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ABSTRACT  

Background: Impulsivity is a multidimensional heritable phenotype that broadly refers to the 

tendency to act prematurely and is associated with multiple forms of psychopathology, including 

substance use disorders. 

Methods: We performed genome-wide association studies (GWAS) of eight impulsive 

personality traits from the Barratt Impulsiveness Scale and the short UPPS-P Impulsive 

Personality Scale (N=123,509-133,517 23andMe research participants of European ancestry), 

and a measure of Drug Experimentation (N=130,684). Because these GWAS implicated the 

gene CADM2, we next performed a phenome-wide study (PheWAS) of several of the implicated 

variants in CADM2 in a multi-ancestral 23andMe cohort (N=3,229,317, European; N=579,623, 

Latin American; N=199,663, African American). Finally, we produced Cadm2 mutant mice and 

tested them using a battery of analogous behavioral tasks. 

Results: In humans, impulsive personality traits showed modest chip-heritability (~6-11%), and 

moderate genetic correlations (rg=.20-.50) with other personality traits, and various psychiatric 

and medical traits. We replicated associations from earlier GWAS of these traits and found 

novel associations including DRD2, CRHR1, FOXP2, TCF4, PTPRF. PheWAS for CADM2 

variants identified associations with 378 traits in European participants, and 47 traits in Latin 

American participants, replicating associations with risky behaviors, cognition and BMI, and 

revealing novel associations including allergies, anxiety, irritable bowel syndrome, and migraine. 

Cadm2 mutant mice recapitulated some of the associations found in humans, including 

impulsivity, cognition, and BMI.  

Conclusions: Our results further delineate the role of CADM2 in impulsivity and numerous 

other psychiatric and somatic traits across ancestries, with further support from studies of 

Cadm2 mutant mice.  
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INTRODUCTION 

Impulsivity is a multifaceted psychological construct that has been broadly defined as 

thoughts or actions that are “poorly conceived, prematurely expressed, unduly risky or 

inappropriate to the situation, and that often result in undesirable consequences” (1). Impulsivity 

has been repeatedly associated with numerous psychiatric diseases, including ADHD and 

substance use disorders (2,3). We previously performed genome-wide association studies 

(GWAS) of impulsive personality traits (n=21,806-22,861) using two of the most widely used 

impulsivity questionnaires, the Barratt Impulsiveness Scale (BIS-11; 3 traits) and the Impulsive 

Personality Scale (UPPS-P; 5 traits), as well as a measure of Drug Experimentation (4). These 

traits were partially genetically correlated, suggesting that each impulsivity domain is governed 

by overlapping but distinct biological mechanisms (4,5). Our work also identified significant 

genetic correlations between impulsivity and numerous psychiatric and substance use traits, in 

line with the NIMH Research Domain Criteria (RDoC), proposing impulsivity as a 

transdiagnostic endophenotype for psychopathology (6). 

The cell adhesion molecule 2 (CADM2) gene, which was the most robustly implicated 

gene in our prior GWAS of impulsivity (4), has also been extensively implicated in other risky 

and substance use behaviors (7). CADM2 mediates synaptic plasticity and is enriched in the 

frontal cortex and striatum, which are regions that regulate reward and inhibitory processes. We 

and others have implicated this gene in traits that may underlie disinhibition in humans, 

supporting the observed genetic correlations between impulsivity and personality (8), 

educational attainment (9), cognition (10), risk-taking (11), substance use (4,10,12–15), 

externalizing psychopathology (16), neurodevelopmental disorders (17,18), physical activity 

(23), reproductive health (20,21), metabolic traits (19), and BMI (22), among others (see GWAS 

Catalog www.ebi.ac.uk/gwas/). Cadm2 knockout mice have previously been assessed for body 

weight and energy homeostasis (24) but have never been behaviorally characterized for 

measures of impulsivity or related behaviors. 

Here, we took three approaches to elucidate genetic factors related to impulsivity. First, 

we collaborated with 23andMe, Inc., to extend upon our earlier GWAS of impulsivity (4) by 

increasing our sample size approximately 6-fold (n=123,509-133,517). Second, we performed a 

phenome-wide study (PheWAS) of the 5 single nucleotide polymorphisms (SNPs) in and 

around CADM2 that have been most strongly implicated by the current and prior GWAS. 

PheWAS were conducted in three ancestral groups (N=3,229,317, European; N=579,623, Latin 

American; N=199,663, African American) from the 23andMe research cohort, examining close 
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to 1,300 traits, most with no published GWAS. Finally, we extensively phenotyped a mouse 

model of a Cadm2 mutant allele. We tested mice that expressed a null allele 

Cadm2tm1a(KOMP)Mbp on an otherwise isogenic (inbred) background (C57BL/6N) under 

homogeneous environmental conditions, in a broad battery of behavioral tasks that included 

analogous human measures of risk-taking and impulsivity, substance use, cognition and BMI.  
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MATERIALS AND METHODS 

Human Studies 

GWAS cohort and phenotypes 

We analyzed data from a cohort of up to 133,517 male and female research participants 

of European ancestry, a subset of which were analyzed in our prior publications (4,13,13,25,26). 

All participants were drawn from the research participant base of 23andMe, Inc., a direct-to-

consumer genetics company, and were not compensated for their participation. Participants 

provided informed consent and participated in the research online, under a protocol approved 

by the external AAHRPP-accredited IRB, Ethical & Independent Review Services 

(www.eandireview.com). During 4 months in 2015 and 14 months from 2018-2020, participants 

responded to a survey that, depending on branching logic, included up to 139 questions 

pertaining to aspects of impulsivity and substance use and abuse. To measure impulsive 

personality, we used five subscales from the 20-item Impulsive Behavior Scale [UPPS-P 

(27,28); (lack of) Premeditation, (lack of) Perseverance, Positive Urgency, Negative Urgency, 

and Sensation Seeking (Table S1)]. Each subscale includes 4-items and yields integer scores 

from 4 to 16. We also administered the Barratt Impulsiveness Scale [BIS-11 (29); a 30-item 

questionnaire that measures Attentional, Motor, and Nonplanning impulsiveness (Table S1)]. 

