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Abstract 

Background 

BOADICEA for breast cancer and the epithelial ovarian cancer (EOC) models included in the 

CanRisk tool (www.canrisk.org) provide future cancer risks based on rare pathogenic 

variants in cancer-susceptibility genes, polygenic risk scores, breast-density, questionnaire-

based risk factors and family history. Here, we extend the models to include the effects of 

pathogenic variants in recently established breast cancer and EOC susceptibility genes, up-

to-date age-specific pathology distributions and continuous risk factors. 

 

Methods 

BOADICEA was extended to further incorporate the associations of pathogenic variants in 

BARD1, RAD51C and RAD51D with breast cancer risk. The EOC model was extended to 

include the association of PALB2 pathogenic variants with EOC risk. Age-specific 

distributions of oestrogen-receptor-negative and triple-negative breast cancer status for 

pathogenic variant carriers in these genes and CHEK2 and ATM were also incorporated. A 

novel method to include continuous risk factors was developed, exemplified by including 

adult-height as continuous. 

 

Results 

BARD1, RAD51C and RAD51D explain 0.31% of the breast cancer polygenic variance. When 

incorporated into the multifactorial model, 34-44% of these carriers would be reclassified to 

the near-population and 15-22% to the high-risk categories based on the UK NICE 

guidelines. Including height as continuous, increased the BC relative-risk variance from 

0.002 to 0.010. 

 

Conclusions 

These extensions will allow for better personalised risks for BARD1, RAD51C, RAD51D and 

PALB2 pathogenic variant carriers and more informed choices on screening, prevention, risk 

factor modification or other risk-reducing options. 
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Introduction 

Breast cancer (BC) and epithelial tubo-ovarian cancer (EOC) are two of the most common 

cancers in females1 2. Through mammography or other methods, screening for BC can 

reduce mortality, and organised screening is available in most developed countries3. For 

EOC, no effective screening exists, but the disease can be prevented by salpingo-

oophorectomy. However, these preventative options are associated with adverse effects. 

Therefore, identifying those at increased risk may help to target screening and preventative 

options to those most likely to benefit4. Both BC and EOC risks are multifactorial diseases, 

with family history of cancer (FH), genetic factors and lifestyle, hormonal and reproductive 

risk factors (RF) all contributing to risk5-7. 

 

Previously we developed the BOADICEA (Breast and Ovarian Analysis of Disease Incidence 

and Carrier Estimation Algorithm) model for BC risk prediction and for the likelihood of 

carrying pathogenic variants (PVs) in BC susceptibility genes. BOADICEA v5 incorporates the 

effects of PVs in five BC susceptibility genes (BRCA1, BRCA2, PALB2, CHEK2 and ATM), the 

effects of known common genetic variants summarised as a polygenic risk score (PRS), and a 

polygenic component that accounts for any residual familial aggregation8 9. We also 

developed a similar EOC model (Ovarian Cancer Model v1) that considers the effects of PVs 

in BRCA1, BRCA2, RAD51D, RAD51C and BRIP1 on EOC together with a polygenic 

component10 11. BOADICEA includes mammographic density and both models incorporate 

the effects of known lifestyle, hormonal, reproductive and anthropometric RFs. In addition, 

the models incorporate breast tumour heterogeneity by considering the distributions of 

tumour oestrogen receptor (ER) and triple-negative (TN) (ER, progesterone receptor and 

human epidermal growth factor receptor 2 negative) status for BRCA1 and BRCA2 PV 

carriers and the general population12 13. Both models are freely available to healthcare 

professionals via the CanRisk webtool (www.canrisk.org), and are widely used by healthcare 

professionals14. 

 

Recently, large population-based and family-based targeted sequencing studies have 

established that PVs in RAD51C, RAD51D and BARD1 are associated with BC risk15 16 and that 

PVs in PALB2 are associated with EOC risk17 18. In addition, analysis of the tumour 
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characteristics in the BRIDGES study has provided age-specific estimates of the distributions 

of tumour characteristics for PV carriers in all established susceptibility genes19. 

 

A further limitation of the previous models is that all epidemiological RFs are treated as 

categorical. However, some RFs (e.g., height, body mass index (BMI) mammographic 

density) are intrinsically continuous, and discretisation results in a loss of information, 

reducing their predictive ability.  

