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ABSTRACT 51 

 Substance use disorders (SUDs) incur serious social and personal costs.  Risk for SUDs 52 

is complex, ranging from social conditions to individual genetic variation. We examined whether 53 

models that include a clinical/environmental risk index (CERI) and polygenic scores (PGS) are 54 

able to identify individuals at increased risk of SUD in young adulthood across four longitudinal 55 

cohorts for a combined sample of N = 15,134. Our analyses included participants of European 56 

(NEUR = 12,659) and African (NAFR = 2,475) ancestries. SUD outcomes included: 1) alcohol 57 

dependence, 2) nicotine dependence; 3) drug dependence, and 4) any substance dependence. 58 

In the models containing the PGS and CERI, the CERI was associated with all three outcomes 59 

(ORs = 1.37 – 1.67). PGS for problematic alcohol use, externalizing, and smoking quantity were 60 

associated with alcohol dependence, drug dependence, and nicotine dependence, respectively 61 

(OR = 1.11 – 1.33). PGS for problematic alcohol use and externalizing were also associated 62 

with any substance dependence (ORs = 1.09 – 1.18). The full model explained 6% - 13% of the 63 

variance in SUDs. Those in the top 10% of CERI and PGS had relative risk ratios of 3.86 - 8.04 64 

for each SUD relative to the bottom 90%. Overall, the combined measures of clinical, 65 

environmental, and genetic risk demonstrated modest ability to distinguish between affected 66 

and unaffected individuals in young adulthood. PGS were significant but added little in addition 67 

to the clinical/environmental risk index. Results from our analysis demonstrate there is still 68 

considerable work to be done before tools such as these are ready for clinical applications. 69 
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INTRODUCTION 70 

Substance use disorders (SUDs) are associated with substantial costs to affected 71 

individuals, their families, and society. An estimated 107107,000 Americans died as the result of 72 

an overdose in 2021 1. In 2016, alcohol use contributed 4.2% to the global disease burden and 73 

other drug use contributed 1.3% 2. Excessive alcohol use and illicit drug use cost the United 74 

States an annual $250 billion 3 and $190 billion 4 respectively. Given the substantial human and 75 

economic costs of substance misuse and disorders, understanding the combined impact of 76 

important risk factors across multiple levels of analysis has important public health implications.  77 

Substance use disorders are complex phenomena, and the development of substance 78 

related problems can be attributed to factors ranging from broader social and economic 79 

conditions to individual genetic variation 5–10. Prior research using a multifactorial index of 80 

clinical and environmental risk factors (e.g., childhood disadvantage, family history of SUD, 81 

childhood conduct problems, childhood depression, early exposure to substances, frequent use 82 

during adolescence) found it useful in identifying those with persistent SUDs 11.  83 

More recently, polygenic scores (PGS), which aggregate risk for a trait across the 84 

genome using information from genome-wide association studies (GWAS), were robustly 85 

associated with substance use 12 and substance related problems 13 across adolescence and 86 

into young adulthood. However, though robustly associated, current PGS do poorly in identifying 87 

individuals affected by SUDs 14. To date, there is limited work on the combined impact of 88 

genetic, environmental, and clinical risk factors for SUDs. Prior work combining individual 89 

genetic variants and clinical features outperformed clinical features alone 15, but individual 90 

variants have limited predictive power. In other medical conditions, such as melanoma 16 or 91 

ischemic stroke 17, combining clinical and genetic risk factors showed improvement predicting 92 

risk for a specific outcome over models using individual risk factors.  93 
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In the current study, we examine the joint association of early life clinical/environmental 94 

risk factors and PGS with SUDs in early adulthood across four longitudinal cohorts: the National 95 

Longitudinal Study of Adolescent to Adult Health (Add Health); the Avon Longitudinal Study of 96 

Parents and Children (ALSPAC); the Collaborative Study on the Genetics of Alcoholism 97 

(COGA); and the youngest cohort of the Finnish Twin Cohort Study (FinnTwin12). These 98 

samples include population-based cohorts from three countries (United States, England, and 99 