Lastly, we measured Drug Experimentation, defined as the number of 11 different classes of 

drugs an individual has used (see Table S1; tobacco [cigarettes, cigars, chewing tobacco], 

alcohol, marijuana, cocaine, methamphetamine, LSD/magic mushrooms, ecstasy, prescription 

stimulants [taken not as prescribed; e.g., Ritalin, Adderall, Strattera], prescription painkillers 

[taken not as prescribed; e.g., Vicodin, Oxycontin], heroin, opium); this measure yields scores 

from 0 to 11, and was adapted from the PhenX toolkit [https://www.phenxtoolkit.org/; (30)]. We 

scored UPPS-P, BIS-11 and Drug Experimentation as previously described (4). We used 

quantile normalization, since some scores were not normally distributed (Figures S1-3). Only 

individuals identified as European ancestry based on empirical genotype data (31) were 

included in this study. Basic demographic information about this sample is presented in Table 

S2. We used Pearson correlation coefficients (r) to measure the phenotypic relationships 

between impulsivity subscales and demographics. 

Genome-wide association and secondary analyses  

DNA extraction and genotyping were performed on saliva samples by CLIA-certified and 

CAP-accredited clinical laboratories of Laboratory Corporation of America. Quality control, 
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imputation, and genome-wide analyses were performed by 23andMe. Briefly, participants were 

genotyped on one of five Illumina genotyping platforms, containing between 550,000 to 950,000 

variants, for a total of 1.6 million genotyped variants. Samples that failed to reach 98.5% call 

rate were re-analyzed. Genotyping quality controls included discarding variants with a Hardy-

Weinberg p<1.00E−20, batch effects (ANOVA p<1.00E-20), or a call rate of <90% (33,35,36). 

About 64.4M variants were then imputed against the Haplotype Reference Consortium (HRC) 

panel, augmented by a single unified imputation reference panel combining the May 2015 

release of the 1000 Genomes Phase 3 haplotypes with the UK10K imputation reference panel, 

for variants not present in the HRC. Imputed variants with low imputation quality (r2<0.5 

averaged across batches or a minimum r2<0.3), or with evidence of batch effects (p<1.00E-50) 

were removed (33,35). A total of 1.3M genotyped and 30.5M imputed variants passed the pre- 

and post GWAS quality controls. We furthermore filtered out variants with minor allele frequency 

(MAF) <0.1%, which are extremely sensitive to quantitative trait over-dispersion, reducing to 

14.1M variants available for follow-up analyses (Table S3; see (32,33) for further information). 

Principal components were computed using ~65,000 high-quality genotyped variants present in 

all five genotyping platforms. 

23andMe’s analysis pipeline performs logistic regression assuming an additive model for 

allelic effects (Supplementary Material). A maximal set of unrelated individuals was chosen for 

the analysis using a segmental identity-by-descent (IBD) estimation algorithm (32) to ensure 

that only unrelated individuals were included in the sample. Individuals were defined as related 

if they shared more than 700�cM IBD, including regions where the two individuals shared either 

one or both genomic segments IBD. This level of relatedness (~20% of the genome) 

corresponds to approximately the minimal expected sharing between first cousins in an outbred 

population. Covariates included age (inverse-normal transformed), sex, the top five principal 

genotype components, and indicator variables for genotyping platforms. p-values were 

corrected for genomic control.  

 We used the FUMA web-based platform (version 1.3.6a) and MAGMA v1.08 (33,34) to 

further explore the functional consequences of the loci identified in the GWAS and to conduct 

gene-based analyses, respectively. MAGMA uses Ensembl (build 85) to map SNPs to 19,773 

protein-coding genes. We used a Bonferroni correction based on the number of genes tested 

(p<2.53E-06).  

 We used LDSC (35) to calculate genetic correlations (rg) between UPPS-P, BIS and 

Drug Experimentation, and 96 selected traits informed by prior literature across the following 
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categories: substance use, personality, psychiatric, metabolic, education, lifestyle, health, pain, 

cognitive, longevity, reproductive, and sleep. 

Phenome-wide association scan (PheWAS) in 23andMe  

We performed a PheWAS for 5 CADM2 SNPs (rs993137, rs62263923, rs11708632, 

rs818219, rs6803322) using up to 1,291 well-curated self-reported phenotypes from 23andMe 

research participants of European (N≤3,229,317), Latin American (N≤579,623) and African 

American (N≤199,663) ancestries. We excluded traits with <1,000 responses (11.99%, 3.42%, 

and 6.61% from the European, Latin American, and African American cohorts), based on a prior 

simulation study for PheWAS power analysis (36). Ancestry was determined by analyzing local 

ancestry (31), as described in detail in the Supplementary Material. Only the 3 largest ancestry 

groups were considered; smaller ancestry groups (e.g., East Asian, South Asian, Middle 

Eastern & North African) were not included due to sample size. The variants were selected 

based on our current results and previous literature (Table S4). Genotyped and imputed variant 

statistics in PheWAS are shown in Table S5.  

An overview of the data collection process has been previously described (37). The traits 

were distributed among 20 phenotypic categories (e.g., cognitive, autoimmune, psychiatric, 

etc.). For case-control comparisons, we computed association test results by logistic regression. 

For quantitative and categorical traits, association tests were performed by linear regression. All 

regression analyses were performed using R version 3.2.2. We assumed additive allelic effects 

and included covariates for age (as determined by participant date of birth), sex, and the top five 

ancestry-specific principal components. We used a 5% FDR correction for multiple testing.  

Mouse Studies 

Subjects, behavioral characterization, and statistical analyses 

Our Cadm2 mutant mice were produced via in vitro fertilization, which was performed at 

the University of California San Diego, Moores Cancer Center, Transgenic Mouse Core. We 

used the JM8.N4 cryosperm line (CSD70565 KOMP), which carries a floxed null allele in the 

Cadm2 gene (see Figure S30), on a C57BL/6N background. We then crossed the floxed null 

allele line with a constitutive CRE driver line (Stock# 014094; The Jackson Laboratory), yielding 

a global constitutive null allele. We used a heterozygous x heterozygous (HET) breeding 

scheme, which produced homozygous (HOM) mutant Cadm2 mice and their HET and wildtype 

(WT) littermates. Mice were genotyped using allele-specific polymerase chain reaction on ear 
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notch tissue followed by gel electrophoresis (38). CADM2 protein expression levels were 

quantified by western blotting (Figure S31). 

Five separate cohorts of male and female mice were used for these studies. See 

Supplementary Material for a more detailed description of the tasks and analyses of main 

variables. HOM, HET, and WT littermates were tested in parallel. Mice were between 4 and 6 

months of age at the time of testing, unless otherwise stated. Lighting, housing and feeding 

conditions for each cohort are shown in the Supplementary Material. Procedures were 

approved by the University of California San Diego Institutional Animal Care and Use 

Committee. The UCSD animal facility meets all federal and state requirements for animal care 

and was approved by the American Association for Accreditation of Laboratory Animal Care. 