 

Here we extend both models to explicitly model the effects of PVs in the recently 

established BC and EOC susceptibility genes and incorporate up-to-date age-specific 

pathology distributions. We present a methodological framework for incorporating 

continuous RFs into the model, and we demonstrate this by including height as a continuous 

variable. Finally, we describe updates to the population reference cancer incidences used in 

the models by incorporating more up-to-date incidences, incidences for additional countries 

and refining the derivation of birth-cohort specific incidences for inclusion in the models 

that address sparsity in the population incidence data.   

Methods 

Rare Moderate-Risk Pathogenic Variants 

Both BOADICEA and the EOC Model model cancer incidence as an explicit function of PVs in 

known high- and moderate-penetrance susceptibility genes (major genes) together with a 

polygenic component9-12 20-22. By using an explicit genetic model, they can account for both 

genetic testing and detailed FH. BOADICEA includes the genes BRCA1, BRCA2, PALB2, CHEK2 

and ATM, with dominance in that order, along with a BC susceptibility polygenic 

component. The EOC Model includes the genes BRCA1, BRCA2, RAD51D, RAD51C and BRIP1, 

with dominance in that order, along with an EOC susceptibility polygenic component. 

Details of the underlying model are included in the supplementary material.  The values of 

the parameters for the original models were determined by complex segregation analysis9 

10. However, this was not possible for the extended versions since no sufficiently large data 

set containing all the model features was available. Instead, we adopted a synthetic 

approach23, in which additional model parameters are taken from large-scale external 

studies8 11 12 21.  
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Here, BOADICEA was extended to explicitly model the effects of PVs in BARD1, RAD51C and 

RAD51D (eight BC susceptibility genes), while the EOC model was extended to include 

PALB2 (six EOC susceptibility genes). In both models, the effects of PVs were included as 

major genes and are parameterised by their allele frequency in the general population and 

their age-specific relative risks (RR). The BC RR for carriers of PV in BARD1 was taken from 

the BRIDGES study15, while those for RAD51C and RAD51D were the meta-analysed values 

from Dorling et al15 and Yang et al24. The EOC RR for PALB2 PV carriers was taken from Yang 

et al17. Updated RRs for carriers of PV in ATM, along with PV carrier frequencies for PALB2, 

CHEK2, ATM, BARD1, RAD51D, RAD51C and BRIP1 and screening test sensitivities for all 

genes were derived from Dorling et al15. We used the BRIDGES study to derive these 

frequency estimates as it is a very large population-based dataset that includes targeted 

sequencing data. Frequencies were based on the control frequencies in European 

populations, adjusted for the assumed sensitivity of the sequencing and the fact that large 

rearrangements were not detected (supplementary material). The default sensitivities were 

then calculated, assuming that clinical genetic testing will detect all known pathogenic 

mutations except for large rearrangements (except BRCA1 and BRCA2, where testing for 

large rearrangements is routinely done). All model parameters for PVs are given in Table 1. 

 

As the polygenic component captures all residual familial aggregation not explained by the 

major genes, the previous models implicitly included the contributions of PVs in the new 

genes (i.e., BARD1, RAD51C and RAD51D for BOADICEA and PALB2 for the EOC Model). 

Therefore, to avoid double counting their contribution, it was necessary to remove their 

contribution from the polygenic component by adjusting the log-RR per standard deviation 

of the polygenic component such that the total variance of the polygenic component and 

the new genes is the same as that of the polygenic component of the previous model21 

(supplementary material).  

 

The association between PALB2 PVs and EOC was also included in the BOADICEA model, and 

the associations with male BC and PaC have been included in both models17.  
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The effects of PV in the new BC susceptibility genes on risk prediction were assessed by 

considering the risk categories described in the National Institute for Health and Care 

Excellence (NICE) familial BC guidelines25. For lifetime risk (age 20 to 80 years), three 

categories are defined: 1) near-population-risk, for risks less than 17%, 2) moderate-risk, for 

risks in the range [17%, 30%) and 3) high-risk, for risks of 30% or greater. Reclassification 

was considered based on questionnaire-based RFs (QRF) (RFs other than mammographic 

density), mammographic density (MD, based on the BI-RADS system) and a polygenic risk 

score (PRS). For BC, the PRS was taken to be the Breast Cancer Association Consortium 313 

variant PRS, which accounts for 20% of the overall polygenic variance8 26. For EOC, we 

defined three risk categories based on lifetime risk27 28: 1) near-population-risk, for risks of 

less than 5%, 2) moderate-risk, for risks in the range [5%, 10%) and 3) high-risk, for risks of 

10% or greater, and reclassification was considered based on RFs and a PRS. For EOC, the 

PRS was taken as the Ovarian Cancer Association Consortium 36 variant PRS, which 

accounts for 5% of the overall polygenic variance11 29. 