Finland) and a predominantly high-risk sample. Two of the samples (COGA and Add Health) are 100 

ancestrally diverse. We focus on early adulthood as this is a critical period for the development 101 

and onset of SUDs 18. Our research questions are guided by the understanding that risk factors 102 

for SUDs range across multiple levels of analysis.  103 

METHODS 104 

Samples 105 

Add Health is a nationally representative longitudinal study of adolescents followed into 106 

adulthood in the United States 19. Data have been collected from Wave I when respondents 107 

were between 11-18 (1994-1995) to Wave V (2016-2018) when respondents were 35-42. The 108 

current analysis uses data from Waves I, II, and Wave IV.  109 

ALSPAC is an ongoing, longitudinal population-based study of a birth cohort in the 110 

(former) Avon district of Southwest England 20–23. Pregnant female residents with an expected 111 

date of delivery between April 1, 1991 and December 31, 1992 were invited to participate (N = 112 

14,541 pregnant women, 80% of those eligible). This analysis uses data up to the age 24 113 

assessment (details of all the data that is available through a searchable, web-based tool: 114 

http://www.bristol.ac.uk/alspac/researchers/our-data/).  115 

COGA is a family-based sample consisting of alcohol dependent individuals (identified 116 

through treatment centers across the United States), their extended families, and community 117 
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controls (N ~16,000) 24,25. We use a prospective sample of offspring of the original COGA 118 

participants (baseline ages 12-22, N = 3,573) that have been assessed biennially since 119 

recruitment (2004-2019) 26.   120 

FinnTwin12 is a population-based study of Finnish twins born 1983–1987 identified 121 

through Finland’s Central Population Registry. A total of 2,705 families (87% of all identified) 122 

returned the initial family questionnaire late in the year in which twins reached age 11 27. Twins 123 

were invited to participate in follow-up surveys when they were ages 14, 17, and approximately 124 

22.  125 

Each cohort includes a wide range of social, behavioral, and phenotypic data measured 126 

across the life course. The SUD measures were derived from the corresponding young adult 127 

phases of data collection in each cohort (mean ages ~ 22 - 28). A full description of each 128 

sample is presented in the supplementary information (section 2). 129 

Measures 130 

Lifetime Diagnosis of Substance Use Disorder  131 

We constructed measures of lifetime SUD diagnosis based on the data that were 132 

available in each of the samples, defined as meeting criteria for four, non-mutually exclusive 133 

categories of substance dependence: 1) alcohol dependence; 2) nicotine dependence; 3) drug 134 

dependence (inclusive of drugs such as cannabis, cocaine, opioids, sedatives, etc.); and 4) any 135 

substance dependence (alcohol, nicotine, or drug). Our analyses focused primarily on DSM-IV 136 

as this diagnostic system was most consistently used across all samples. There was one 137 

exception: in each of the samples, nicotine dependence was measured using a cutoff of 7 or 138 

higher on the Fagerstrom Test for Nicotine Dependence (FTND)28. Where possible, we drew 139 

measures of substance dependence from data collected during young adulthood to try and 140 

maintain temporal ordering between SUD diagnoses and measured risk factors. 141 
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Clinical/Environmental Risk Index 142 

We created a clinical/environmental risk index (CERI) considering a variety of 143 

established risk factors for SUD (Table 1). The CERI included ten validated early life risk factors 144 

associated with later development of SUDs, including: low childhood socioeconomic status 145 

(SES), family history of SUD, early initiation of substance use, childhood internalizing problems, 146 

childhood externalizing problems, frequent drinking in adolescence, frequent smoking in 147 

adolescence, frequent cannabis use in adolescence, peer substance use, and exposure to 148 

trauma/traumatic experiences11,29,30. We dichotomized each risk factor (present vs not present) 149 

and summed them into an index for each person ranging from 0 to 10, providing a single 150 

measure of aggregate risk. Dichotomizing these items allowed us to harmonize measures 151 

across each sample in an interpretable manner. A full list of how each measure is defined within 152 

each of the samples is available in the supplementary information (section 3). 153 