Procedures from cohort 2 were conducted in accordance with the Canadian Council on Animal 

Care and were approved by the University of Guelph Institutional Animal Care and Use 

Committee. 

Cohort 1 - Motivation, inhibition, and risk-taking behavior. The first cohort (WT=25, 

HET=30, HOM=3) was used to examine risky behavior or “choice” impulsivity, behavioral 

flexibility, prepulse inhibition (PPI) of the acoustic startle response, and general exploration. The 

primary measure of choice impulsivity included risky behavior via the mouse Iowa gambling task 

[IGT, (39,40)]. Because Cadm2 has been previously associated with alcohol consumption, we 

used a within-subjects design to assess risky behavior under acute doses of ethanol (0, 0.5, 

1g/kg), as previously described (41). In addition, we evaluated motivation, as measured by a 

Progressive Ratio Breakpoint task [PBRT, (42,43)], and behavioral flexibility, as measured by a 

Probabilistic Reversal Learning task [PRL, (44)]. General exploration was measured via the 

Behavioral pattern monitor [BPM, (45,46)]. PPI took place in eight startle chambers (SR-LAB; 

San Diego Instruments, San Diego, California, USA), using previously published protocols 

(47,48). Data from PRBT, PRL, IGT, BPM and PPI were subjected to a univariate ANOVA with 

sex and genotype as between-subject factors. Data from the IGT ethanol challenge were 

analyzed using a repeated measure ANOVA with drug as a within-subject factor and genotype 

and sex as between-subject factors. The sample size of the HOM mice deviated from the 

expected Mendelian frequency (N=3) for no known reason; therefore, we excluded this group 

from the analyses of this cohort.  

Cohort 2 - Motoric impulsivity. The second cohort (WT=13; HET=14, HOM=12) was used 

to examine “motoric” impulsivity via the 5-choice serial reaction time task [5CSRTT (41,49)]. 

Reinforcer preference, baseline and long ITI performance were analyzed using univariate 
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ANOVA for parametric data or Kruskal-Wallis ANOVA for nonparametric data with genotype as 

the between-subject factor. Reduced stimulus duration (RSD) and variable ITI (vITI) 

performance were analyzed with genotype and stimulus duration (RSD) or stimulus delay (vITI) 

as the between- and within-subject factors, respectively, using two-way repeated-measures 

ANOVA for parametric data or two-way between-within subjects ANOVA on trimmed means for 

nonparametric data. Due to the low number of HOM females (N=4), sex was not included in the 

analyses of this cohort. 

Cohort 3 - General locomotion, anxiety-like behavior, and ethanol consumption. The 

third cohort (WT=22; HET=44, HOM=12) was used to measure general locomotion, anxiety-like 

behavior, and ethanol consumption. Precisely, we assessed general locomotion via the Open 

Field (50–53), and anxiety-like behavior via the elevated plus maze [EPM (54)] and light-dark 

box [LDB (55)]. Lastly, we measured acute voluntary ethanol consumption using a drinking-in-

the-dark paradigm [DID, (56)]. OFT, EPM and LDB data were assessed for normality and 

genotype effects were analyzed by ANOVA, with between-subject factors of genotype and sex. 

For the DID, ethanol drinking data were averaged and converted from milliliters to g ethanol/kg 

body weight for analysis. Drinking data were analyzed using ANOVA, with between-subject 

factors of genotype and sex.  

Cohort 4 - Body weight. Considering the previous role of Cadm2 on energy homeostasis 

(24), the fourth cohort (WT=29, HT=54, HOM=17) was used to assess body weight changes 

from adolescence (week 5) to late adulthood (week 35). Data were analyzed using linear mixed 

models with genotype and sex as dependent variables, and subject as a random factor. 

Cohort 5 - Dendrite morphology. As Cadm2 is important for synapse organization (24), 

the fifth cohort (WT=3, HET=3, HOM=3) was used to quantify dendritic spines from medium 

spiny neurons in the nucleus accumbens (NAc), which is one of the core regions for impulsive 

behavior (57). Only male mice were tested. ImageJ (Version 2.0.0-rc-69/1.52p) was used to 

analyze secondary and tertiary dendrites and score spine types. The results of the dendritic 

spine were averaged per 10μm for each mouse to standardize measures, using a classification 

criteria described previously (58). Statistical analyses were performed using ANOVA with 

genotype as a between-subjects factor. 

Statistical analysis was conducted using SPSS 26.0 or 28.0 (IBM, Armonk, NY), the Bio-

Medical Data Package (for BPM data) or RStudio (RStudio, PBC, Boston, MA). For all analyses, 

outliers deviating more than three times the interquartile range from quartile 1 or quartile 3 were 

excluded from the analysis. A p<0.05 was required for results to be considered statistically 
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significant. Post-hoc differences were assessed using Bonferroni or Tukey’s honestly significant 

difference with a p<0.05. All analyses were performed with the researchers blind to the 

genotype.   
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RESULTS 

Genome-wide association analyses and secondary analyses 

Self-reported impulsivity and Drug Experimentation scores are shown in Table S6. We 

found that ~6-11% of the phenotypic variation of these traits can be explained by common 

variants (Table S7). We identified 21 genome-wide significant associations (p<5.0E-08) for 

UPPS-P (5 traits), BIS (3 traits), and Drug Experimentation (Figure 1; Figures S4-21; Table 

S8). Although we tested 9 traits, in keeping with the standards of the field, we did not adjust the 

significance threshold. We also detected several nominal associations (p<1.0E-06, Table S8); 

we discuss some of the most interesting ones below.  

GWAS of UPPS-P 

Premeditation. We detected one significant hit (rs2958162, p=2.50E-10), located on 

chromosome 18 in the TCF4 gene, which encodes a helix-loop-helix transcription factor and is 

widely expressed throughout the body and during development. Polymorphisms in TCF4 have 

been associated with risk-taking and adventurousness (15), alcohol consumption (59), 

schizophrenia (60), depression (61,62), and neuroticism (63,64) (Table S9); TCF4 is also a non-

GWAS candidate gene for other psychiatric and neurological conditions (65).  