 

Updates to Tumour Pathology 

Both models incorporate data on BC tumour pathology, specifically ER and TN. The 

distribution of pathology for affected carriers of PVs differs substantially from that in non-

carriers for several genes, so that pathology data can affect the carrier probabilities and 

hence cancer risks11 12. In BOADICEA and the EOC model, breast tumours are classified into 

five groups based on ER and TN status: ER unknown, ER-positive, ER-negative/TN unknown, 

ER-negative/not TN, and TN. Previously, the models achieved this using age-dependent 

distributions in the general population and BRCA1 and BRCA2 PV carriers and an age-

independent distribution for CHEK2 PV carriers12 21. Due to a lack of data, the tumour ER 

distribution for carriers of PV in other genes was assumed to be the same as the general 

population. Here, the models have been updated to incorporate age-dependent ER and TN 

tumour distributions for carriers of PVs in the BC susceptibility genes PALB2, CHEK2, ATM, 

BARD1, RAD51C and RAD51D, using data from BRIDGES19. 
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Continuous Risk Factors 

The previous versions of the models included reproductive, lifestyle, hormonal and 

anthropometric RFs8 11. One limitation of these models was that the RFs needed to be coded 

as categorical variables. Some RFs are naturally continuous, requiring prior discretisation to 

a finite number of categories, resulting in some loss of information and reduction in risk 

discrimination. Here, the methodology was extended to allow the inclusion of continuous 

risk factors.  

 

The key challenge is to calculate the baseline incidences ����� in equation (1) 

(supplementary material) from the population incidence and the risk factor distributions. 

The baseline incidences are calculated sequentially for each age � (considered discrete) 

using the values at age � � 1, starting from age 0, requiring the evolution with age of the 

probability distribution of those who are disease-free 30. For discrete factors/genes, this 

involves summing over all possible categories/genotypes, but for continuous factors/genes, 

it would involve integrating over all possible values. In principle, these integrals could be 

computed (either analytically or numerically). However, at each age, the number of terms in 

the integrand increases by a factor of 2, so by age 80, there are >1024 terms, with evaluation 

becomes impracticable. Alternatively, the risk factor could be discretised into a very large 

number of categories. This would give a very close approximation to the continuous 

distribution, but (particularly once multiple risk factors are considered, as here) the large 

number of categories would also make the calculations impractical. Instead, we propose an 

alternate approach in which the continuous factors are discretised with categories adapted 

according to the observed RF. The approach is as follows: 

  

1. Firstly, discretise the range of possible risk factor values into a finite number (�) of 

bins and calculate the probability mass and RR for each bin from the probability 

density and RR function for the continuous RF. This part is identical to the standard 

approach for discretising risk factors, used in the existing models8. For a risk factor, 

�, with probability density 	��� and relative risk 

��� the probability mass for bin � 

with range �� , ��� is: 
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                                                            	��� �  � 	���
��

��

��,                                                      �2� 

and the corresponding RR is 

                                                

��� � 1
	��� � 

��� 	��� ��

��

��

.                                        �3� 

2. Create an additional �� � 1���  bin based on the individual’s measured risk factor 

value that has an infinitesimal width. The RR for this bin is taken as the RR at the 

measured value, and it has zero mass. As this bin is infinitesimal, its overlap with the 

other bins is zero, so there is no double-counting. 

 

This procedure creates a categorical risk factor with � � 1 categories, where the individual 

is assigned to the �� � 1��� category defined in step 2. This allows the exact value of the 

risk for the individual to be used, while the number of categories required to compute the 

baseline rates is fixed, limiting the computation time.  

 

The accuracy of the approximation in the procedure relies on the assumption that the range 

of values within each bin have similar RRs, which should be reflected in the choice of 

discretisation scheme and the number of bins �. These choices will depend on the shape of 

the distribution and the RR function. 