Polygenic Scores 154 

We constructed polygenic scores (PGS), which are aggregate measures of the number 155 

of risk alleles individuals carry weighted by effect sizes from GWAS summary statistics, from six 156 

recent GWAS of SUDs and comorbid conditions including: 1) externalizing problems (EXT) 31; 2) 157 

major depressive disorder (MDD) 32; 3) problematic alcohol use 33 (ALCP); 4) alcohol 158 

consumption (drinks per week, ALCC) 34,35; 5) cigarettes per day/FTND (CPD) 34,36; and 6) 159 

schizophrenia (SCZ) 37,38 . We focused on these PGS, specifically, because: 1) SUDs show 160 

strong genetic overlap with other externalizing39–41, internalizing 32,42, and psychotic disorders 161 

33,43,44; 2) both shared and substance-specific genetic risk are associated with later SUDs 45–47; 162 

and 3) substance use and SUDs have only partial genetic overlap 48,49. Therefore, our PGS 163 

cover a spectrum of genetic risk for SUDs, using the most current and well-powered results for 164 

each of the listed domains (see supplementary information section 4 for a detailed description). 165 
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GWAS have been overwhelmingly limited to individuals of European ancestries 50,51. 166 

Importantly, PGS  derived from GWAS of one ancestry do not always transport into other 167 

ancestral populations 52,53. We therefore used PRS-CSx 54, a new method that combines 168 

information from well-powered GWAS (typically of European ancestries) and ancestrally 169 

matched GWAS to improve the predictive power of PGS in the African ancestry samples from 170 

Add Health and COGA. PRS-CSx integrates GWAS summary statistics across multiple input 171 

populations and employs a Bayesian approach to correct GWAS summary statistics for the non-172 

independence of SNPs in linkage disequilibrium (LD) with one another54. For participants of 173 

European ancestries, we used the EUR derived PRS-CSx results, while we used the EUR+AFR 174 

meta-analyzed results for the African ancestry participants. See the supplementary information 175 

(section 5) for details. 176 

Analytic Strategy 177 

We pooled all the data for analysis using a fixed effects integrative data analytic (IDA) 178 

approach 55. The IDA approach is more powerful than traditional meta-analyses when one has 179 

access to raw data for each of the contributing samples. Our approach to harmonization and 180 

pooling was as follows. First, we defined the measures and cutoffs to be used in each of the 181 

samples, creating the CERI, PGS, and SUD outcomes at the cohort level. Second, within each 182 

cohort, we regressed each PGS on age, age2, sex, sex*age, sex*age2, and the first 10 ancestral 183 

PCs (specific to each sample) to account for population stratification in the PGS. Next, we 184 

pooled all the data for analysis. We included cohort as a fixed effect for each of the six cohorts 185 

(4 samples, of which two were split by ancestry) in subsequent analyses. Additionally, we 186 

included age of last observation and sex as covariates.  187 

We estimated a series of nested logistic regression models with the pooled data: 1) a 188 

baseline model (sex, age, and cohort), 2) a genetic risk model (baseline + PGS), 3) a 189 
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clinical/environmental risk model (baseline + CERI), and 4) a combined risk model (baseline + 190 

PGS + CERI). Because COGA and FT12 included a large number of related individuals, we 191 

adjusted for familial clustering using cluster-robust standard errors 56. To assess the predictive 192 

accuracy of each model, we took the difference in pseudo-R2 (ΔPseudo-R2) 57, between the 193 

baseline and corresponding models. Finally, we calculated the discriminatory power of the 194 

combined model using the area under the curve (AUC) from a receiver operating characteristic 195 

(ROC) curve. To ensure the robustness of our results, we included a variety of checks to ensure 196 

that no single cohort in the IDA was unduly influencing the results. Our analytic strategy was 197 

preregistered on the Open Science Framework (https://osf.io/etbw8). Deviations from the 198 

preregistration are described in the supplementary information (section 6).  199 

RESULTS 200 

Table 2 contains the descriptive statistics for each of the cohorts and ancestries. Each 201 

cohort had similar proportions of females (~51% - 56%). The mean ages ranged from ~22 to 202 