We noted two interesting nominal associations: rs774880622 (p=2.10E-07) on 

chromosome 11, near the DRD2 gene, which has been extensively studied in relation to reward 

and is a candidate gene for many psychiatric disorders, particularly substance use disorders 

[e.g., (66)]; and rs72819189 (p=9.70E-07), on chromosome 2, near the AFF3 gene, which was a 

robust candidate gene associated with externalizing psychopathology (16). 

Perseverance. We detected one significant association (rs5943997, p=1.50E-8) in the 

POLA1 gene on the X chromosome. POLA1 has been related to blood traits (65) and 

neurodevelopmental disorders (67), but its association with impulsivity is novel.  

We note a nominal association with rs10401120 (p=6.80E-07), in the TCF4 gene. 

Positive Urgency. We identified one potential significant hit (rs143987963, p=4.30E-08) 

on chromosome 12, near the genes MDM1 and RAP1B, but inspection of the locus zoom plot 

(Figure S9) does not support a robust association. 
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Negative Urgency. We detected three significant hits: rs4840542 (p=1.60E-09), on 

chromosome 8, in the XKR6 gene; rs5008475 (p=4.90E-09), on chromosome 5, near 

TMEM161B and MEF2C; and rs7829975, on chromosome 8, near SGK223 and CLDN23 

(p=5.00E-09). Variants in strong LD with rs4840542 and rs7829975 are highly pleiotropic, and 

have been previously associated with several traits (Table S9), including body mass index 

(BMI) (68,69), neuroticism (70,71), depression (72), blood pressure, and alcohol consumption 

(73). XKR6 was also implicated in a recent GWAS of externalizing (74), and a GWAS of anxiety 

and depression (72). 

We note nominal associations near the corticotropin receptor gene (CRHR1; rs2532373, 

p=9.10E-08), which is a robust candidate gene in relation to stress, depression and anxiety 

disorders; with CDH13 (rs426583, p=8.10E-07), which has been previously associated with 

methamphetamine response in both humans (75) and rats (76); and with NRXN1 (rs10651842, 

p=7.10E-07), which has previously been associated with educational attainment (9) and BMI 

(69).  

Sensation Seeking. We detected 5 genome-wide significant associations. First, we 

replicated our previously reported (4) association with a SNP near CADM2 (rs11288859, 

p=2.10E-09). We also detected an association with a SNP in TCF4 (rs2958178, p=3.80E-12). 

We identified a significant hit in CACNA2D1 (rs38547, p=2.10E-08) on chromosome 18. 

CACNA2D1 has been previously associated with feeling nervous (70), and levels of sex 

hormone-binding globulin (77). Furthermore, we found a significant association (rs1605379, 

p=3.80E-08) on chromosome 16, near CYLD and SALL1. SNPs in strong LD with rs1605379 

have been previously identified for risk-taking, adventurousness, and smoking initiation (Table 

S9). Lastly, we found a significant association (rs12600879, p=4.10E-08) on chromosome 17, 

near TBX21 and OSBPL7. Variants in strong LD with rs12600879 have been associated with 

BMI (78), but the finding in relation to impulsivity is novel. 

GWAS of BIS-11 

Attentional. We identified one significant association (rs10196237, p=1.10E-08) on 

chromosome 2, near the genes SPHKAP and PID1. SPHKAP has been previously associated 

with educational attainment (9), but the association with impulsivity is novel.  

We also detected a nominal association (rs145225651, p=5.00E-07), which is near the 

gene CADM2. Also of note is a nominal association within PABPC4 (rs1601647, p=6.30E-07), 
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on chromosome 4, which was also nominally associated with Nonplanning, but novel in relation 

to impulsivity.  

Motor. We detected one significant association near CADM2 (rs35614735, p=3.20E-11). 

We also considered one suspect association (rs111502401, p=2.00E-08), on chromosome 19, 

near the genes ZNF229 and ZNF180, but inspection of the regional association is not 

supportive of a strong association (Figure S17). 

Nonplanning. We detected 2 previously associated variants: rs35614735 (p=4.70E-12) 

near CADM2, which was the same SNP identified for Motor impulsivity; and rs6872863 

(p=1.20E-08) in the gene ELOVL7. Variants in strong LD with rs6872863 have been reported for 

a variety of traits including educational attainment, mathematical ability (9), household income 

(79), and brain morphology, such as cortical surface area (80) (Table S9). However, there is 

extensive LD in this region, making the association difficult to interpret.  

Again, we detected a nominal association within PABPC4 (rs1601647, p=5.30E-07); with 

AFF3 (rs72819158, p=1.10E-07), a robust candidate gene associated with externalizing (74); 

and within FOXP2 (rs936146, p=5.50E-07), a robust candidate for cannabis use disorders (81), 

smoking initiation (66), general risk tolerance (82), cognitive ability, years of educational 

attainment and schizophrenia (83).  

GWAS of Drug Experimentation 

We previously reported (4) a suggestive association (rs2163971, p=3.00E-07) near the 

CADM2 gene. In the present study, we identified a nearby SNP that was genome-wide 

significant (rs35614735, p=2.80E-15). We also report 4 novel hits (rs951740, p=9.70E-10, 

PTPRF; rs12713405, p=9.70E-09, BLC11A; rs67660520, p=7.60E-09, CADPS2; rs7128649, 

p=2.50E-09, NCAM1). Intriguingly, PTPRF has been recently associated with problematic 

prescription opioid use (25) and opioid use disorder (84), as well as smoking initiation/cessation 

(66), cognition (85), and educational attainment (9) (Table S9). Variants in strong LD with 

rs67660520 have been associated with ADHD (86), smoking initiation (66), number of sexual 

partners (82) and BMI (69) (Table S9). NCAM1 variants have been previously associated with 

alcohol, cannabis and smoking behaviors (66,87), mathematical ability (9), and anxiety and 

depression (72), among other traits. 
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We note a nominal association near the gene encoding the Glutamate Metabotropic 

Receptor 3 (GRM3; rs12673181, p=4.50E-07). Phenotypes associated with GRM3 include 

educational attainment (9), schizophrenia (88), and neuroticism (89). We also identified a 

nominal association near HTR3B (rs6589400, p=2.80E-07), which encodes the serotonin 

receptor 3B and is implicated in various forms of impulsivity and the reward system (90). 

