient
Label;
diagnosis
possible?

Pathways in Top 3 (WikiPathways ID)
[amount of covered biomarkers]

Not covered biomarkers (ChEBI
IDs; corresponding names)

Yes No

Direction

UPB1D J Pyrimidine metabolism and related diseases (WP4225) [5]
Amino acid metabolism (WP3925)# [3]
Purine metabolism (WP4792) [3]

4 (16283, 18019, 27596, 30913; Cystine, Lysine,
3-Methyl-histidine, Pipecolic acid)

DPYD A Amino acid metabolism (WP3925) [6]
Biomarkers for pyrimidine metabolism disorders (WP4584) [5]
Urea cycle and related diseases (WP4571)# [1]

4 (17553, 18237, 7274, 15727;
Phosphoethanolamine, Glutamic acid,
Formiminoglutamic acid, Carnosine)

E Amino acid metabolism (WP3925) [5]
Pyrimidine metabolism and related diseases (WP4225) [3]
-

4 (18237, 35621, 86498, 16000; Glutamic acid,
AABA, Hydroxylysine, Monoethanolamine)

I Biomarkers for pyrimidine metabolism disorders (WP4584) [4]
Purine metabolism (WP4792) [1]
-

2 (17261, 70744; N-Aspartylglucosamine, Gly-pro)

K Biomarkers for pyrimidine metabolism disorders (WP4584) [3]
Urea cycle and related diseases (WP4571) [1]
-

1 (18237; Glutamic acid)

ASL F Biomarkers for urea cycle disorders (WP4583) [4]
One-carbon metabolism and related pathways (WP3940) [3]
Pyrimidine metabolism (WP4002) [1]

4 (86498, 15727, 27596, 85981; Hydroxylysine,
Carnosine, 3-Methyl-histidine, Homocarnosine)

L Urea cycle and related diseases (WP4571) [4]
Glycerophospholipid biosynthetic pathway (WP2533) [2]
Amino acid metabolism (WP3925) [2]

7 (18237, 27596, 85981, 16283, 17549, 17261,
17368; Glutamic acid, 3-Methyl-histidine,

Homocarnosine, Cystine, Aminolevulinic acid,
N-Aspartylglucosamine, Hypoxanthine)

M Amino acid metabolism (WP3925) [14]
Urea cycle and associated pathways (WP4595) [7]
-

9 (85981, 15727, 17261, 16283, 27596, 18237,
16000, 18019, 16865; Homocarnosine, Carnosine,

N-Aspartylglucosamine, Cystine,
3-Methyl-histidine, Glutamic acid,

Monoethanolamine, Lysine, GABA)

N Amino acid metabolism (WP3925) [15]
Urea cycle and associated pathways (WP4595) [7]
-

14 (17553, 18237, 85981, 27596, 15727, 16865,
17261, 16000, 37024, 58148, 18019, 15611,

27891, 16283; Phosphoethanolamine, Glutamic
acid, Homocarnosine, 3-Methyl-histidine,

Carnosine, GABA, N-Aspartylglucosamine,
Monoethanolamine, 2-Aminoadipic acid,
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Homocitrulline, Lysine, Sarcosine, S-sulfocysteine,
Cystine)

T Amino acid metabolism (WP3925) [12]
Urea cycle and associated pathways (WP4595) [6]
Vitamin B6-dependent and responsive disorders (WP4228)
[3]

11 (16000, 27596, 85981, 17553, 17261, 18237,
16283, 17549, 16865, 16811, 86498;

Monoethanolamine, 3-Methyl-histidine,
Homocarnosine, Phosphoethanolamine,

N-Aspartylglucosamine, Glutamic acid, Cystine,
Aminolevulinic acid, GABA, Methionine,

Hydroxylysine)

ASS1 D Amino acid metabolism (WP3925) [7]
Pyrimidine metabolism and related diseases (WP4225) [5]
Vitamin B6-dependent and responsive disorders (WP4228)
[2]

3 (49015, 7274, 32682; Piperideine carboxylic
acid, Formiminoglutamic acid, Arginine)

SLC25A15 H Amino acid metabolism (WP3925) [16]
Pyrimidine metabolism and related diseases (WP4225) [8]
Biomarkers for urea cycle disorders (WP4583)# [3]

21 (18019, 27596, 15611, 16000, 18323, 18237,
35621, 37024, 16283, 86498, 16865, 15727,
85981, 16927, 17261, 17549, 27891, 70744,

50599, 7274, 17553; Lysine, 3-Methyl-histidine,
Sarcosine, Monoethanolamine, Anserine,

Glutamic acid, AABA, 2-Aminoadipic acid, Cystine,
Hydroxylysine, GABA, Carnosine,
Homocarnosine, Saccharopine,

N-Aspartylglucosamine, Aminolevulinic acid,
S-sulfocysteine, Gly-pro, 1-Methyl-histidine,

Formiminoglutamic acid, Phosphoethanolamine)

OTC G Pyrimidine metabolism and related diseases (WP4225) [8]
Alanine and aspartate metabolism (WP106) [2]
Purine metabolism (WP4792) [2]

7 (35621, 58148, 27596, 37024, 7274, 16000,
16414; AABA, Homocitrulline, 3-Methyl-histidine,

2-Aminoadipic acid, Formiminoglutamic acid,
Monoethanolamine, Valine)

O Amino acid metabolism (WP3925) [15]
Biomarkers for urea cycle disorders (WP4583) [7]
One-carbon metabolism and related pathways (WP3940) [4]

16 (18323, 27891, 50599, 86498, 27596, 35621,
18019, 37024, 15727, 18237, 16283, 17261,

7274, 16865, 85981, 17568; Anserine,
S-sulfocysteine, 1-Methyl-histidine, Hydroxylysine,
3-Methyl-histidine, AABA, Lysine, 2-Aminoadipic

acid, Carnosine, Glutamic acid, Cystine,
N-Aspartylglucosamine, Formiminoglutamic acid,

GABA, Homocarnosine, Uracil)

R Amino acid metabolism (WP3925) [16]
Pyrimidine metabolism and related diseases (WP4225) [7]
Biomarkers for urea cycle disorders (WP4583) [3]

17 (17553, 16000, 18019, 15727, 16865, 27596,
18237, 16283, 16811, 17261, 86498, 85981,

27891, 17549, 35621, 15611, 37024;
Phosphoethanolamine, Monoethanolamine,

Lysine, Carnosine, GABA, 3-Methyl-histidine,
Glutamic acid, Cystine, Methionine,

N-Aspartylglucosamine, Hydroxylysine,
Homocarnosine, S-sulfocysteine, Aminolevulinic

acid, AABA, Sarcosine, 2-Aminoadipic acid)

S Amino acid metabolism (WP3925) [15]
Pyrimidine metabolism and related diseases (WP4225) [6]
Glycerolipids and glycerophospholipids (WP4722)# [2]

13 (85981, 15727, 16811, 27596, 16865, 18019,
16283, 57472, 86498, 17261, 18237, 35621,

17549; Homocarnosine, Carnosine, Methionine,
3-Methyl-histidine, GABA, Lysine, Cystine,

Argininosuccinate, Hydroxylysine,
N-Aspartylglucosamine, Glutamic acid, AABA,

Aminolevulinic acid)
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