~29 years of age. The COGA cohorts (both European and African ancestries) reported the 203 

highest rates of SUD, an expected finding given the nature of the sample (highly selected for 204 

SUDs). Add Health participants generally had higher rates of SUD than ALSPAC or FinnTwin12, 205 

but lower than COGA. Finally, ALSPAC and FinnTwin12 reported similar levels of alcohol, 206 

nicotine, drug, and any substance dependence. COGA participants reported higher mean 207 

values on the CERI. The remaining cohorts report relatively similar rates of risk factor exposure.  208 

Table 3 presents the results from the PGS only, CERI only, and combined models for 209 

each outcome. Three of the six PGS were associated with the SUD outcomes in the PGS only 210 

model. EXT was associated with each of the SUD outcomes (EXT OR = 1.18 – 1.50); ALCP 211 

was associated with alcohol dependence and any substance dependence (ALCP OR = 1.10 – 212 

1.13); and CPD was associated with nicotine dependence (CPD OR = 1.33). In the CERI only 213 
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models, the CERI was consistently associated across each of the SUD categories (ORs = 1.37 214 

– 1.67). When we combined the PGS and CERI into the same model, the CERI remained 215 

significant across SUDs and was largely unchanged (ORs = 1.35 – 1.65). EXT remained 216 

associated with drug dependence (OR = 1.11) and nicotine dependence (OR = 1.33), ALCP 217 

remained associated alcohol dependence (OR = 1.12), and CPD remained associated with 218 

nicotine dependence (OR = 1.31). Both EXT and ALCP remained associated with any 219 

substance dependence diagnosis (ORs = 1.09 – 1.18). Overall, the combined model explained 220 

5.9%, 12.6%, 13.1%, and 12.8% of the variance in alcohol dependence, nicotine dependence, 221 

drug dependence, and any substance dependence, respectively.  222 

Figure 1 (Panel A) presents the raw prevalence for each outcome across counts of the 223 

CERI. The proportion of those meeting criteria for SUDs among those reporting 3 or more, 5 or 224 

more, and 7 or more risk factors surpassed lifetime prevalence estimates from nationally 225 

representative samples for drug dependence, alcohol dependence, and nicotine dependence, 226 

respectively 58. Panel B depicts the prevalence of each category of SUD across several mutually 227 

exclusive categories: 1) those in the bottom 90% of both the CERI and all PGS (averaged 228 

across the six scores); 2) those in the top 10% of the CERI but the bottom 90% of the PGS 229 

distribution; 3) those in the top 10% of the PGS distribution and the bottom 90% of the CERI; 230 

and 4) those in the top 10% of both PGS and the CERI. There is an increase in risk across 231 

those with elevated genetic risk, clinical/environmental risk, and both. Those in the top 10% of 232 

both PGS and CERI had the highest prevalence of each of the SUDs, though the error bars 233 

overlap with the estimates from those in the top 10% of the risk index, alone. Compared to 234 

those in the bottom 90% on both, those in the to the top 10% of both have a relative risk of 3.86 235 

(95% CI = 3.20, 4.65) for alcohol dependence, 6.11 (95% CI = 4.84, 7.72) for nicotine 236 

dependence, 8.04 (95% CI = 6.92, 9.36) for drug dependence, and 4.05 (95% CI = 3.64, 4.51) 237 

for any substance dependence. 238 
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Finally, we considered the AUC for the combined model for each of the SUD categories. 239 

Figure 2 presents the ROC curves for the full (CERI and PGS) and baseline (covariates only) 240 

models for each SUD category. The AUC for each combined model was 0.74 for alcohol 241 

dependence, 0.82 for nicotine dependence, 0.86 for drug dependence, and 0.78 for any 242 

substance dependence. The overall change in AUC (from the baseline to the full model) that we 243 

achieve when adding the CERI and PGS was modest (ΔAUC = 0.05 – 0.10), and this 244 

improvement was due in large part to the explanatory power of the CERI. ROC curves for the 245 