Gene-based analyses 

Similar to the GWAS results, gene-based analyses in MAGMA identified an association 

(Bonferroni p<2.53E-06; Table S10) between CADM2 and 6 of the 9 traits examined in this 

paper: Premeditation, Sensation Seeking (UPPS-P); Attentional, Motor and Nonplanning (BIS-

11); and Drug Experimentation. TCF4, which was significantly associated with Premeditation 

and Sensation Seeking in the GWAS, was significantly associated with these traits in the gene-

based analysis. MAPT, which has been previously associated with many traits including multiple 

alcohol-related behaviors (13), was implicated in Negative Urgency. Lastly, KDM4A, which was 

recently related to problematic opioid use and interacts with selective serotonin reuptake 

inhibitors and dopaminergic agents (25), was significantly associated with Drug 

Experimentation.  

Phenotypic and genetic correlations 

A phenotypic and genetic correlation matrix of all 9 traits is shown in Figure S22 and 

Tables S11-12. Consistent with the literature and our prior work (4,5,91,92), both phenotypic 

and genetic inter-correlations among the UPPS-P and BIS subscales were high and positive, 

with the exception of Sensation Seeking and Perseverance, suggesting that these traits may 

represent relatively different constructs (5,13,91). Drug experimentation was positively and 

significantly associated with all impulsive personality traits. 

All impulsivity traits were phenotypically associated (r=-0.34-0.11) with demographic 

variables (Table S12), impulsivity scores being greater in male and younger research 

participants, compared to female and older participants; and in participants with higher BMI, 

lower household income, and fewer years of education, as we previously reported (13).  

Figure 2 shows a genetic correlation matrix of BIS, UPPS-P, Drug Experimentation and 

several other phenotypes (full results shown in Table S13).  
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As anticipated, we found positive moderate to high genetic correlations between virtually 

all UPPS-P (except Perseverance and Sensation Seeking) and BIS subscales, and Drug 

Experimentation, and substance use disorders [e.g., alcohol dependence, rg=0.25-0.79; 

cannabis use disorder, rg=0.19-0.75; opioid use disorder from MVP, rg=0.28-0.75, and GENOA, 

rg=0.25-0.75]. The strongest associations were observed between Drug Experimentation and 

alcohol dependence (rg=0.79), smoking and cannabis initiation (rg=0.84 and 0.72, respectively), 

problematic opioid use (rg=0.76) and opioid use disorders (MVP, rg=0.70; GENOA, rg=0.75). 

We also observed moderate to strong associations between all impulsive subscales 

(except UPPS-P Perseverance) and other personality traits, such as risk-taking (rg=0.15-0.65), 

neuroticism (rg=-0.23-0.84), and loneliness (rg=0.17-0.54), particularly for Positive and Negative 

Urgency. As we anticipated, extraversion was positively associated with Sensation Seeking 

(rg=0.34). Externalizing psychopathology, which represents disorders and behaviors 

characterized by deficits in inhibition, was strongly associated with all impulsivity facets (rg=0.28-

0.92), except Perseverance. 

We also identified positive associations with an array of psychiatric phenotypes, 

including ADHD (rg=0.20-0.47), depression (rg=-0.13-0.47) and anxiety (rg=-0.38-0.61) 

disorders, and cross-disorder (rg=0.12-0.44). The associations were again primarily significant 

for all except Perseverance and Sensation Seeking. Other disorders showed weaker 

associations (e.g., schizophrenia, rg=-0.09-0.15) or were only significantly associated with one 

impulsivity facet [e.g., anorexia nervosa (Perseverance, rg=-0.16); bipolar disorder (Motor, 

rg=0.22)]. 

Most impulsivity subscales were also genetically correlated with socioeconomic 

variables, including negative genetic associations with educational attainment (rg=-0.49 to -0.16) 

and income (rg=-0.38 to -0.16) and positive genetic associations with Townsend index (rg=0.18-

0.58). 

Metabolic and medical phenotypes, such as BMI (rg=0.18-0.28), chronic pain (rg=0.22-

0.46), insomnia (rg=0.20-0.42), and coronary artery disease (rg=0.18-0.30) were genetically 

correlated with all impulsive subscales (except Perseverance and Sensation Seeking). We also 

noted negative genetic associations with parental longevity (rg=-0.17 to -0.32). 

PheWAS 
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To explore the impact of specific variants in and around CADM2, we performed a 

PheWAS using 1,291 traits and the 5 most implicated SNPs (Figure 3). The list of PheWAS 

association results using the 23andMe cohort after 5% FDR correction is available in Tables 

S14 (summary), S15 (Europeans), S16 (Latin American) and S17 (African Americans).  

In European cohorts, CADM2 variants had been previously identified to be significantly 

associated with numerous traits (Table S18). Most SNPs were highly correlated (R2>0.1) and 

tagged similar traits (Figure S23), but the overlap was incomplete (Figure S24 and Table S19). 

rs993137, located in 85,449,885 bp on 3p12.1 (GRCh37/hg19), showed the highest number of 

associations (378), which we describe below.  

We replicated all previously known associations in 23andMe participants of European 

ancestry, identifying signals across all categories tested (Table S15). These included negative 

associations with risky behavior (e.g., lower risk for adventurousness [β=-0.05, p=1.33E-08], 

risk-taking tendencies [β=-0.02, p=1.13E-07]) and substance use behaviors (e.g., lower risk for 

alcohol consumption [β=-0.03, p=2.05E-09] and tobacco initiation (β=-0.02, p=3.66E-12; but see 

packs per day, β=0.01, p=1.05E-03), as well as negative associations with psychiatric disorders 

characterized by deficits in impulsivity, such as lower risk for ADHD (β=-0.05, p=2.17E-41). 

Furthermore, we found positive associations with educational outcomes (e.g., higher 

educational attainment (β=0.03, p=1.67E-12). Novel findings included positive associations with 

allergies (β=0.04, p=4.51E-03), anxiety (e.g., panic [β=0.02, p=6.82E-08]), and medical 

conditions (e.g., IBS [β=0.02, p=8.89E-07]), anemia (β=0.01, p=8.30E-74), hepatitis C (β=-0.06, 

p=8.36E-10). Intriguingly, we also detected positive associations with pain phenotypes (β=0.02, 

p=8.37E-12) and a need for a higher dose of pain medication (β=0.01, p=1.02E-06).  

For the overlapping phenotypes, UK Biobank PheWAS results (93) largely supported the 

23andMe PheWAS findings (except for smoking behaviors). For example, we identified 

associations with dietary traits (e.g., daily fruit and vegetable intake (β=-0.01, p=4.23E-11), 

pastry frequency (β=0.01, p=7.36E-06), sleep quality (β=-0.01, p=2.53E-03), and number of 

pregnancies (β=-0.01, p=7.69E-04), among others [Table S15, (12)].  

