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Abstract 

Identifying blood-based signatures of brain health and preclinical pathology may offer insights 

into early disease mechanisms and highlight avenues for intervention. Here, we systematically 

profiled associations between blood metabolites and whole-brain volume, hippocampal volume, 

and amyloid-β status among participants of Insight 46 – the neuroscience sub-study of the 

National Survey of Health and Development (NSHD). We additionally explored whether key 

metabolites were associated with polygenic risk for Alzheimer’s disease (AD).  

 

Following quality control, concentrations of 1019 metabolites – detected with liquid 

chromatography-mass spectrometry – were available for 1740 participants at age 60-64. 

Metabolite data were subsequently clustered into modules of co-expressed metabolites using 

weighted coexpression network analysis. Accompanying MRI and amyloid-PET imaging data 

were present for 437 participants (age 69-71). Regression analyses tested relationships between 

metabolite measures – modules and hub metabolites – and imaging outcomes. Hub metabolites 

were defined as metabolites that were highly connected within significant (pFDR<0.05) modules 

or previously identified as a hub for cognition in the same cohort. Regression models included 

adjustments for age, sex, APOE genotype, lipid medication use, childhood cognition and social 

factors. Finally, AD polygenic risk scores (PRS), including and excluding the APOE region, were 

tested for relationships with metabolites and modules that associated (pFDR<0.05) with an 

imaging outcome (N=1638).  

 

In the fully adjusted model, three lipid modules were associated with a brain volume measure 

(pFDR<0.05): one enriched in sphingolipids (hippocampal volume: ß=0.14, 95%CI=[0.055,0.23]), 

one in several fatty acid pathways (whole-brain volume: ß=-0.072, 95%CI=[-0.12,-0.026]), and 

another in diacylglycerols and phosphatidylethanolamines (whole-brain volume: ß=-0.066, 

95%CI=[-0.11,-0.020]). Twenty-two hub metabolites were associated (pFDR<0.05) with an 

imaging outcome (whole-brain volume: 22; hippocampal volume: 4). Some nominal associations 

were reported for amyloid-β, and with an AD PRS in our genetic analysis, but none survived 

multiple testing correction.  

 

Our findings highlight key metabolites, with functions in membrane integrity and cell signalling, 

that associated with structural brain measures in later life. Future research should focus on 

replicating this work and interrogating causality.  
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Abbreviations 

Aβ = amyloid-beta 

AD = Alzheimer’s disease 

BMI = body mass index 

DAG = diacylglycerol 

FDR = false discovery rate 

FLAIR = weighted fluid-attenuated inversion recovery 

KEGG = Kyoto Encyclopaedia of Genes and Genomes 

kME = module membership 

LCMS = liquid chromatography-mass spectrometry 

MR = Mendelian randomisation 

n3 and n6 = Omega 3 and 6 

NSHD = National Survey of Health and Development 

PC = phosphatidylcholine 

PE = phosphatidylethanolamine 

PRS = polygenic risk score 

PUFA = polyunsaturated fatty acid 

QC = quality control 

SEP = socioeconomic position 

SUVR = standardised uptake volume ratio 

WGCNA = weighted gene coexpression network analysis 
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Background 

Brain changes accompanying ageing are varied and can include pathologies that lead to cognitive 

impairment, the commonest of which is Alzheimer’s disease (AD). Identifying non-invasive and 

scalable markers of brain health and pathology in later life, including but not limited to those 

associated with AD, would be valuable for research and therapeutic trials. This has led to large 

efforts in detecting blood-based markers, with candidates such as neurofilament light and 

phosphorylated-tau showing particular promise 1. Blood metabolites – the products of chemical 

reactions occurring in the body – may also present as potential candidates for this goal. Due to 

their proximity to core biological processes, they are uniquely placed to capture real-time 

physiological changes and may allow insights into the processes associated with emergence of 

disease 2. Additionally, since they are potentially modifiable 3,4, they could represent possible 

targets for intervention. 