 

The above procedure can be applied to any risk factor distribution or RR function. However, 

the process assumes that an individual’s position within the distribution is fixed with respect 

to age, although the value of the risk factor and RR may vary with age. Here, the method 

was applied to height.  

 

Updates to Population Incidences 

The baseline incidences in equation (1) are birth-year and country specific as a consequence 

of using birth-year and country-specific population incidences in the constraining process. 

We refined the derivation of cohort-specific population incidences to account for variability 

in the incidences due to small numbers. In addition, we have updated existing incidences in 

the model to include more recent calendar periods and adapted the model to utilise cancer 
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incidences from four new populations: the Netherlands, France, Slovenia and Estonia. 

Details are included in the supplementary material. 

 

Results 

Rare Moderate-Risk Pathogenic Variants 

Table 1 summarises the models’ genetic parameter estimates, including those for the new 

genes. The estimated cumulative age-specific BC risks for BARD1, RAD51C and RAD51D PV 

carriers in BOADICEA and EOC risks for PALB2 carriers, assuming the UK incidences 

applicable to those born in the 1980s, are shown in figure 1. The estimated average lifetime 

BC risks for PV carriers are 24%, 22% and 21% for BARD1, RAD51C and RAD51D PV carriers, 

respectively. The estimated lifetime EOC risk for PALB2 carriers is 5.0%. Based on the 

assumed allele frequencies, 0.22% of the population carry PV in the genes BARD1, RAD51C 

or RAD51D, and these explain on average 0.31% of the female BC polygenic variance 

(averaged over all ages and cohorts, weighted by the age- and cohort-specific BC 

incidences). Approximately 0.13% of the population carry PVs in PALB2, explaining 0.16% of 

the EOC polygenic variance and 2.5% of the male BC polygenic variance.  

 

Figure 2 (a)-(f) and Supplementary Table s1 show the distributions of lifetime BC risks for 

carriers of PVs in BARD1, RAD51C and RAD51D for a female with unknown FH and a female 

whose mother is affected at age 50 based on PV carrier status alone and including QRF, MD 

and a PRS. Based solely on PV carrier status, all females with unknown FH would be 

classified as at moderate risk. When information on QRF, MD or PRS is known, there is 

significant reclassification to near-population and high-risk categories, which is greatest 

when all factors are used in combination. For example, based on lifetime BC risks and using 

the full multifactorial model incorporating QRF, MD and a PRS, 33.9% of BARD1 PV carriers 

with unknown FH would be reclassified from moderate-risk to near-population-risk, and 

21.9% would be reclassified to high-risk (Supplementary Table s1). Similarly, BARD1 PV 

carriers with an affected first-degree relative would be considered high-risk (risk of 33.7% by 

age 80) based on family history and PV status alone. Incorporating the other risk factors 

would reclassify 12% as near-population risk and 40.2% as moderate-risk (Supplementary 

Table s1).  
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Figure 2 (g) and (h) and Supplementary Table s2 show the distribution of lifetime EOC risks 

for carriers of PVs in PALB2 for a female with unknown FH and a female whose mother is 

affected at age 50, as a function of the RFs and PRS. For a PALB2 carrier with unknown FH, 

when the RFs and PRS are considered jointly, 62.4% are classified as near-population-risk, 

34.9% as moderate-risk, and 2.7% as high-risk. The corresponding proportions with an 

affected mother are 11.2%, 55.8%, and 33%, respectively. However, even among PALB2 

carriers with an affected mother, 97.5% will have risks of less than 3% by age 50 

(Supplementary Table s2).  

 

Tumour Pathology 

Figure 3 and Supplementary Tables s3 and s4 show the age-specific distributions of ER-

negative tumours and TN tumours among ER-negative tumours used in the models for 

PALB2, ATM, CHEK2, BARD1, RAD51C and RAD51D PV carriers based on the BRIDGES data19. 

BARD1, RAD51C and RAD51D PV carriers predominantly develop ER-negative BCs, and the 

proportions decrease with increasing age. On the other hand, CHEK2 and ATM carriers 

primarily develop ER-positive BCs, and the proportion of ER-positive tumours increases with 

age. Among those with ER-negative tumours, most tumours are TN for PV carriers in all 

genes, except CHEK2 carriers, in whom the majority are ER-negative but not TN.   

