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Key Points: 22 

  Based on data from the USA, the population density of 1192 persons per square mile 23 

represented a 50% or higher probability of risk of transmission of COVID-19. 24 

 About 35 counties in the USA are at very high risk of transmission potential (95% or 25 

higher) for COVID-19. 26 

 Analysis shows the vulnerability of urban towns to respiratory infectious disease 27 
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 31 

Abstract   32 

Pathways of transmission of coronavirus (COVID-19) disease in the human population are 33 

still emerging. However, empirical observations suggest that dense human settlements are the 34 

most adversely impacted, corroborating a broad consensus that human-to-human transmission 35 

is a key mechanism for the rapid spread of this disease. Here, using logistic regression 36 

techniques, estimates of threshold levels of population density were computed corresponding 37 

to the incidence in the human population. Regions with population densities greater than 38 

3000 person per square mile in the United States have about 95% likelihood to get infected 39 

with COVID-19. Since case numbers of COVID-19 dynamically changed each day until 40 

November 30, 2020, ca. 4% of US counties were at 50% or higher risk of COVID-19 41 

transmission.  While threshold on population density is not the sole indicator for  42 

predictability of coronavirus in human population, yet it is one of the key variables on 43 

understanding and rethinking human settlement in urban landscapes.   44 

   45 

Plane language Summary: Population density is certainly one of the key factors influencing 46 

the transmission of infectious diseases like COVID-19. It is approximated that in continental 47 

United States, population density of 1192 per square mile and higher presents  50% 48 

probability of getting infected with COVID-19. 49 

 50 

Keywords: threshold, population density, logistic regression, COVID-19. 51 
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 56 

1.Introduction  57 

Severe Acute Respiratory Syndrome caused by  Coronavirus (SARS-CoV-2 thereafter) is a 58 

respiratory lung infection, and as of April 28, 2021, there have been more than 148 million 59 

(WHO COVID-19 Dashboard, https://covid19.who.int/) confirmed human cases in the 60 

world. The SARS-CoV-2 virus remains highly infectious and is circulating in the human 61 

population at an alarming rate with anticipated variants in near future. An emerging 62 

disciplinary consensus is that seasonal variation  may lead to cyclical outbreaks in the human 63 

population(Carlson, Gomez, Bansal, & Ryan, 2020; Merow & Urban, 2020). As with all 64 

airborne respiratory infectious diseases, the transmission of SARS-CoV-2 is high in densely 65 

populated urban regions of the world (Cruickshank, 1939; Robinson, Stilianakis, & 66 

Drossinos, 2012). However, thresholds of population density relative to the outbreak of the 67 

disease in humans remains unknown. The relative importance of knowledge of threshold on 68 

population density with reference to infectious disease such as COVID-19 is important for 69 

the future of modern cities and urban landscapes in the USA, given about 71% of the 70 

population reside in urbanized areas with an average density of 2534 persons per square mile 71 

(https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural/ua-72 

facts.html). 73 

Influenza transmission dynamics, which allow parallel comparison with COVID-19 74 

transmission, depend on several socio-demographic factors (such as race, income level, 75 

education, and location), but population density remains a critical variable for controlling 76 

an outbreak of seasonal influenza (Atkinson & Wein, 2008; Merler & Ajelli, 2010). While 77 

the severity of airborne contagion cannot be attributed solely to population density(Li, 78 

Richmond, & Roehner, 2018),  the knowledge of thresholds on population density can 79 

be helpful in understanding the spatial distribution with respect to the risk 80 
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of disease(Chandra, Kassens-Noor, Kuljanin, & Vertalka, 2013; Grantz et al., 2016). 81 

Intuitively, high population density is concluded to favor contagion and vice-versa. However, 82 

non-uniform distribution of a population can yield inconclusive results (Li et al., 2018). 83 

While the significant association was reported between population density and 84 

transmissibility for the 1918 influenza pandemic in Chicago (Grantz et al., 2016), the average 85 

influenza attack rates decreased with increasing population density in Japan (Hoyle & 86 

Wickramasinghe, 1990).    In the  context of COVID-19, an analysis of  Brazilian data 87 

suggests the general increase in  COVID-19 cases was associated with highly populated 88 

regions(Pequeno et al., 2020).  There is no study to date that provides an exploratory 89 

association of population density thresholds with COVID-19 cases in the continental USA. 90 