 

Existing research has identified associations between several metabolite classes and imaging 

markers related to neurodegeneration, including particular lipids and amino acids 5–9. However, 

these studies have been directed towards clinical cohorts and thus may not be representative of 

the general preclinical population. Additionally, little is known about the involvement of groups 

of interrelated metabolites; utilising systems-level approaches could offer an improved 

understanding of these complex relationships and facilitate the identification of candidate 

markers. We previously employed a systems-level approach to explore the metabolic correlates 

of late midlife cognition in the Medical Research Council National Survey of Health and 

Development (NSHD; the British 1946 birth cohort) 10. We identified groups of highly 

coexpressed metabolites that associated with cognitive outcomes and key metabolites within 

these to explore further, including acylcarnitines, modified nucleotides and amino acids, 

vitamins, and sphingolipids; although many associations with late midlife cognition were 

explained by social factors and childhood cognition 10. 

 

Here, we aimed to investigate the metabolic correlates of later life brain imaging measures 

relevant to AD and neurodegeneration – Aβ pathology, whole-brain volume and hippocampal 

volume. To provide a deeper understanding on the nature of potential relationships and how 

they may contribute to AD risk, we explored whether any key metabolites were additionally 

associated with polygenic risk for AD. 
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Methods 

Participants 

The NSHD is a broadly representative birth cohort study, originally following 5362 individuals 

since their birth in mainland Britain during one week in March 1946 11. At age 69-71, 502 

participants enrolled in Insight 46, the neuroscience sub-study. At a University College London 

clinic they underwent comprehensive clinical and cognitive tests, MRI, and 18F-florbetapir 

positron emission tomography (PET) imaging 12,13. Compared to the full NSHD cohort, 

participants of Insight 46 were of slightly higher cognitive ability, more socially advantaged, and 

of better overall health 13. Further details on participant eligibility and recruitment can be found 

elsewhere 12.  

 

Ethical approval was obtained from the National Research Ethics Service Committee London 

(14/LO/1173). All participants provided written informed consent. 

 

Materials 

Metabolite quality control 

At age 60-64, blood samples were collected by trained research nurses. Samples were stored at -

80 degrees. 

 

Using Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-

MS/MS), concentrations of 1401 metabolites were detected and measured by Metabolon Inc 

(Durham, NC, USA) among 1814 NSHD participants. Metabolites were assigned to nine 

families (lipids, amino acids, xenobiotics, peptides, nucleotides, cofactors and vitamins, 

carbohydrates, energy and partially characterised molecules) and further organised into pathways 

based on their proposed biological function informed by the Kyoto Encyclopaedia of Genes and 

Genomes (KEGG) database (Supplementary Table 1). Unknown metabolites were assigned to 

an “Unknown” family and pathway and denoted by a number prefixed by an “X”; these were 

included in all analyses. 

 

Metabolite data underwent strict quality control (QC), as detailed in 10, resulting in 1019 

metabolites (Supplementary Notes). 
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Genetic quality control 

Initial QC and imputation were performed centrally by the NSHD study team (Supplementary 

Notes). For this analysis, we removed variants that were rare (MAF <5%), with a low call rate 

(<98%), or that deviated from Hardy-Weinberg equilibrium (p <1x10-5). We additionally 

removed participants with a low call rate (<98%), mismatching biological and reported sex, or 

that were related (PIHAT <0.1). All QC was performed using PLINK v1.9 (https://www.cog-

genomics.org/plink2) 14. Following QC, genetic and metabolomic data were available for 1638 

participants. 