 

Using the updated age- and gene-specific ER-negative and TN tumour status distributions 

resulted in differences in the predicted carrier probabilities by different tumour pathology 

and age (Figure 4). For ATM, the carrier probabilities for ER-negative tumours are reduced 

relative to previous estimates, reflecting the stronger association with ER-positive disease. 

Carrier probabilities for CHEK2 now show a decline with age for ER-negative tumours 

(previously, this was only predicted for ER-positive disease). The carrier probabilities for 

PALB2 remain similar to previous estimates. For the new genes BARD1, RAD51C and 

RAD51D, the carrier probabilities are, as expected, higher for ER-negative and TN disease, 

but there is little variation by age. 
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Continuous Risk Factors 

As previously, adult female height was assumed to be normally distributed with mean 

162.81cm and standard deviation 6.452cm, and be associated a log-RR per standard 

deviation, for both breast and ovarian cancer, of 0.101308 11. We therefore discretised the 

normal distribution such that the probability masses of the bins were given by a binomial 

distribution ��� � 1, �
�
�, giving sufficient discretisation to adequately capture the tails of the 

distribution. We examined the relative discretisation error of the predicted lifetime risk as a 

function of the number of bins (Figure 5 e and f) and chose � � 5, as the lowest number of 

bins such that the root-mean-square relative error was less than 10	
. Compared to the 

discrete (five-level) RF, the variance of the RR of both BC and EOC increased from 0.002 to 

0.010 when height was included as a continuous RF. The effects on predicted lifetime risks 

are shown in Figure 5 (a)-(d). Under the continuous implementation here, the lifetime BC 

risk varied from 9.7% for the first percentile to 14.6% for the 99th, whereas under the 

previous discrete distribution, the risks range from 10.1% to 14.2%.  

 

Discussion 

This work has extended the multifactorial BOADICEA BC and EOC risk prediction models 

(BOADICEA v6 and the Ovarian Cancer Model v2), employing a synthetic approach23. The 

explicit effects of PVs in RAD51C, RAD51D, BARD1 and PALB2, which are now commonly 

included on cancer gene panels, are now included in the models. The models have also been 

extended to accommodate continuous RFs, and parameterisation of tumour pathology and 

cancer incidences have been updated with more recent data. These represent the most 

comprehensive models for BC and EOC and will allow more complete BC and EOC risk 

assessment of those undergoing gene-panel testing.   

 

By explicitly modelling the effects of PVs in the new cancer susceptibility genes, the models 

provide personalised cancer risks of PV carriers when combined with QRFs, MD and PRS. 

Although the number of women affected by these changes will be small at population level, 

for women with RAD51C, RAD51D an BARD1 PVs and their families, the updated risks will be 

clinically important. RAD51C, RAD51D and BARD1 (like ATM and CHEK2) would be classified 

as “moderate risk” BC genes based on the average risks15. However, according to the 
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BOADICEA predictions, over half (56-59%) of carriers of PVs in these genes would be 

reclassified from moderate BC risk category to either near-population-risk (34-44%) or high-

risk (15-22%), if data on the other risk factors were incorporated (Table s1). Such changes 

may have important implications for discussions around earlier or more frequent screening 

or on risk-reduction options for these women. Similarly, based on the multifactorial EOC 

model, PALB2 PV carriers without EOC family history will always have EOC risks <3% by age 

50. However, ~38% of PALB2 PV carriers will have lifetime EOC risks of >5% (Table s2), which 

may influence recommendations on the timing of risk-reducing surgery.   

 

As previously, the models assume that the effects of the PVs in the new genes interact 

multiplicatively with the PRS and the RFs. No studies have yet assessed the joint effects of 

PVs in these genes and the PRS or RFs. Previous results for CHEK2 and ATM suggest that the 

multiplicative model holds true for earlier versions of the PRS31-33. Unlike CHEK2 and ATM, 

however, the new genes predispose more strongly to ER-negative disease, and the 

combined effect may depart from the multiplicative assumption. Demonstrating this 

explicitly for the new genes will be challenging given the rarity of the mutations. The 

multiplicative model has also been shown to be reasonable for the combined effects of PRS 

and RFs34, but there is as yet no large-scale evaluation of the combined effects of PVs and 

RFs. However, recent prospective validation studies of the current and previous versions of 

the models suggest that, overall, the models fit well11[Yang et al. under review]. Should 

deviations from the multiplicative model between these PVs and RFs emerge, the model can 

be updated to take them into account.  