This study was undertaken to determine thresholds on population density that can be used to 91 

estimate the probable risk of infection from COVID-19. Estimation of a threshold 92 

population density would allow in the differentiation of low and high-risk regions and offer 93 

useful input for planning, designing, and targeting public health interventions. Also, 94 

identifying specific regions where greater surveillance is required to contain the disease 95 

would be enhanced and can be used to define the expansion of urbanized areas in the USA.  96 

2. Methods  97 

Daily incidence data for COVID-19 cases in the 3,107 mainland U.S. counties were obtained 98 

from the GitHub project (https://github.com/nytimes/covid-19-data) from March 15, 2020, to 99 

November 30, 2020. The time period was selected based on the non-availability of vaccines 100 

since vaccines will mask the limit on population densities.  Data on the population densities 101 

of each U.S. county were obtained from the U.S. Census Bureau (2019) 102 

(https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html). 103 

Land area in square miles was obtained from the U.S. Census Bureau 104 

(https://www.census.gov/library/publications/2011/compendia/usa-counties-105 
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2011.html#LND). An ordinal logistic regression model was employed to study the 106 

dependency of COVID-19 cases (thereafter cases) on counties' population density. It was 107 

assumed that the population densities remained constant during the study period, implying 108 

population mobility has minimal impact on population density. Further, the population was 109 

assumed to be uniformly distributed over the county. Since the number of cases differs 110 

widely over the county, intuitively, it is preferable to classify cases into a number of classes 111 

where each class explicitly implies a specific infection risk. To classify cases, we estimated 112 

the percentile of cumulative cases at an interval of 15 days beginning March 15, 2020, to 113 

November 30, 2020. Cumulative cases data were divided into three categories (or events): (a) 114 

low number of cases (up to 80th percentile); (b) medium number of cases (80th to 95th 115 

percentile); and (c) high number of cases (greater than 95th percentile). The 80
th

 percentile 116 

case on November 30, 2020 was 3817 (Table 1), which can still be considered relatively less 117 

compared to the number of cases in high-risk locations. 118 

Table 1: Biweekly 80
th

 percentile cases of low cases 119 

Date 80th percentile cases 

March 15 2020 

March 31 2020 

April 15 2020 

April 30 2020 

May 15 2020 

May 31 2020 

June 15 2020 

June 30 2020 

July 15 2020 

July 31 2020 

August 15 2020 

August 31 2020 

September 14 2020 

September 30 2020 

October 15 2020 

October 31 2020 

November 15 2020 

                  November 30 2020 

0 

15 

63 

126 

196 

271 

351 

480 

670 

970 

1175 

1382 

1564 

1787 

2069 

2410 

3036 

                              3817 

 120 
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 Moreover, a higher value for the log-likelihood (a statistical metric used for model selection) 121 

in Table 2, justifies the choice of the 80th percentile. In fact, the log-likelihood function was 122 

found to be better with increasing percentile, with the increase being less for the percentiles 123 

above the value of 80. 124 

Table 2: Variation in log-likelihood in COVID-19 cases  125 

Percentile up to which 

cases 

were considered low 

log 

likelihood 

33 

50 

80 

85 

-3070.07 

-2860.07 

-1634.02 

-1364.49 

Thus, the ‘reasonable’ choice of percentiles for classification of cases will lead to overall 126 

similar model results without altering the final interpretation.. The following paragraph 127 

briefly explains the analysis approach. Relevant theory for the application of ordinal logistic 128 

regression is detailed in the supplementary section. 129 

The predictor used is the county population density which is the county's population per unit 130 

of the county's land area. The response variable, which is ordinal in nature, is the cumulative 131 

case count classified into low, medium, and high (based on percentiles). Logit link function 132 

(details in supplementary section) was used to express the dependent variable as a linear 133 

function of the independent variables. Link function also relates the response (ordinal cases)  134 

to linear predictor (population density) and transforms the probabilities of ordinal response to 135 

the continuous scale [0,1]. The regression equations, thus, take the form as follows: 136 

 [1] 137 

 [2] 138 

 139 
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where p(high cases) and p(medium cases) are the probabilities of high and medium cases, 140 

respectively. Constants and coefficients in the equations (1, 2) were estimated using the 141 

maximum likelihood estimation methods. Since the total probabilities sum up to one, the 142 

probability of a low number of cases were estimated by subtracting the probability of high 143 

and medium cases. 144 

3. Results and discussion 145 

We start our analysis with results obtained from logistical regression models (Figure 1) 146 

showing three critical statistical metrics (Somers D, Goodman-Kruskal Gamma and Percent 147 

Concordant pairs). 148 

 149 

 150 

High values of measures of association (> 82%), i.e., percentage of concordant pairs, 151 