 

Scanning procedure 

The scanning procedure and data processing were undertaken by the Insight 46 team. Aβ-PET 

and MRI were acquired contemporaneously using a single Biograph mMR 3 Tesla PET/MRI 

scanner (Siemens Healthcare) 12. Aβ burden was quantified over 10 minutes, approximately 50 

minutes after intravenous injection with 18F-florbetapir (370 mBq. Standardised uptake value 

ratios (SUVRs) were derived using a grey matter cortical composite and an eroded subcortical 

white matter reference region. A cut-off of >0.6104 was used to define Aβ positivity being the 

99th percentile of the lower (Aβ‐negative) Gaussian distribution 15. Participants below this 

threshold were defined as Aβ-negative. Data were processed using an in-house pipeline, 

including attenuation correction using pseudo-CT 12. For volumetric T1-weighted MRI images, 

visual QC was performed as detailed in 12, and processed using the following: MAPS 16 for 

whole-brain volume (with manual editing if needed); STEPS 17 for left and right hippocampal 

volumes (with manual editing if needed); and SPM12 (fil.ion.ucl.ac.uk/spm) 18 for total 

intracranial volume (TIV). Hippocampal volume was calculated as the mean volume of the left 

and right hippocampi. 

 

Covariables 

In line with our previous analysis in the full NSHD 10,19, covariables were: sex, blood collection 

information (clinic location, age, fasting status), age at scan, APOE genotype (ε4 carrier/non 

carrier; blood samples at age 53 or 69y), BMI (60-64y nurse visit), lipid medication (yes/no; self-

reported use in 24 hours preceding blood collection at 60-64y), childhood cognition (15y), 

highest level of educational attainment (no qualifications/‘O level’/‘A level’ or higher; 26y), 

childhood socioeconomic position (SEP) (Father’s current or last known occupation categorised 

according to the UK Registrar General; 11y), and midlife SEP (own occupation categorised as 

for childhood SEP; 53y). 
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Statistical analysis 

We previously imputed missing covariable data using multiple imputation chained equations (100 

iterations and 50 imputations) 20 in the full NSHD metabolomics dataset. Further details of 

missing data can be found in Table 1. Unless otherwise specified, we carried out all analyses in R 

version 3.6.0 (details of all software and packages used can be found in Supplementary Notes). A 

visual summary of our analytical pipeline can be found in Figure 1. 

 

Coexpression network analysis 

To explore associations of clusters (termed “modules”) of co-expressed metabolites, we applied 

weighted gene coexpression network analysis (WGCNA) 21–23 to metabolite data, as detailed 

previously 10. First, metabolite data were adjusted for sex and blood clinic information and the 

standardised residuals were used for WGCNA. Fourteen modules of highly connected 

metabolites were then identified, and the first principal component of each module (termed 

“module eigenvalue”) was derived to allow for relationships between modules and outcomes to 

be examined. Overrepresentation analyses were conducted, using the hypergeometric test, to 

identify enriched pathways within the module and provide insight into potential biological 

function 10. Modules were allocated an arbitrary colour name using the WGCNA package for 

ease of discussion.. 

 

Hub metabolites  

Metabolites that are highly connected to their module (termed “hub metabolites”) are likely to be 

functionally important and thus present as valuable marker candidates 24. We previously 

identified associations between 35 hubs, defined using correlations between metabolites and 

module eigenvalues exceeding r=0.65 (termed “module membership”; kME), and cognitive 

outcomes in the NSHD 10. As these metabolites were selected on the premise of showing 

associations with cognition, we additionally looked for hubs that may be important in brain 

imaging outcomes. To do this, we extracted any additional metabolites exceeding the 0.65 

threshold 10 in modules showing significant (pFDR<0.05) associations in the present analysis. 
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Figure 1. Analysis pipeline. 

 

 

Regression analysis 

To allow for direct comparisons, we standardised all continuous predictors and outcomes to a 

mean of 0 and standard deviation of 1. We then tested relationships between a) modules, and b) 

hub metabolites using linear regression (for whole-brain volume and hippocampal volume) and 

logistic regression (for Aβ status). Model 1 adjusted for basic covariables: sex, blood collection 

information, age at scan, APOE genotype, and total intracranial volume (for whole-brain volume 
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and hippocampal volume only). As modules were already adjusted for sex and blood clinic 

information, these covariables were not additionally included for module analyses. Model 2 

additionally adjusted for lipid-related factors: BMI and lipid medication use. Finally, model 3 

further adjusted for childhood cognition, educational attainment, and SEP (parental and midlife). 