CERI only and PGS only models are presented in Supplemental Figure 6. 246 

Sensitivity Analyses 247 

Lastly, we performed a variety of sensitivity analyses, including: 1) a leave-one-out 248 

(LOO) analysis; 2) a sex-stratified analysis, and 3) ancestry-specific analysis. The results from 249 

the LOO and sex-stratified analyses were largely similar to those from the main results. Results 250 

in the European ancestry cohorts mirrored the main results, with the exception that the CPD 251 

PGS was associated with “any substance dependence”. None of the PGS w associated with 252 

SUDs in the African ancestry cohorts, but the effect sizes for the CERI were largely similar 253 

across European and Africa ancestries (see Supplemental Tables S1-S3).  254 

 We also tested for interactions between the PGS and CERI and cohort (Add Health 255 

EUR as the reference group). There were few significant interactions and no consistent patterns 256 

in variation for PGS, though the CERI did show considerable variation across cohort 257 

(Supplemental Table S4). Finally, we fit complimentary models using a random effects 258 

approach, allowing the slopes for the PGS and CERI to vary randomly across cohort. Random 259 

slopes for PGS did not consistently improve model fit, though a random slope for the CERI 260 

consistently improved model fit (Supplemental Table S5). We compared the parameter 261 
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estimates from the random effect models to the main analyses and results were largely 262 

consistent (Supplemental Table S6).  263 

DISCUSSION 264 

 Substance use disorders remain a serious threat to public health 59. In the current 265 

analysis, we examined the combination of clinical, environmental, and genetic risk factors for 266 

determining who is more likely to develop a SUD in early adulthood. We used previously 267 

validated measures of environmental and clinical risk 11,29,30 and polygenic scores for 268 

externalizing problems 31, major depressive disorder 32, problematic alcohol use 33,35, alcohol 269 

consumption 34,35, cigarettes per day/nicotine dependence 34,36,  and schizophrenia 37,38. The 270 

combination of genetic and social-environmental measures was significantly associated with the 271 

development of SUDs. The overall association was strongest for drug dependence, followed by 272 

any substance dependence, nicotine dependence, and alcohol dependence. 273 

The CERI was the strongest association with each outcome. The proportion of those 274 

meeting criteria for each SUD surpassed lifetime estimates in persons with 3 or more, 5 or 275 

more, and 7 or more risk factors for drug dependence, alcohol dependence, and nicotine 276 

dependence, respectively. The discriminatory power of the combined model (AUC = .74 - .86) 277 

was similar to AUC estimates published in the original paper from which many of the risk index 278 

items were derived (AUC ~ 0.80) 11. Interestingly, this risk index was originally developed for 279 

identifying persons with persistent SUD through early mid-life (~age 40). In the current analysis 280 

we demonstrated that the CERI in conjunction with demographic covariates and PGS does 281 

equally well for those who meet criteria for any SUD by young adulthood.  282 

 The overall predictive power of the PGS alone was in the range of 1.1 – 3.7%. Only the 283 

PGS for externalizing problems, problematic alcohol use, and cigarettes per day were 284 

consistently associated with SUD outcomes. The PGS for externalizing problems was 285 
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associated with drug dependence and nicotine dependence, the PGS for problematic alcohol 286 

use PGS was associated with alcohol dependence, and both were associated with any 287 

substance dependence. The PGS for cigarettes per day was only associated with nicotine 288 

dependence. Overall, these results support prior evidence that genetic risk for SUDs consists of 289 

a both shared and substance-specific variance 31,41,47.  290 

 Interestingly, even though the effect sizes were attenuated in the model, the PGS for 291 

externalizing problems, problematic alcohol use, and cigarettes per day remained significantly 292 

associated when we included the CERI, though the additional information the PGS provided 293 

was minimal. Since the CERI also included many of the phenotypes each of the PGS measured 294 