In the Latin American cohort, up to 47 traits were significantly associated with CADM2 

variants (Table S16). The highest number of associations were again observed for rs993137 

(47), which are described below. Similarly, although some of the SNPs were correlated (R2>0.1; 

Figure S24), the overlap was incomplete (Figure S26 and Table S20). The pattern of 
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associations was consistent with those described in the European cohort. Again, the strongest 

associations were with risky behaviors, such as adventurousness (β=-0.04, p=1.76E-17), risk-

taking (β=-0.02, p=5.90E-07), alcohol consumption (β=-0.03, p=1.41E-12), and disorders 

characterized by high levels of impulsivity, such as ADHD (β=-0.04, p=4.74E-10). The novel 

findings were, again, with multiple forms of allergies (e.g., seasonal allergies, β=0.03, p=3.0E-

04), migraine (β=0.04, p=1.56E-04), sleep behaviors (e.g., sleep apnea, β=-0.03, p=6.76E-04), 

among others.  

All findings that were in common between the European and Latin American cohorts 

showed the same direction of effect and similar effect sizes. We did not identify FDR-significant 

associations in the African American cohort (Table S17).  

The effect sizes were generally extremely small (Figures S27-28), as is expected for a 

single gene and complex traits. Note that the statistical significance of the associations is, in 

part, a function of sample size, as evidenced by the correlation between sample size and 

observed p-values (r=-0.16, p=1.27E-09, European; r=-0.23, p=1.56E-02, Latin American).  

Mouse results 

Figure 4 summarizes the mouse results across the five cohorts tested. Full statistics and 

additional secondary measures are described in the Supplementary Material and Table S20. 

Cohort 1 - Motivation, inhibition, and risk-taking behavior. No differences in motivation 

were found between WT and HET mice during the Progressive Breakpoint task [F(1,51)=0.003, 

p=9.57E-01; Figure 4A]. However, we noted significant genotype differences in behavioral 

flexibility in the Probabilistic Reversal Learning Task, as indexed by the number of trials to first 

reversal [F(1,42)=4.27, p=4.50E-02; Figure 4B], and risky behavior in the IGT [F(1,51)=4.70, 

p=3.50E-02; Figure 4C], HET mice requiring fewer trials to reach criterion and choosing risky 

options less frequently than WT mice (p<0.05), respectively. The number of premature 

responses, on the contrary, were higher in HET mice [F(1,51)=5.78, p=2.00E-02] compared to WT 

mice (p<0.05; Figure 4D). In the Behavioral Pattern Monitor test, HET mice exhibited greater 

exploratory behavior, as shown by an increase in hole-pokes [F(1,53)= 4.88, p=3.20E-02; Figure 

4E], compared to WT mice (p<0.05), but general levels of activity, such as distance traveled 

(F(1,53)= 0.42, p=5.21E-01; Figure 4F), were similar across the genotypes. Lastly, although the 

startle response was equal across the groups (Figure 4G), prepulse inhibition was larger in 
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HET mice compared to WT mice (p<0.05; Figure 4H), particularly at ISI 25 and 100 in HET 

mice [F(1,53)=8.23, p=6.00E-03, F(1,53)=4.50, p=3.90E-02, respectively].  

Cohort 2 - Motoric impulsivity. The main outcome tested in cohort 2 were premature 

responses via the 5CSRTT (Figure 4J-M). Premature responses were lower in HOM (p<0.001) 

and WT (p<0.02) mice compared to HET mice under standard conditions (F(2,36)=8.74, p=8.06E-

04; Figure 4J), and compared to both HET (p<0.001) and WT (p<0.01) mice during a long ITI 

session (H(2)=16.10, p=3.19E-04; Figure 4L). We also noted that HOM mice were faster at 

learning the 5CSRTT, requiring fewer days for adequate baseline performance (F(2,36)=7.42, 

p=2.00E-03; Figure 4I), compared to WT mice (p<0.01). 

Cohort 3 - General locomotion, anxiety-like behavior, and ethanol consumption. We 

found a significant effect of genotype on the distance traveled in the OF [F(2,70)=7.525, p=1.00E-

03; Figure 4N], with HOM mice showing higher levels of locomotor activity than WT mice 

(p=1.40E-02). As illustrated in Figure 4O-P, no differences in anxiety-like behavior were 

detected across WT, HET or HOM mice in the EPM or LDB tests (Table S20). The total amount 

of ethanol consumed during the DID paradigm did not differ between the groups ([F(2,78)=1.084, 

p=3.44E-01]; Figure 4Q).  

Cohort 4 - Body weight. Relative to WT mice, there was a significant reduction in body 

weight in HOM mice from week 21 onwards (β=-3.74+1.27, p=4.00E-03; Figure 4R). The 

apparent trend towards a reduction in weight in HET mice was non-significant (β=-0.83+0.7, 

p=2.30E-01). Although there was a significant effect of sex (β=8.94+0.89, p<1.00E-03), we did 

not identify any sex by genotype interactions (Supplementary Material). 

Cohort 5 - Dendrite morphology. Quantitative analyses of MSN in the NAc revealed no 

difference in dendritic spine density across the groups (Figure 5S).  
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DISCUSSION 

In this study, we performed the largest GWAS of impulsive personality traits to date, we 

conducted the first multi-ancestral exploration of the role of CADM2 on a diverse array of traits, 

and we created a mouse model to functionally explore the role of Cadm2 in impulsivity and 

other behaviors. We identified positive genetic correlations across multiple domains, particularly 

substance use disorders, confirming that NIMH RDoC transdiagnostic domains (6), or 

endophenotypes, such as impulsive personality traits, can be used to dissect the genetic basis 

of psychiatric illness and normal functioning. Using mouse and human correlates, we provide 

further evidence that CADM2 is a robust candidate gene for impulsivity and an important 

modulator of numerous other psychiatric and somatic traits.  

We increased the sample size of our prior GWAS of impulsivity by almost 6-fold and 

identified 21 genomic loci implicated in impulsive personality and Drug Experimentation. For 

instance, SNPs located in the gene TCF4 were implicated in 3 subscales; this gene is also 

highly pleiotropic for other psychiatric conditions. Furthermore, we identified associations with 

NCAM1, which, intriguingly, is a critical member of the NTAD (NCAM1-TTC12-ANKK1-DRD2) 

gene cluster (94) and variants correlated with NCAM1 in that cluster have been associated with 

differences in D2 receptor density (95). We also detected associations near XKR6 and AFF3, 

which have been recently implicated in externalizing psychopathology (74), and PTPRF and 

KDM4A, recently implicated in problematic opioid use (25) and opioid use disorder (84). 