 

Analyses were conducted on each imputed dataset and pooled using Rubin’s rules 25. Regression 

assumptions were checked by examination of the residuals. We applied False Discovery Rate 

(FDR) correction using the Benjamini-Hochberg procedure 26 with an alpha=0.05. FDR 

correction was applied separately to each analysis (module and hub) and each outcome. 

 

Polygenic risk scores 

To explore whether levels of key metabolites were influenced by genetic risk for AD, we 

investigated associations between AD polygenic risk scores (PRS) – a weighted sum of genetic 

variants associated with a trait or disease – and significant (pFDR<0.05) hub metabolites and 

modules. We obtained genome-wide association study summary statistics from Kunkle et al. 27 

(N=63,926; 21,982 AD clinically-ascertained cases, 41,944 controls), which were used as the base 

data for PRS analyses. Using PRSice-2 28, we computed PRS in the NSHD, both including and 

excluding SNPs in the APOE region (chr 19, GRCh37 coordinates 44912079 to 45912079) 29. 

Two p-value thresholds (PT) – previously identified to be optimal for PRS including and 

excluding the APOE region – were used for SNP selection: 5x10-8 (suggested for APOE region 

included) and 0.1 (suggested for APOE region excluded) 30, resulting in four PRS. SNPs in 

linkage disequilibrium (r2>0.001 within a 250kb window) were clumped and the SNP with the 

lowest p-value was retained. 

 

We first standardised predictors and outcomes to a mean of 0 and standard deviation of 1. Then, 

we regressed PRS on key metabolites and modules, adjusting for sex, age, blood collection 

details, and seven principal components (to control for population stratification). We applied 

FDR correction to each analysis – module and hub metabolite – using the Benjamini-Hochberg 

procedure 26 with an alpha=0.05. 

 

Additional analysis 

We conducted several additional analyses to test the robustness of our findings (see 

Supplementary Notes for full details). In brief, we first investigated whether WGCNA modules, 

which were curated in the full NSHD, were preserved in the Insight 46 subset. Then, for our 
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main analyses, we applied a more conservative Bonferroni correction to our findings (module: 

p<3.57x10-3; hub metabolite: p<1.06x10-3). Finally, we explored whether lifestyle and related 

factors (lifetime smoking, diet, exercise, blood pressure, and alcohol intake) explained any of our 

results. 

 

Results 

Participant characteristics 

Insight 46 participants who completed the scanning procedure, were dementia-free, and with full 

metabolite data were included for module and hub metabolite analysis (N=437; 47.6% female, 

18.9% Aβ-positive). For PRS analysis, NSHD participants with metabolomics and genetic data 

were included (N=1638; 50.4% female). Participant characteristics can be found in Table 1 (see 

Supplementary Notes for characteristics split by Aβ status). 

 

Metabolite coexpression network modules 

Overall, we identified three modules that showed associations with brain volume outcomes 

(pFDR<0.05) and none (p>0.05) with Aβ status. Full results can be found in Supplementary Table 

2 and are visualised in Figure 2. Results of the fully adjusted model are discussed hereafter. 

 

We report associations between higher expression of two lipid modules and smaller whole-brain 

volumes: the brown module, enriched in diacylglcerol (DAG) and phosphatidylethanolamine 

(PE) pathways (ß=-0.066, 95%CI=[-0.11,-0.019], p=0.006, pFDR=0.044) and the blue module, 

enriched in various fatty acids pathways (ß =-0.072, 95%CI=[-0.12,-0.026], p=0.0021, 

pFDR=0.035). Higher expression of the yellow module, enriched in sphingolipid metabolism and 

related pathways, was associated with a larger hippocampal volume (ß =0.14, 

95%CI=[0.055,0.23], p=0.0017, pFDR=0.035). 
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Table 1. Characteristics of participants included in this analysis. 