Somers's D and Goodman-Kruskal Gamma, signify that the performance of ordinal logistic 152 

model is satisfactorily. On average, model performance remained constant since start of 153 

collection of data on COVID-19 human cases. The p-values for each constant and predictor 154 

population density were less than 0.05 (not shown), thus establishing statistical significance. 155 

The p-value for the test of all slopes is zero (Table S1), which indicates the predictor 156 

population density has a statistically significant relationship with the response variable 157 

(COVID-19 cases). The deviance goodness of fit result (p>0.05), for all dates for which the 158 

model was run, showed adequate fit for the data, and the associated probabilities do not 159 

deviate significantly from observed values (detailed inference of model performance 160 

indicators for November 15, 2020 is presented in Table S1 in supplementary section).  The 161 

model results for any one day should sufficiently explain the behavior of event probability 162 

(cases) with population density.  The plots in Figure 2 show average probability of high, 163 

medium, and low number of cases.  164 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 30, 2022. ; https://doi.org/10.1101/2022.01.27.22269840doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.27.22269840


 165 

 166 

Average probabilities were defined as the mean of the probabilities obtained from the ordinal 167 

logistic regression models for each of the eighteen bi-weekly cases (from March 15, 2020, to 168 

November 30, 2020). The monotonic nature of Figure 2(a) shows that with an increasing 169 

population density, the probability of a high number of cases increases, and vice versa. The 170 

probability rises steeply to a nearly constant value of 1 at a population density of ca. 5000 per 171 

square mile, suggesting larger population densities greater than this value were remarkably 172 

associated with the corresponding high number of COVID-19 cases. The implication is that 173 

the pronounced effect of high population density and a proportional number of cases was 174 

sufficient to establish population density as an important factor in transmission potential of 175 

this disease . The results suggest that in densely populated areas, it may be challenging to 176 

follow social distancing norms, thus an increased number of COVID-19 human cases were to 177 

be expected. Figure 2(c) shows the probability of a low number of cases, a trend opposite to 178 

that for high number of cases. The probability continuously decreases to a constant value 179 

close to zero, signifying that as population density increases, the chance of a low number of 180 

cases decreases. Figure 2(b) illustrates the medium number of cases with population density. 181 

The maximum probability of the medium number of cases is ca. 0.48, corresponding to the 182 

population density of ca. 1,190 per square mile. Thus, a decrease in population density from 183 

1,190 per square mile decreases the probability of a medium number of cases as the 184 

probability of low number of cases increase. On the other hand, if population density beyond 185 

1,190 per square mile, the probability for a medium number of cases decreases since 186 

probability  of high number of cases increase thereafter. Population density of 1,190 people 187 

per square mile can be interpreted as a transition from low to high COVID-19 cases. Figure 3 188 

illustrates changes in event probabilities over time and suggests that even low-density 189 
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counties are likely to be more vulnerable as the probability of high number of COVID-19 190 

cases for population density increases over time. 191 

 192 

 In Figure 2(a), the threshold population density is shown at which a 50% chance of a high 193 

number of cases will occur, ca. 1,622 per square mile. The population density for getting a 194 

low number of cases at 50% chance is 762 per square mile (Figure 2(c)) , and the arithmetic 195 

mean of these two  values at high and low cases gives an average  of 1,192 per square mile 196 

and defined as the population density at which there is a 50% chance of infection. Thus, 197 

4.02% (125 of 3,107) of the counties with population density greater than 1,192 per square 198 

mile are at 50% or greater risk of infection as on November 30,2020. The key results 199 

discussed here are concisely summarized in  Table 3. 200 

 201 

 202 

Table3: Key results of Population density- cases analysis  203 

Attribute Value  

Population density beyond which 95% probability of 

high number of cases  

 

Population density beyond which 50% probability of 

high number of cases 

 

Average Population density beyond which 50% 

probability of getting infected 

 

Percentage of US counties at greater than 50% 

probability of getting infected   

3000  per square mile 

 

 

1622 per square mile 

 

 

 

1192 per square mile  

 

 

4.02%(125 out of 3107) 

 204 

Table 4 provides values for population density and arithmetic average probability of high 205 

number of cases for each state in the US, as of November 30, 2020.  206 

 207 

 208 
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 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

Table 4: Probabilities of high number of COVID19 cases as of November 30, 2020 218 

State Population  

density 

(per 

 square 

 mile) 

Average 

probability  

of 

 high cases  

(Ap) 

Maximum 

 probability  

of  

high cases 

(Map) 

Minimum 

probability  

of 

high cases 

(Minp) 