 

Both the BC and EOC models incorporate PVs' effects using the estimated population allele 

frequencies and RRs. These are combined with reference population incidences to calculate 

absolute risks while constraining the overall incidences over the RFs included in the model. 

Our implementation used RR and allele frequency estimates from the largest available 

studies on those of European ancestry15. These were assumed to be constant across all 

countries. Available data are currently too sparse to obtain country-specific estimates. 

Although there is no evidence that RRs vary among populations, the allele frequencies are 

likely to vary to some extent 15. This is most apparent for CHEK2, where the founder 

c.1100delC variant is common in northwest Europe and explains the majority of carriers but 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.27.22269825doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.27.22269825
http://creativecommons.org/licenses/by-nc/4.0/


 14

is rare or absent in other populations. If population-specific variants can be generated, the 

model can be easily updated to accommodate these. Nevertheless, by allowing population 

incidences to vary by country, the predicted absolute risks given by the models are country-

specific.  

 

The updated age-specific distributions of tumour ER and TN status for six of the BC 

susceptibility genes in the model (PALB2, CHEK2, ATM, BARD1, RAD51C and RAD51D) should 

allow better differentiation between PVs that may be present in a family. Since PV carrier 

probabilities are used internally in the models, these will also impact the predicted absolute 

risks for all unaffected individuals if information on tumour characteristics is available for 

affected relatives whether or not they carry a PV. 

 

We have developed a novel methodological approach for including continuous RFs into the 

models. We demonstrated this by including height in both the BC and EOC models, allowing 

for more nuanced predictions and improving the risk discrimination. While the resulting 

discrimination based on height alone is modest, the framework will allow other more 

predictive RFs to be included in the model if accurate risk estimates become available. The 

most important example is MD: continuous measures of MD, available through tools such as 

STRATUS, CUMULUS and Volpara35-37, have been shown to have stronger associations with 

BC risk than the categorical BI-RADS system. Other examples include BMI and ages at 

menarche and menopause. Further, the method could be applied to the joint distribution of 

several continuous risk factors, where the integrals in equations (2) and (3) become 

multidimensional integrals.  

 

We have further refined the method for creating cohort incidences from calendar period 

incidences (supplementary material). The approach provides incidences that are less 

sensitive to year-on-year fluctuations by averaging over all years in the birth cohort. This 

method is particularly useful for cancers with low incidences, such as EOC and male BC, 

where the population size is small, and there is no prior averaging over calendar years. The 

refinement will have little effect on incidences from larger countries. 
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Our models have certain limitations. No single dataset containing all the required 

information was available to construct the multifactorial models, so the models were 

extended via a synthetic approach. The new model parameters were taken from extensive, 

well-designed published studies together with existing parameters from model fitting9 10. 

We and others have used this approach for developing previous versions of the models8 11 12 

21 38 39, which have been shown to provide clinically valid predictions40 41. Furthermore, the 

BOADICEA model presented here, has been validated in a large independent study, and has 

been demonstrated to be well calibrated to discriminate well between affected and 

unaffected women [Yang et al, under review]. As is the case for the previous versions, the 

updates presented here are primarily based on studies of those of European ancestry in 

developed countries. There is little evidence that the RRs associated with PVs differ by 

ancestry. The PV frequencies are also broadly similar  across populations, except for specific 

founder mutations and CHEK2 PVs, which have a much higher frequency in European than 

non-European populations. However, other parameters in the model, including RF and PRS 

distributions, will differ by population, and the model will need to be adapted for use in 

non-European ancestry populations and developing countries. The synthetic approach 

presented here allows the model to be easily customised to other populations as better 

estimates become available42 43. 

 

The new model features have been built on the established and well-validated BOADICEA 

and EOC models8 11 40. The updated models will allow for more personalised risks, thus 

allowing more informed choices on screening, prevention, risk factor modification or other 

risk-reducing options. The models are available for use by healthcare professionals through 

the user-friendly CanRisk webtool (www.canrisk.org).  
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Figure Legends 
Figure 1: Predicted risk by age Vs age for a female born in 1985 with an unknown family 

history based on pathogenic variant carrier status for the new genes in the model. Figure (a) 

shows the breast cancer risk for carriers of pathogenic variants in BARD1, RAD51C and 

RAD51D along with the population risk. Figure (b) shows the ovarian cancer risk for carriers 

of pathogenic variants in PALB2 along with the population risk. Predictions are based on UK 

cancer incidences. 