Although in this report we focused on CADM2, functional studies of those genes are warranted. 

Furthermore, we nominally replicate prior candidate gene studies implicating monoamine 

neurotransmitters in impulsivity and Drug Experimentation (DRD2, HTR3B). High impulsivity 

depends on a neural network that includes the ventral striatum (subsuming the NAc) with top-

down control from prefrontal cortical regions, and is modulated by monoamine neurotransmitters 

including dopamine and serotonin (94); this is the first GWAS to implicate genes modulating 

these systems as robust candidate genes for impulsivity.  

We extend on prior findings (4,5) showing that the genetic architecture of impulsivity 

facets is distinct. Although impulsivity has been proposed as an endophenotype for ADHD and 

substance use disorders, individual differences across the domains. These results suggest that 

impulsivity facets only partially overlap, providing further support to the idea of impulsivity being 

a multifaceted construct even at the genetic level (5).  
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Recent studies have implicated the CADM2 gene in impulsivity and traits associated with 

reward sensitivity and multiple domains of human health. We confirmed numerous previously 

reported associations and extended our findings of variants related to CADM2. Here, CADM2 

was significantly associated with 4 out of the 9 traits that we measured in GWAS and 6 out of 

the 9 traits that we measured in gene-based analyses. Our PheWAS provided a comprehensive 

profile of human traits associated with each variant we evaluated, including hundreds of traits 

that had not been well studied thus far. CADM2 variants were associated with decreased risk for 

externalizing psychopathology, but also increased risk for internalizing psychopathology 

(anxiety, depression, OCD). We also observed novel associations with migraines and various 

allergies. Others using a similar approach with UK Biobank data have found that this enrichment 

of associations is higher than expected (12) compared to other genes. Taken together, our 

results provide evidence that CADM2 variants are associated with broad health outcomes, but 

whether this gene affects human health via disruptions in inhibition control or reward systems, 

or whether it acts via multiple pathways (94), is still not fully understood.  

A relatively unique feature of our study is that, to follow up on the CADM2 loci implicated 

in human studies, we generated and phenotyped a Cadm2 mutant mouse line. Unlike GWAS 

analyses, functional experiments can provide information about the causality and directionality 

of effects (e.g., whether higher or lower CADM2 expression is associated with risky behavior) 

and whether CADM2, and not other nearby genes in the locus, are responsible for the reported 

associations.  

Using this approach, we found evidence that loss of Cadm2 resulted in less risky 

behavior and improved information processing, consistent with prior human work 

(4,10,74,82,95). Mice performing the IGT generally work toward minimizing punishment as 

much as maximizing reward (96). Here, HET mice exhibited a greater preference for selecting 

the safe option vs. their WT littermates, indicative of avoidance of risk and high punishment.  

In contrast, HET mice showed elevated premature responses, which represents another 

form of impulsivity (motoric impulsivity). However, premature responses have also been linked 

to temporal discrimination, wherein mice and humans overestimating the passage of time 

exhibit higher premature responses (97,98). Interestingly, in the 5CSRTT, premature 

responding was reduced in HOM mice, suggesting that the type of impulsivity measured can 

modulate the influence of the Cadm2 genotype. Therefore, the preference for less risky options 

of HET mice in the IGT could reflect their misjudgment of time – resulting in higher premature 
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responses – and thus avoidance of higher temporal punishment in the IGT. Furthermore, hole-

poking in the BPM test is thought to reflect specific exploratory behavior, whereby animals gain 

information about their environment. The source of the small increase in nose-poking of the 

HET mice is unclear, but their increased information gathering could drive their better risk 

preference in the IGT. In addition, HET mice exhibited better reversal learning performance in 

the PRL task relative to their WT littermates. This enhanced performance could be driven by 

their higher information gathering, possibly processing information. The fact that the HET mice 

may exhibit heightened sensitivity to temporal punishment, used in conjunction with rewards for 

training in the PRL task, could drive their enhanced learning in the IGT. Another important 

finding supporting enhanced information and speed of processing is the better performance of 

HET mice in the ISI (PPI) challenge, especially at the shorter time-point. PPI reflects sensory 

information processing over short temporal windows. HET mice exhibiting better PPI at the 

shortest temporal window (25 ms) supports the premise that these mice have faster temporal 

processing that underlies behavior.  

Finally, findings from the 5CSRTT provide consistent evidence that deletion of Cadm2 

may improve some facets of information processing and impulsivity while being detrimental to 

others. We observed that HOM mice acquired baseline task criteria faster than WT littermates, 

supporting that learning may be enhanced by Cadm2 reduction. Consistent with IGT results 

suggesting an association between Cadm2 and motoric impulsivity, HET mice were the most 

likely to commit premature responses, although HOM mice were surprisingly the least likely to 

make premature responses. Interestingly, although not significant, there was a consistent 

elevation in the number of premature responses committed by the HOM mice as the stimulus 

duration was reduced in the RSD (5CSRT) task, which could suggest that HOM mice, like HET 

mice, may show motoric impulsivity deficits when performing tasks that require greater 

attentional demand; this requires further investigation. Compared with WT mice, HOM mice also 

showed impaired accuracy performance under RSD conditions, in line with our human findings 

of CADM2 association with BIS-11 Attentional subscore, and cognitive function by others (10). 

The heterogeneity of performance outcomes in the HOM mice (i.e., better motoric impulsivity 

but impaired attentional performance) further supports a unique but overlapping contribution of 

genetics across impulsivity domains. 

Although most human traits are difficult to model in mice, we have several examples 

where the mouse and human data are concordant. For example, we show that CADM2 was 

implicated both in human impulsive personality and impulsive behavior in mice. Furthermore, 
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our mouse data indicate that Cadm2 was specific for impulsivity but did not have more general 

effects on behavior; for instance, we did not observe deficits in anxiety-like behavior or general 

motivation, as some of the PheWAS findings revealed. A few other measures were also 

inconsistent across species, particularly measures of alcohol consumption, where CADM2 

showed a role in humans (7,13,99,100) but not mice. Future studies should use different assays 

to determine whether Cadm2 may be associated with other aspects of alcohol use than the one 

we studied via the drinking-in-the-dark paradigm. Furthermore, CADM2 has been shown to be 

implicated in BMI in humans (24,101) and energy homeostasis in mice (24). We further replicate 

these findings by showing body weight reductions in adult mutant mice. Although changes in 

BMI in humans may be secondary to impulsive decision-making, it is harder to imagine that the 

influences are attributable to deficits in impulsivity in mice. Lastly, some measures, such as 

allergies and other medical conditions, do not have direct correlates and will be harder to model 

in mice.  