(e.g., childhood conduct disorder for externalizing, childhood depression for major depressive 295 

disorder; and frequent alcohol use for alcohol consumption), part of this attenuation is likely due 296 

to the inclusion of the actual phenotypes through which risk for some of these disorders is 297 

expressed. PGS are also confounded by environmental variance 59 and the reduction in effect 298 

sizes could be accounting for some of that confounding. PGS may add information beyond well-299 

known risk factors, which could prove useful when information on certain exposures or 300 

behaviors is unavailable.  301 

Further refinement of risk measures may improve our ability to develop screening 302 

protocols for those at greater risk of developing substance-related problems. Early detection has 303 

the potential to improve prevention efforts, as prior work suggests that those at highest risk of 304 

substance misuse stand to benefit the most from prevention efforts 60. Ideally, screening tools 305 

for SUD risk would include measures of social, clinical, and genetic risk factors, as each impacts 306 

the development of SUDs 5–7,61,62. In the push for precision medicine, very often the focus is on 307 

biological information, but social determinants of health are also critically important.  308 

Currently, these tools are not ready for clinical use. If we reach the point where social, 309 

clinical, and genetic information become sufficiently powerful, we must recognize that identifying 310 

persons for early intervention carries a significant risk. Screening for social determinants has the 311 
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potential for unintended consequences, including further stigmatization 63. Genetic information 312 

has even more potential for abuse and stigmatization. Policy makers must ensure that there is 313 

comprehensive legal protection against discrimination using any form of information. 314 

Additionally, any attempt to use social, clinical, or genetic information for targeted intervention or 315 

identification in a clinical setting must be done so in a patient-centered approach, rather than 316 

any “one-size fits all” that exclude patients from their own healthcare decisions 64. 317 

Our analysis has several important limitations. First, although we included individuals of 318 

diverse ancestries, the PGS for our samples of African ancestries were severely underpowered  319 

due to the small size of the discovery sample. Large-scale GWAS in diverse cohorts are vital to 320 

ensuring that any benefit of precision medicine is shared equitably across the population 65. 321 

Second, while distinct, ancestry is related to race-ethnicity, and with it, racism and racial 322 

discrimination, some of the most profound social determinants of health66. Our measure of 323 

environmental risk may not fully capture risk factors that contribute to SUDs in populations 324 

beyond non-Hispanic whites. Future studies should include racially relevant measures of risk 325 

(e.g., experiences of interpersonal racism/discrimination, racial residential segregation) as well 326 

as other social and environmental measures that are known risk factors for SUDs (e.g., 327 

neighborhood social conditions, alcohol outlet density). Further refinement of known risk factors 328 

may allow for better prediction of those at risk of developing an SUD. Finally, while we tried to 329 

ensure time order between risk factors and onset of disorder, some risk factors (particularly 330 

adolescent substance use) could have occurred concurrently with diagnosis. Future work in 331 

samples with risk factors measured before the initiation of substance use (such as the 332 

Adolescent Brain Cognitive Development Study) will be important for replication efforts. 333 

Recognizing that multiple social, clinical, and genetic factors contribute to risk for SUDs 334 

is important as we move towards the goal precision medicine that benefits all segments of the 335 

population. There is still much work to be done before tools such as these are useful in a clinical 336 

setting. However, the results of this integrative data analysis provide initial evidence these risk 337 
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factors contribute unique information to SUDs in early adulthood. Expanding our sources of 338 

information (such as electronic health records, census data from home of record) and making 339 

use of increasingly well-powered PGS will continue to improve our ability to identify those who 340 

have the greatest risk of developing SUDs. 341 
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Table 1: Items included in the Clinical/Environmental Risk Index (CERI) 

Measure Definition 
1) Low childhood SES  Parent(s) report having less than basic level of education [culturally 

dependent]; having a low-skill or menial occupation; income at or 
below the poverty line; or receipt of government assistance. 
 
 

2) Family history of SUD Biological parent self-reports history of SUD for themselves or other 
biological parent or meets criteria for SUD from clinical 
interview/AUDIT threshold of 8 or higher. 
 