Rank 

of  

Ap 

Rank 

of 

Map 

Percent 

difference  

between 

Map and 

Ap 

District of 

Columbia 

New Jersey 

Rhode Island 

Massachusetts 

Connecticut 

Maryland 

Delaware 

New York 

Florida 

Pennsylvania 

Ohio 

11569.7 

 

1207.8 

1024.5 

883.5 

736.6 

622.9 

499.6 

412.8 

400.7 

286.1 

286.1 

1 

 

0.404 

0.28 

0.242 

0.156 

0.165 

0.144 

0.099 

0.078 

0.079 

0.066 

1 

 

1 

0.652 

1 

0.421 

1 

0.368 

1 

0.981 

1 

0.927 

1.000 

 

0.027 

0.043 

0.022 

0.028 

0.019 

0.030 

0.017 

0.018 

0.018 

0.019 

1 

 

2 

3 

4 

7 

6 

8 

11 

13 

12 

14 

1 

 

1 

23 

1 

27 

1 

29 

1 

14 

1 

18 

0 

 

60 

57 

76 

63 

84 

61 

90 

92 

92 

93 
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California 

Illinois 

Hawaii 

Virginia 

North Carolina 

Indiana 

Georgia 

Michigan 

South Carolina 

Tennessee 

New Hampshire 

Washington 

Kentucky 

Texas 

Louisiana 

Wisconsin 

Alabama 

Missouri 

West Virginia 

Minnesota 

Vermont 

Arizona 

Mississippi 

Arkansas 

Oklahoma 

Iowa 

Colorado 

Oregon 

Maine 

253.7 

228.2 

220.3 

216.1 

215.7 

187.9 

184.6 

176.7 

171.2 

165.6 

151.9 

114.6 

113.1 

111 

107.6 

107.5 

96.8 

89.3 

74.6 

70.8 

67.7 

64.1 

63.4 

58 

57.7 

56.5 

55.6 

43.9 

43.6 

0.12 

0.047 

0.121 

0.232 

0.041 

0.038 

0.051 

0.048 

0.027 

0.031 

0.029 

0.03 

0.031 

0.036 

0.04 

0.038 

0.022 

0.037 

0.023 

0.043 

0.021 

0.021 

0.02 

0.02 

0.025 

0.021 

0.049 

0.039 

0.022 

1 

0.999 

0.52 

1 

0.711 

0.857 

0.93 

0.944 

0.077 

0.346 

0.053 

0.181 

0.706 

0.952 

0.689 

0.993 

0.071 

0.999 

0.046 

0.984 

0.036 

0.053 

0.042 

0.059 

0.225 

0.118 

1 

0.637 

0.038 

0.017 

0.018 

0.018 

0.018 

0.018 

0.018 

0.018 

0.018 

0.018 

0.018 

0.018 

0.017 

0.018 

0.017 

0.018 

0.018 

0.018 

0.018 

0.018 

0.017 

0.018 

0.018 

0.017 

0.018 

0.017 

0.018 

0.017 

0.017 

0.018 

10 

18 

9 

5 

20 

24 

15 

17 

32 

28 

31 

30 

28 

27 

22 

24 

37 

26 

35 

19 

39 

39 

42 

42 

33 

39 

16 

23 

37 

1 

10 

26 

1 

20 

19 

17 

16 

35 

30 

39 

33 

21 

15 

22 

12 

36 

10 

42 

13 

46 

39 

44 

38 

32 

34 

1 

24 

45 

88 

95 

77 

77 

94 

96 

95 

95 

65 

91 

45 

83 

96 

96 

94 

96 

69 

96 

50 

96 

42 

60 

52 

66 

89 

82 

95 

94 

42 
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Utah 

Kansas 

Nevada 

Nebraska 

Idaho 

New Mexico 

South Dakota 

North Dakota 

Montana 

Wyoming 

39 

35.6 

28.1 

25.2 

21.6 

17.3 

11.7 

11 

7.3 

6 

0.041 

0.023 

0.02 

0.025 

0.019 

0.02 

0.018 

0.018 

0.018 

0.018 

0.414 

0.272 

0.043 

0.527 

0.048 

0.069 

0.03 

0.022 

0.02 

0.019 

0.017 

0.017 

0.017 

0.017 

0.017 

0.017 

0.017 

0.017 

0.017 

0.017 

20 

35 

42 

33 

46 

42 

47 

47 

47 

47 

28 

31 

43 

25 

41 

37 

47 

48 

49 

50 

90 

92 

53 

95 

60 

71 

40 

18 

10 

5 

 219 

This average probability is the simple arithmetic average of the respective probabilities of 220 

state counties. It is intuitive that the most densely populated states were also those with the 221 

highest probability of a high number of cases, strengthening the finding that population 222 

density is critical beyond a specific threshold. The average probability for a high number of 223 