 
 
 

 Participants with genetic and 
metabolite data 

Participants with imaging and 
metabolite data 

   Overall Missing (%) Overall Missing (%) 

n  1638  437  

Sex, N (%) Male 812 (49.6) 0 229 (52.4) 0 

 Female 826 (50.4)  208 (47.6)  

Age at scan (years), mean (SD)    70.7 (0.7) 0 

APOE4 carrier, N (%) Non-carrier 1044 (69.6) 8.5 306 (70.3) 0.5 

 Carrier 455 (30.4)  129 (29.7)  

Amyloid status, N (%) Negative   348 (81.1) 1.8 

 Positive   81 (18.9)  

Hippocampal volume in ml, mean 
(SD) 

   3.1 (0.3) 0.5 

Brain volume in ml, mean (SD)    1101.8 (99.3) 0.5 

Total intracranial volume in ml, 
mean (SD) 

   1435.9 (132.2) 0.5 

Age at blood collection (years), 
mean (SD) 

 63.2 (1.1) 0 63.3 (1.1) 0 

Fasting at blood collection , N (%) No 63 (3.8) 0 6 (1.4) 0 

 Yes 1575 (96.2)  431 (98.6)  

Lipid medication use (age 60-64), 
N (%) 

No 1232 (75.2) 0 335 (76.7) 0 

 Yes 406 (24.8)  102 (23.3)  

Body mass index (age 60-64) in 
kg/m2, mean (SD) 

 27.8 (4.7) 0.1 27.4 (4.0) 0 

Childhood cognitive ability (age 
15)*, z-score, mean (SD) 

 0.2 (0.8) 14.3 0.5 (0.7) 8.2 
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Childhood socioeconomic position 
(age 11), N (%) 

Unskilled 80 (5.1) 5 18 (4.1) 0.5 

 Partly skilled 274 (17.6)  64 (14.7)  

 Manual 
skilled 

462 (29.7)  106 (24.4)  

 Nonmanual 
skilled 

276 (17.7)  90 (20.7)  

 Intermediate 346 (22.2)  110 (25.3)  

 Professional 118 (7.6)  47 (10.8)  

Adult socioeconomic position (age 
53), N (%) 

Unskilled 46 (2.8) 0.4 4 (0.9) 0 

 Partly skilled 159 (9.7)  22 (5.0)  

 Manual 
skilled 

238 (14.6)  40 (9.2)  

 Nonmanual 
skilled 

380 (23.3)  91 (20.8)  

 Intermediate 680 (41.7)  225 (51.5)  

 Professional 129 (7.9)  55 (12.6)  

Highest educational attainment 
(age 26), N (%) 

No 
qualification 

446 (28.6) 4.9 65 (15.3) 3 

 Up to GCSE 446 (28.6)  125 (29.5)  

 A-level or 
higher 

665 (42.7)  234 (55.2)  

*Childhood cognition Z-scores were calculated in the full National Survey of Health and Development cohort (N=5362)
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Figure 2. Module results.  
A) Heatmap showing relationships between modules and brain imaging outcomes in the basic model and 

final model. Tiles are coloured by effect direction (blue = associated with better outcomes, red = 
associated with worse outcomes). Effect sizes are presented inside the tiles. Associations significant after 
multiple testing correction are represented by a solid fill and nominal (p<0.05) by a fainter fill. Module 
names in bold were additionally associated with a cognitive outcome in our previous analysis. Source data 
are present in Supplementary Table 2.  

B) Table presenting enriched pathways in each module, with the most highly enriched pathways presented 

first. No pathways were enriched for the tan module. Source data are available in 
10. 