 

3) Childhood externalizing 
problems 

Respondent meets criteria for conduct disorder or oppositional 
defiant disorder from a clinical interview or computer-based 
prediction; or has a behavior problems score at or above the 90th 
percentile at 15 or younger. 
 
 

4) Childhood internalizing 
problems 

Respondent reports diagnosis of depression/anxiety or panic 
disorder; meets criteria for internalizing disorder in clinical 
interview/computer-based prediction; or has a CES-D score above a 
threshold of 16 at 15 or younger. 
 
 

5) Early initiation of 
substance use 

Respondent reports age of first whole alcoholic drink, smoked whole 
cigarette, or tried cannabis before the age of 15. 
 
 

6) Adolescent alcohol use Frequency of self-reported use 5 or more days per week at age 18 
and below. 
 
 

7) Adolescent tobacco use Frequency of self-reported use at daily use at age 18 and below. 
 
 

8) Adolescent cannabis 
use 

Frequency of self-reported use 5 or more days per week at age 18 
and below. 
 
 

9) Peer substance use Respondent reports the majority of their best friends use 
alcohol/tobacco/cannabis; their three best friends smoke daily/drink 
once a month/use cannabis once a month; or more than one friend 
smokes/drinks alcohol/has tried other drugs. 
 
 

10) Traumatic events Respondent reports exposure to any traumatic event. 
Full description of sample specific definitions available in the supplementary information.  587 
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Table 2: Prevalence of SUDs and CERI by Cohort 

 Add Health Add Health ALSPAC COGA COGA FinnTwin12 

 AFR EUR EUR AFR EUR EUR 

 (N = 1,605)* (N = 4,855)* (N = 4,733)* (N = 870)* (N = 1,878)* (N = 1,193)* 

       

 Mean (SD)/% Mean (SD)/% Mean (SD)/% Mean (SD)/% Mean (SD)/% Mean (SD)/% 
Female 55.26% - 53.59% - 56.71% - 51.38% - 51.33% - 53.73% - 

Age (at last observation) 28.89 (1.69) 28.84 (1.70) 22.47 (2.20) 24.13 (5.12) 24.24 (5.26) 22.44 (0.72) 

 
            

Alcohol dependence 3.93% - 12.75% - 5.92% - 11.49% - 21.14% - 8.55% - 

Nicotine dependence 2.74% - 10.28% - 1.54% - 3.91% - 7.83% - 2.26% - 

Drug dependence 6.73% - 10.79% - 0.78% - 26.44% - 23.59% - 1.34% - 

Any substance dependence† 11.21% - 25.81% - 8.87% - 30.69% - 34.66% - 10.98% - 

 
            

CERI 1.95 (1.48) 2.07 (1.65) 2.08 (1.19) 3.98 (2.24) 3.65 (2.38) 2.62 (1.27) 

* Available samples with genotypic, phenotypic, and environmental risk data 588 
† Any substance dependence includes those who meet criteria for alcohol, nicotine, or drug dependence. 589 
AFR = African ancestries; EUR = European ancestries; CERI = clinical/environmental risk index 590 
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Table 3: Estimates for PGS Only, CERI Only, and Combined Models 
              
  Alcohol  

Dependence 
Nicotine  

Dependence 
Drug  

Dependence 
Any substance 

dependence 
              
  OR 95%  CI OR 95%  CI OR 95%  CI OR 95%  CI 
              

PGS Only Model* 

ALCC PGS 1.05 (0.99, 1.11) 0.96 (0.89, 1.04) 1.05 (0.98, 1.12) 1.00 (0.96, 1.05) 
ALCP PGS 1.13 (1.06, 1.20) 1.01 (0.93, 1.10) 1.07 (1.00, 1.15) 1.10 (1.05, 1.16) 