CADM2 encodes the immunoglobulin adhesion protein SynCAM 2, which is part of the 

family of synaptic adhesion molecules known as SynCAMs. Studies have shown the large 

influence of SynCAMs on synaptogenesis (58,102–105), axon guidance (106), and neuron 

myelination (107–109), processes that have direct effects on the pathology of 

neurodevelopmental diseases, such as autism spectrum disorders, intellectual disability, and 

schizophrenia (79). CADM2 appears to be most strongly expressed in the striatum and frontal 

cortex, which are core regions that regulate impulsivity; for these reasons, we measured 

synapse morphology in striatal regions of the brain. The lack of phenotype in terms of MSN 

spine density suggests that Cadm2 may not have a role as a postsynaptic organizer of spines in 

MSN in the NAc, or may have redundant functions that are compensated in the mutant mice by 

other molecules. However, we tested mice during adulthood and may have missed a critical 

window of change. Based on in-silico analyses in humans, CADM2 expression seems to be 

greater at earlier stages of development (Figure S29); whether Cadm2 may affect earlier stages 

of development (prenatal and early postnatal) that are compensated in adulthood has not been 

investigated in this study. 

Several limitations of this study are worth noting. The discovery GWAS only includes 

participants of European ancestry; future studies examining these traits in other ancestries are 

urgently needed. Our results are also biased by potential ascertainment and characteristics of 

the sample; the 23andMe participant has higher socioeconomic status and lower levels of drug 

use and impulsivity than the general US population (110). Moreover, although the traits we 
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studied are extracted via well-established questionnaires, they are self-reported measures, 

which are different from behavioral phenotypes (110,111). Similarly, PheWAS uses minimal 

self-reported phenotyping; however, the tradeoff is the power to survey multiple phenotypes 

within a single study. PheWAS analyses also have additional challenges. The first challenge of 

the PheWAS approach is to reliably distinguish true pleiotropic associations of a SNP (or SNPs 

in strong LD with the lead SNP) from unrelated associations driven by independent SNPs at a 

locus. A second challenge to PheWAS is the existence of common comorbidities among 

endpoints, or an insufficient distinction between phenotypes. Although we tested multiple 

variants in the CADM2 loci, further conditional analyses are required to determine if this signal 

and previously reported associations implicating CADM2 loci, including a large non-coding rare 

deletion in the first intron of CADM2 (94), may tag the same underlying genetic effect. We are 

also unaware of the sequence of events, and whether there is true pleiotropy or mediation 

effects has not been examined. The analyses were well powered for moderate and large effect 

sizes. Still, for unclear reasons, despite similar minor allele frequencies and imputation quality of 

the SNPs we tested across all ancestries, we identified no significant associations in the African 

American cohort. Finally, although we detected some discordant cross-species effects of 

Cadm2 on behavior (anxiety, acute doses of ethanol), background strain effects (104) or subtle 

allelic variations (vs whole KO) may explain task differences.  

In conclusion, we show that impulsivity facets are extremely polygenic, but of very high 

transdiagnostic significance. Further, we propose that genetic studies using research 

participants not ascertained for neuropsychiatric disorders may represent an efficient and cost-

effective strategy for elucidating the genetic basis and etiology of genetically complex 

psychiatric diseases. Using homologous measures of impulsivity in mice and humans across 

three ancestral backgrounds, we provide evidence of the overarching role of CADM2 on 

impulsivity, and a much broader impact on human health. Future studies are urged to further 

examine the role of CADM2 on behavior at the molecular, cellular, and circuit levels.  
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Data availability 

We will provide summary statistics for the top 10,000 SNPs upon publication (Tables 

S22-30). Full GWAS summary statistics will be made available through 23andMe to qualified 

researchers under an agreement with 23andMe that protects the privacy of the 23andMe 

participants. Please visit https://research.23andme.com/collaborate/#dataset-access/ for more 

information and to apply to access the data. 
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Figure 1. Porcupine plot displaying 21 genome-wide significant hits for all impulsivity facets and Drug Experimentation. CADM2 was 

consistent across 3/8 impulsivity facets [Sensation Seeking (UPPS-P), Motor and Nonplanning impulsivity (BIS-11)] at a genome-wide 

association level, and with 3 more impulsivity facets [Attentional (BIS-11), Negative Urgency and Premeditation (UPPS-P]), at a gene-

based level (Table S8). CADM2 was also associated with risky behavior, such as Drug Experimentation 
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Figure 2. Genetic correlations (rg) between UPPS-P, BIS, and Drug Experimentation, and other 

substance use, psychiatric, personality, cognitive, metabolic, health, pain, longevity and sleep 

traits (see Table S9 for full results). All values survive 5% FDR correction. 
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Figure 3. FDR-significant associations from CADM2 PheWAS in individuals of European ancestry (A) and Latin American ancestry (B). No 

FDR-significant findings were detected in individuals of African American ancestry. The size of the dots represents the magnitude of the 

effect size for each trait. The effect sizes ranged from -0.14 to 0.13 in the European cohort and from -0.08 to 0.16 in the Latin American 

cohort. 
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Figure 4. Complete and partial loss of Cadm2 function and behavioral consequences in the 

Probability Breakpoint Ratio Task (PBRT, A), Probabilistic Reversal Learning Task (PRLT, B), 

Iowa gambling task (IGT, C-D), Behavioral Pattern Monitor task (BPM, E-F), Prepulse Inhibition 

(PPI, G-H), 5-Choice Serial Reaction Time Task (5CSRTT) performance (I-M), Locomotor 

(LCM) activity (N), Elevated Plus Maze (EPM, O), Light-Dark Box (LDB, P), and Drinking in the 

Dark (DID, Q); longitudinal body weight changes (R), and dendrite morphology (DSM) in the 

nucleus accumbens (S). Western blot (WB) analysis (T) of Cadm2 protein in whole brain, frontal 

cortex and striatum. WT, wildtype, HET, heterozygote, HOM, homozygote. * p<0.05, ** p<0.01, 

*** p<0.001. 
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