 

Hub metabolites  

We explored associations between 81 metabolites that were highly connected (kME>0.65) in 

significant modules identified in 3.2, and 35 that were identified to be hubs in our previous study 

on cognition. Across all models, we report 30 key metabolites after FDR correction, of which 13 

were previously associated with cognitive outcomes (Figure 3). No associations were detected for 

any metabolite and Aβ status after FDR correction, although some nominal associations were 
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observed (3 cyan and 1 yellow metabolite; Supplementary Table 1 & Figure 3). In the fully 

adjusted model, 22 metabolites were associated (p
FDR

<0.05) with an imaging outcome (whole-

brain volume: 22; hippocampal volume only: 4). Of the 22, 10 metabolites belonged to the 

yellow module (pathways: sphingolipid metabolism) and were positively associated with larger 

brain volumes. Twelve metabolites were negatively associated with brain volumes: six belonging 

to the blue module (pathways: fatty acid (monohydroxy; dicarboxylate), long chain PUFA (n3 

and n6), glycerolipid metabolism), four to the brown module (pathways: PE, 

phosphatidylcholine (PC), DAG), and two to additional modules identified in our previous 

analysis of cognition (pathways: fatty acid metabolism (acyl carnitine); methionine, cysteine, SAM 

and taurine metabolism). 

 

Polygenic risk scores  

We investigated whether modules and hub metabolites that associated with an imaging measure 

(p
FDR

<0.05) were also associated with polygenic risk for AD (APOE region included and 

excluded). We observed no significant relationships following FDR correction. At the nominal 

threshold, we report relationships between higher AD PRS and decreased levels of five hub 

metabolites (Figure 3 and Supplementary Table 3). Three DAG and phosphoethanolamine hub 

metabolites were associated with the APOE AD PRS only (P
T
=5x10-8; ß range=-0.061 to -0.050, 

p range=0.012 to 0.04, p
FDR

>0.05). Two PUFA were associated with the non-APOE AD PRS 

(P
T
=0.1; DPA: ß =-0.077, 95%CI=[0.13,-0.029], p=0.0018; linolenate: ß =-0.054, 95%CI=[-

0.10,-0.0056], p=0.029, p
FDR

>0.05); these associations weakened with the APOE region 

additionally included (P
T
=0.1; DPA: ß =-0.058, 95%CI=[-0.11,-0.0097], p=0.019, linolenate: ß 

=-0.040, 95%CI=[-0.088,0.0088], p=0.11). No relationships were observed for metabolite 

modules at either the nominal or adjusted level of significance. 

 

Additional analysis 

Full results from our additional analyses are discussed in Supplementary Notes. Briefly, modules 

showed moderate to large preservation in the Insight 46 subset of the NSHD (Supplementary 

Figure 1). Following Bonferroni correction (module: p<3.57x10-3; hub metabolite: p<1.06x10-3) 

all modules and nine metabolites remained associated with an outcome, with 21 no longer 

reaching the adjusted level of significance. Further adjustment for life course factors resulted in 

minimal changes (Supplementary Table 4 & 5).  
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Figure 3. Hub metabolite results. Heatmap showing relationships between key hub metabolites (pFDR<0.05) and brain imaging outcomes, as well as relationsh
these metabolites and Alzheimer’s disease polygenic risk scores (best threshold shown). Tiles are coloured by effect direction (blue = associated with better outcom
associated with worse outcomes). Effect sizes are presented inside the tiles. Associations significant after multiple testing correction (pFDR<0.05) are represented b
nominal (p<0.05) by a fainter fill. Metabolites are organised by both module (indicated via the colour panel on the right) and pathway (specified next to the modul
Metabolite names in bold were additionally associated with a cognitive outcome in our cognition analysis. Source data are present in Supplementary Table 1 & 3).  
AD = Alzheimer’s disease, DMTPA = 2,3 Dihydroxy-5-methylthio-4-pentenoic acid, NSHD = National Survey of Health and Development, PRS = polygenic risk score 
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Discussion 

In a population-based cohort, we identified three modules of coexpressed lipids (phospholipids 

and DAGs, fatty acids, and sphingolipids) that were associated with whole-brain or hippocampal 

volume, and 22 highly connected metabolites within these that present as potential markers for 

additional study. We report no significant metabolic associations for Aβ status following multiple 

testing correction, nor for AD polygenic risk in our genetic analyses, although some relationships 

were seen at the nominal level. Taken together, this suggests that these findings may be relevant 

to later life brain structure but non-specific to AD. 