EXT PGS 1.18 (1.11, 1.26) 1.50 (1.38, 1.63) 1.27 (1.19, 1.36) 1.31 (1.25, 1.38) 
MDD PGS 1.00 (0.94, 1.06) 1.06 (0.98, 1.15) 1.08 (1.02, 1.15) 1.02 (0.98, 1.07) 
SCZ PGS 1.04 (0.97, 1.10) 0.98 (0.90, 1.06) 1.03 (0.96, 1.11) 1.00 (0.96, 1.05) 
CPD PGS 1.00 (0.94, 1.06) 1.33 (1.24, 1.43) 1.01 (0.95, 1.08) 1.08 (1.03, 1.13) 

                 
ΔPseudo-R2   0.011    0.037   0.014    0.022  
              
              
CERI Only Model* CERI 1.37 (1.33, 1.41) 1.63 (1.57, 1.70) 1.67 (1.61, 1.72) 1.58 (1.54, 1.63) 
              
ΔPseudo-R2   0.054   0.107   0.129   0.120  
              

  
         

   
              

Combined Model* 

CERI 1.35 (1.31, 1.40) 1.58 (1.52, 1.65) 1.65 (1.59, 1.70) 1.55 (1.51, 1.60) 
ALCC PGS 1.04 (0.97, 1.10) 0.94 (0.87, 1.03) 1.03 (0.96, 1.11) 0.99 (0.94, 1.04) 
ALCP PGS 1.12 (1.05, 1.19) 0.99 (0.91, 1.08) 1.06 (0.98, 1.14) 1.09 (1.04, 1.15) 

EXT PGS 1.08 (1.01, 1.15) 1.33 (1.22, 1.45) 1.11 (1.03, 1.20) 1.18 (1.12, 1.24) 
MDD PGS 0.97 (0.91, 1.03) 1.02 (0.94, 1.10) 1.03 (0.96, 1.10) 0.98 (0.93, 1.03) 
SCZ PGS 1.03 (0.97, 1.10) 0.96 (0.88, 1.05) 1.01 (0.94, 1.08) 1.00 (0.95, 1.05) 
CPD PGS 0.98 (0.92, 1.04) 1.31 (1.22, 1.42) 0.98 (0.92, 1.04) 1.06 (1.01, 1.11) 

                
ΔPseudo-R2   0.059    0.126   0.131    0.128  
              
* All models included age, sex, and cohort as covariates. See Supplemental Table 7 for all parameter estimates. PGS residualized on age, sex, and first 10 ancestral principal 
components. 
Bolded estimates = p < .05 after correction for multiple testing (p < .05/4 = 0.0125) 
ΔPseudeo-R2 denotes pseudo-R2 above model including age, sex, and cohort. CI = confidence interval; PGS = polygenic score; CERI = clinical/environmental risk index 
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FIGURE CAPTIONS 591 

Figure 1: SUD Prevalence Across Genetic and Environmental Risk Factors 592 

Panel A: Prevalence (and 95% confidence intervals) of those who meet criteria for alcohol, 593 

nicotine, drug, or any substance dependence across counts for items in the risk index. Panel B: 594 

Prevalence (and 95% confidence intervals) of those who meet criteria for alcohol, nicotine, drug, 595 

or any substance dependence across four categories: 1) those below the 90th percentile for all 596 

PGS and the CERI; 2) those at or above the 90th percentile for the CERI; 3) those at or above 597 

the 90th percentile for all PGS; and 4) those at or above the 90th percentile for both the CERI 598 

and PGS. PGS and risk index were first residualized on sex, age, age2, cohort, sex*age, 599 

sex*age2, sex*cohort, cohort*age, cohort*age2, sex*cohort*age, and sex*cohort*age2. Dotted 600 

colored lines represent corresponding lifetime prevalence estimates for alcohol dependence 601 

(red), nicotine dependence (green), drug dependence (blue), and any substance use disorder 602 

(purple) from nationally representative data 58. 603 

 604 

Figure 2: ROC Curves for Combined and Baseline Models 605 

Receiver operating characteristic (ROC) curves for baseline models (red line, covariates only) 606 

and the full models (blue line, PGS + CERI + covariates) for each substance use disorder. Area 607 

under the curve (AUC) is presented for the PGS model in each cell. Change in AUC represents 608 

value of the difference between AUC from the full model and AUC from the base model. 609 
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