 

Figure 2. Predicted lifetime cancer risks (from age 20 to 80 years) for a female born in 1985 

with a pathogenic variant in BARD1 (breast cancer risk), RAD51C (breast cancer risk), 

RAD51D (breast cancer risk), and PALB2 (ovarian cancer risk) on the basis of the different 

predictors of risk (pathogenic variant status (PV), questionnaire-based risk factors (QRFs), 

mammographic density (MD), and PRS). All figures show the probability density against the 

absolute risk. Figures (a), (c), (e) and (g) show risks for a female with unknown family 

history, while Figures (b), (d), (f) and (h) show risks where the individual’s mother has had 

cancer at age 50. The backgrounds of the graphs are shaded to indicate the risk categories. 

For breast cancer, these are the categories defined by the National Institute for Health and 

Care Excellence familial breast cancer guidelines25: 1) near-population risk shaded in pink 

(<17%), 2) moderate risk shaded in yellow (≥17% and <30%) and 3) high risk shaded in blue 

(≥30%). For ovarian cancer, the categories are: 1) near-population risk shaded in pink (<5%), 

2) moderate risk shaded in yellow (≥5% and <10%) and 3) high risk shaded in blue (≥10%). 

Predictions were based on UK cancer incidences. The line labelled population denotes the 

average population risk in the absence of knowledge of family history, pathogenic variant 

status, RFs or a PRS. 

 

Figure 3.  The tumour pathology proportions in the general population and among carriers 

of pathogenic variants (PV) in the breast cancer (BC) susceptibility genes included in the 

BOADICEA model. Figure (a) shows the proportion of oestrogen receptor-negative (ER-) 

tumours among all tumours, and Figure (b) shows the proportion of triple-negative (TN) (ER-

, progesterone receptor-negative and human epidermal growth factor receptor 2) tumours 

among ER- tumours. The general population, BRCA1 PV and BRCA2 PV values are the same 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.27.22269825doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.27.22269825
http://creativecommons.org/licenses/by-nc/4.0/


 28

as previously used in the model12, while those for the other genes are updated using recent 

BRIDGES data19.  

 

Figure 4: The probabilities of carrying a pathogenic variant estimated by BOADICEA in the 

genes PALB2, CHEK2, ATM, BARD1, RAD51C and RAD51D for an affected female born in 

1985 as a function of her age at diagnosis based on different tumour pathology. Figures (a), 

(c), (e) and (g) show the probabilities based on the updated proportions, while figures (b), 

(d), (f) and (h) are based on the previous proportions and where proportions for BARD1, 

RAD51C and RAD51D, which were not in the previous model, are assumed to be the same as 

in the general population. In figures (a) and (b), the female has had an oestrogen receptor-

positive (ER+) tumour; in figures (c) and (d), the female has had an oestrogen receptor-

negative (ER-) tumour, but the triple-negative (TN) status is unknown; in figures (e) and (f), 

the female has had an ER- tumour that is not TN and in figures (g) and (h), the female has 

had a TN tumour. Predictions are based on UK cancer incidences. 

 

Figure 5. Predicted lifetime breast and ovarian cancer risks as a function of height for a 

female born in 1985 with unknown family history, comparing the updated model, where 

height is treated as continuous, to the previous model, where height was treated as 

categorical. Figures (a), (c) and (e) show breast cancer, while Figures (b), (d) and (f) show 

ovarian cancer risks. Figures (a) and (b) show the predicted risk as a function of height, while 

Figures (c) and (d) show the probability density/mass of risk as a function of height. 

Predictions are based on UK cancer incidences. Figures (e) and (f) show the log (base 10) of 

the root-mean-squared relative discretisation error as a function of the number of bins. The 

error was taken to be the absolute difference between the value and the asymptotic 

extrapolation of the measurements as a function of the number of bins. The average is 

taken over 100 heights that are spaced 1% apart, from 0.5% to 99.5%. 
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Table 1. The parameters used to include the effects of rare high- and intermediate-risk pathogenic variants in the models. 