 

Fatty acids in whole-brain volume 

First, we found that higher expression of the blue module – enriched in several fatty acid 

pathways – was associated with smaller whole-brain volumes. We identified eight hub 

metabolites in this module, belonging to fatty acid pathways (long chain PUFA (n3 and n6); 

monohydroxy; dicarboxylate; medium chain), as well as glycerol from the glycerolipid 

metabolism pathway. These pathways are tightly linked: fatty acids and glycerol constitute 

phospholipids and triglycerides, and dicarboxylate and monohydroxy fatty acids are oxidative 

products of PUFA and other fatty acids. 

 

Upregulation of this module and hub metabolites may thus represent changes in lipid 

metabolism, including enhanced lipid breakdown, accumulation of free fatty acids and glycerol in 

the blood, and alterations in fatty acid oxidation – all of which have been linked to 

neurodegeneration and AD 31–33. Worth noting however, is that while n6 PUFA have been 

typically linked to risk of neurodegenerative disease, n3 have been linked to decreased risk 34, 

although both are an area of contention 35. Here, we identified one hub (docosapentaenoate; 

DPA, 22:5n3) to be an n3 fatty acid, contrasting with the general consensus among the literature. 

We additionally observed some suggestive evidence of an association between AD genetic risk 

and PUFA, particularly with the APOE region removed; a higher AD PRS was associated with 

decreased levels of two long chain PUFA hubs (linolenate (18:3n3 or 3n6) and DPA) at the 

nominal level. These effect directions align with those reported in the literature, but were in the 

unexpected direction based on our findings in our imaging analysis. Nevertheless, we note 

caution in interpreting these findings until they are replicated in a larger, independent sample. 

 

We further identified two module hubs (16-hydroxypalmitate and hexadecanedioate) which are 

products of microsomal omega-oxidation – a minor oxidation pathway for fatty acids. 
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Accumulation thus points to defects in mitochondrial β-oxidation pathways, perhaps induced by 

an overload of free fatty acids or vice versa 36,37. Notably, defective β-oxidation and 

compensatory omega-oxidation pathways are thought to induce oxidative stress 38,39 – a key 

mechanism linked to neurodegeneration, which is marked among other things by reduction in 

brain volume 40. Nevertheless, to our knowledge, these metabolites have not been linked to brain 

health and neurodegeneration previously, although they have been found to play a role in other 

phenotypes, such as mortality and blood pressure 36. 

 

Phospholipids and DAGs in whole-brain volume 

Similar to the module of fatty acids, higher expression of the brown module – enriched in PEs 

and DAGs – associated with smaller whole-brain volumes. These pathways have key roles in 

membrane structure and cell signalling: PEs are a class of phospholipid which form important 

components of cellular membranes 41, and are a precursor to DAGs, which are components of 

cellular membranes and secondary messengers 42. We similarly reported associations between this 

module and short-term memory in our previous analysis of cognition in the NSHD; these 

associations were in the same direction, although they were mostly explained by BMI and lipid 

medication 10. Here, our results were independent of these factors with minimal attenuations 

overall. 

 

Within the module, we identified four hub metabolites – two phospholipids and two DAGs. 

Both subclasses have been previously linked to AD and neurodegeneration 43,44, and increased 

serum concentrations have been hypothesised to represent alterations in membrane integrity and 

subsequent degradation 45,46, although some associations in the opposite direction have also been 

reported 32,47. Three module hubs were additionally associated with an AD PRS at the nominal 

level; this relationship appeared to be driven predominantly by APOE and may thus reflect 

pleiotropic pathways. Again, these were in the opposite direction to our findings for whole-brain 

volume and did not survive multiple testing correction. 