COVID-19 cases provides a number useful for conceptualizing the overall risk of infection in 224 

a particular state. However, except for a few densely populated states, epicenter counties are 225 

not highlighted. For example, on November 30, 2020, Texas, California, Florida, and Illinois 226 

were States with the largest number of COVID-19 cases. From Table 4, it was obvious that 227 

the relatively low values of average probabilities for those four states do not reflect their 228 

epicenter status. Therefore, we defined the maximum average probability for a state which is 229 

taken equal to the maximum value of average probabilities considering all the counties of a 230 

state. Thus, the maximum average probability for each state as calculated. The high 231 

probability of a high number of cases (>90%) indicated this metric performed acceptably to 232 

rank a state as an epicenter. Exceptions were noted, where relatively low value of maximum 233 

average probability of high cases was observed in low population density states having high 234 

number of COVID-19 cases. This anomaly is a potential limitation of the logistical regression 235 
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methods, in dealing with locations with low population densities and high cases. However, it 236 

is understood that any regressive model considering population density as the single 237 

explanatory variable likely would fail to explain a high number of cases in less densely 238 

populated regions. Lastly, an important observation with reference to population density and 239 

case analysis can be discerned from Table 4, namely the percentage difference between the 240 

maximum and average probabilities of high number of cases, being very high for many states, 241 

notably those with high maximum average probabilities. This signifies that only a few 242 

counties of the state account for a large number of cases, and the state as a whole would not 243 

be an epicenter of COVID-19.  244 

 245 

The analysis in our study assumes a uniform population distribution. In reality, the population 246 

is generally not distributed evenly across the county, as most of the population clusters in and 247 

around cities. The lack of a standard sub-county level case count, which rules out the 248 

possibility of conducting a more realistic city-level threshold analysis, forms a limitation of 249 

our study.Furthermore, though county population density is generally considered a reliable 250 

predictor to explain COVID-19 cases due to its high explanatory power (Riley, 2007; Wong 251 

& Li, 2020)  , controlling it for other variables such as population size could bring valuable 252 

insights. to determine running thresholds on population density. 253 

 254 

4. Conclusions and Implications on Future of urban cities 255 

The interrelationship of population density with the number of COVID-19 cases was 256 

analyzed, with the objective to determine thresholds for population density above which there 257 

was a 50% or greater risk of COVID-19 cases in humans. Population density and COVID-19 258 

cases, when analyzed together, suggest ca. 4% of the counties (shown in Figure 4) in the 259 
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United States would be at 50% or greater at risk of COVID-19 cases and confined to a few 260 

counties. 261 

 262 

 263 

The thresholds provide useful information as a guide for policymakers. In combination  with 264 

other governing factors, the population density threshold can provide  a more decisive 265 

conclusion, notably for estimating cases and mitigating COVID-19 in human cases, 266 

especially for  urban neighborhoods that are more likely heterogenous in race, income, and 267 

infrastructure (J. A. Maantay, Maroko, & Herrmann, 2007; J. Maantay & Maroko, 2009). 268 

Dense populations comprise  sub-populations , namely communities of color and low-income 269 

communities that are vulnerable, e.g. poor housing, high pollution, lack of access to health 270 

care, and a higher rate of pre-existing conditions(Brulle & Pellow, 2006; Bullard, 2005; 271 

Pellow, 2000). Nevertheless, the relationship between population density and rates of 272 

infection is sufficiently robust that it can be employed by policymakers to prepare 273 

anticipatory plans for specific communities and thereby prevent the spread of infection and 274 

mitigate the effects of the disease.   275 

 276 

Data Availability 277 

Raw data sets are publicly available and can be accessed using weblinks provided.  278 

Datasets generated in this study are available on openly accessible data servers. 279 

https://github.com/nytimes/covid-19-data 280 

https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html 281 

https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html#LND 282 

 283 
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While there are many other links to get the data on  COVID-19 case numbers, to the best of 284 

our knowledge, GitHub is the only concise yet comprehensive source which provides easy to 285 

analyze chronological case count data for  US  at county scale. 286 

 287 

Code Availability 288 

All the data analysis was performed using the MINITAB software package, a standard 289 

package for statistical analysis available at   290 

https://www.minitab.com/en-us/products/minitab/ 291 

 292 
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