 

“Allele Freq” is the pathogenic variant allele frequency in the general population, SS is the screening sensitivity, RR is the relative risk, relative 

to the general population and EOC is epithelial tubo-ovarian cancer. The BOADICEA model includes the effects of BRCA1, BRCA2, PALB2, 

CHEK2, ATM, BARD1, RAD51C and RAD51D, while the EOC Model includes the effects of BRCA1, BRCA2, RAD51D, RAD51C, BRIP1 and PALB2. 

The updated parameters are the allele frequencies for PALB2, CHEK2, ATM, RAD51C, RAD51D, BRAD1 and BRIP1
15

, the SS for pathogenic 

GENE 

ALLELE  

FREQ SS 

RR OF FEMALE  

BREAST CANCER (95% CI) 

RR OF 

EOC (95% CI) 

RR OF MALE 

BREAST CANCER (95% CI) 

RR OF 

PROSTATE  

CANCER 

RR OF 

PANCREATIC 

CANCER (95% CI) 

BRCA1 

BOADICEA 

0.0006394 

 

EOC Model 

0.0007947  

0.89 

1 age � 20

exp
3.0146 � 0.02412 � age� 20 � age � 29

exp
6.0707 � 0.07775 � age� 30 � age � 39

exp
4.2511 � 0.03226 � age� 40 � age � 49

exp
4.2086 � 0.03141 � age� 50 � age � 79

 

1 age � 30

exp
�3.55 � 0.1986 � age�    30 � age � 39

exp
7.1776 � 0.06959 � age� 40 � age � 49

exp
4.5236 � 0.01651 � age� 50 � age � 79

 8 
1.82 age � 65

0.84 age � 65
 

3.10 age � 65

1.54 age � 65
 

BRCA2 

BOADICEA 

0.00102  

 

EOC Model 

0.002576 

0.96 

1 age � 20

exp
3.2153 � 0.008815 � age� 20 � age � 29

exp
4.28945 � 0.04462 � age� 30 � age � 39

exp
3.96865 � 0.0366 � age�   40 � age � 49

exp
1.8169 � 0.006435 � age� 50 � age � 59

exp
�0.2606 � 0.04106 � age� 60 � age � 69

13.0991 70 � age � 79

 

1 age � 40

exp
�9.708 � 0.2427 � age�    40 � age � 53

exp
6.50334 � 0.05751 � age� 54 � age � 57

exp
17.41836 � 0.2457 � age� 58 � age � 69

1.5921 70 � age � 79

 80 
7.33 age � 65

3.39 age � 65
 

5.54 age � 65

1.61 age � 65
 

PALB2 0.00064 0.92 

1 age � 20

9.1 20 � age � 24

8.97 25 � age � 29

8.85 30 � age � 34

8.54 35 � age � 39

8.02 40 � age � 44

7.31 45 � age � 49

6.55 50 � age � 54

5.92 55 � age � 59

5.45 60 � age � 64

5.10 65 � age � 69

4.82 70 � age � 74

4.56 75 � age � 79

 
1 age � 30

2.91 
1.40 � 6.04� age � 30
 

1 age � 30

7.34 
1.28 � 42.18� age � 30
 1 

1 age � 30

2.37 
1.24 � 4.50� age � 30
 

CHEK2 0.00373 0.98 
1 age � 20

exp
�1.605325 � 0.0148367 � age� age � 20
 1 1 1 1 

ATM 0.0018 0.94 2.10 
1.17 � 2.57� 1 1 1 1 

BARD1 0.00043 0.89 2.09 
1.35 � 3.23� 1 1 1 1 

RAD51C 0.00035 0.78 1.97 
1.48 � 2.62� 

1 age � 30

exp
�1.7974 � 0.07631 � age� 30 � age � 60

exp
9.7592 � 0.1163 � age�      age � 60

 1 1 1 

RAD51D 0.00035 0.86 1.82 
1.34 � 2.47� 

1 age � 30

exp
�2.88662 � 0.09656 � age� 30 � age � 58

exp
5.99144 � 0.05651 � age�   age � 58

 1 1 1 

BRIP1 0.00071 0.95 1 3.41 
2.12 � 5.54� 1 1 1 
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variants in for all genes 
15

, the RR for female breast cancer for ATM, BARD1, RAD51C and RAD51D 
15 24

, and the EOC, male breast cancer and 

the pancreatic cancer RRs for PALB2
17

. All other parameters are as previously published
8-10 21 44

. 
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