 

Sphingolipids in hippocampal volume and whole-brain volume 

We highlighted associations between higher levels of sphingolipids, a lipid class that contain 

important constituents of cellular membranes 48, and larger hippocampal and whole-brain 

volumes. Our findings were observed for sphingomyelins in particular, a subclass that are 

especially abundant in the CNS, where they form pivotal components of neuronal membranes 

and play key roles in signal transduction 49. Given their biological role, it is unsurprising that 
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sphingolipids have been previously linked to brain health and pathology 50,51. Here, we report 

associations between a module enriched in sphingolipids and hippocampal volume, as well as 

several sphingomyelin hub metabolites and whole-brain volume.  

 

We previously reported similar findings for sphingolipids and several cognitive outcomes; 

however, after we adjusted for childhood cognition and social factors – particularly childhood 

cognition and education – these were entirely attenuated 10. Interestingly, we did not observe the 

same pattern here, with relationships showing negligible attenuations overall, although it is worth 

noting that childhood cognition and education show much weaker associations with structural 

brain measures and thus less likely to confound associations. We hypothesised that attenuations 

could represent earlier relationships we are unable to capture without longitudinal metabolite 

data, shared genetic or environmental underpinnings, or confounding by reverse causation, i.e. 

increased sphingolipid levels may be consequential to a higher level of cognition in early life, and 

education may be capturing shared components. With no earlier measure of brain volume, the 

latter could extend to our present findings, although previous research has linked 

sphingomyelins to longitudinal markers of pathology 50,52,53. Another possibility is that 

sphingolipids may have different involvements in cognition and later life brain volume, or may 

be particularly important during sensitive age periods, for example in cognitive development as 

well as during vulnerable periods in later life with regard to structural integrity 48. Expanding this 

to longitudinal data, alongside interrogating relationships using MR, will allow for a greater 

insight into our findings.  

 

Limited relationships were seen for Aβ status and AD polygenic risk 

Interestingly, we saw limited metabolic relationships for Aβ status; no module showed 

associations (p>0.05) and a handful of metabolites were associated at the nominal threshold 

only. Possibly there are no robust associations between these metabolites and Aβ, or 

independent of APOE, although other work has reported differently 5,7. Alternatively, this may 

reflect power, particularly given the relatively young age of Insight 46 participants and the fact 

that they have evidence for Aβ accumulation but not frank dementia. Expanding our analyses to 

further sweeps will be necessary to address this, by enrolling both a larger sample size and of 

individuals with detectable Aβ burden, as well as longer term follow-up. Furthermore, five 

metabolites were associated with an AD PRS at the nominal level, but none survived multiple 

testing correction and no other metabolic associations were seen at either threshold. As modules 

and metabolites were selected for PRS analyses based on showing significant associations in our 
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imaging analyses, which were observed for whole-brain or hippocampal volume, and not Aβ, this 

suggests that these metabolites may not be specific to AD. Alternatively, it may also reflect 

power; expanding our work in larger samples is warranted. 

 

Strengths and limitations 

Strengths of the study include age-matched cohort with information on a large range of 

confounders across the life course, including the rarely available measure of childhood cognition, 

as well as data on both imaging and subdomains of cognition. Moreover, the metabolomics data 

in this study represent a far more comprehensive proportion of the metabolome than in past 

clinical metabolomic studies of neuroimaging parameters 7,53. Nevertheless, the results of this 

study should be interpreted in the context of the following limitations. First, our findings may 

not extend to the general population. Study participants are all white and, compared to the full 

NSHD cohort, participants enrolled in Insight 46 were on average of slightly better self-rated 

health, cognitive ability, and SEP. Next, our findings may be subject to residual confounding; 

further study is needed to disentangle causal relationships. Finally, as there are currently few 

cohorts with genetic, serum LC-MS, and brain imaging data, we are not yet able to replicate our 

analyses elsewhere. 

 

Conclusions 

Our findings highlight relationships between groups of lipids and structural brain measures, as 

well as key metabolites within these that are likely to be driving associations. Future work should 

be directed towards understanding if these metabolites associate with longitudinal changes in 

brain volumes, and whether relationships are causal; this could advance our understanding of 

brain health and neurodegeneration, and reveal possible targets of intervention. 
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