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Measuring blood pressure during pregnancy is an essential
component of antenatal care, and is critical for detecting ad-
verse conditions such as pre-eclampsia. The standard approach
for measuring blood pressure is via manual auscultation by a
trained expert or via an oscillometric self-inflating cuff. While
both methods can provide reasonably accurate blood pressure
measurements when used correctly, non-expert use can lead to
significant error. Moreover, such techniques are uncomfortable
and can cause bruising, pain and consequential resistance to
use / low compliance. In this work, we propose a low-cost one-
dimensional Doppler-based method for the detection of hyper-
tension in pregnancy.

Using a sample of 653 pregnant women of Mayan descent
in highland Guatemala, we recorded up to 10 minutes of 1D
Doppler data of the fetus, and blood pressure from both arms
using an Omron M7 oscillometric cuff. A hierarchical LSTM
network with attention mechanism was trained to classify hy-
pertension in pregnancy, producing an area under the receiver-
operator curve of 0.94. A projection of the data into lower di-
mensions indicates hypertensive cases are located at the periph-
ery of the distribution of the output of the distribution.

This work presents the first demonstration that blood pres-
sure can be measured using Doppler (without occlusion) and
may lead to a novel class of blood pressure monitors which allow
rapid blood pressure estimation from multiple body locations.
Moreover, the association of the predictor with the fetal blood
flow indicates that hypertension in the mother has a significant
effect on the fetal blood flow.

Hypertension | pre-eclampsia | Fetal Cardiac Signal | Edge Computing |
Doppler Ultrasound Signal | Sequence Learning | Contrastive Learning
Correspondence: gari@gatech.edu

Introduction
Hypertension is the most common medical complication en-
countered during pregnancy,y where 10% of women experi-
ence blood pressure above normal during pregnancy. Pre-
eclampsia is characterized by high blood pressure and is
a major cause of maternal and perinatal morbidity mortal-
ity that complicates 2% to 8% of pregnancies (1, 2). Pre-
eclampsia is a pathological condition in pregnancy initiated
by abnormal uteroplacental hemodynamics (3). Placenta-
tion abnormalities lead to the symptomatic stage, wherein
the pregnant woman develops hypertension, defined as at
least two repeated blood pressure measurements greater than
or equal to 140 mmHg systolic blood pressure (SBP) or 90
mmHg diastolic blood pressure (DBP) (4).

One important aspect of diagnosing and managing hyper-
tension in pregnancy is early identification of pregnancies at
high-risk of early-onset pre-eclampsia and undertaking the
necessary measures to improve placentation and reduce the
prevalence of the disease (5). Adverse outcomes related to
hypertensive disorders of pregnancy can affect both mother
and fetus in long- and short-term. The adverse effects are
associated with placental abruption, preterm delivery, fetal
growth restriction, stillbirth, maternal death secondary to
stroke and eclampsia, as well as future risk of hypertension,
diabetes mellitus, and cardiovascular disease in the mother
(6, 7). This highlights the importance of accurate monitor-
ing of blood pressure during antenatal care and motivates us
to design the study on the detection of hypertension in preg-
nancy.

Both Fetal heart rate variability (FHRV) and fetal ECG
morphology have been shown to be diagnostic biomarkers
for mild and severe pre-eclampsia. Yum et al. (8) conducted
the study on the instability and frequency-domain variabil-
ity of fetal heart rate in three study groups of control, severe
pre-eclampsia and severe pre-eclampsia affected by intrauter-
ine growth restriction (IUGR) all underwent routine follow-
ups at Samsung Medical Center. Results demonstrated that
low- and high-frequency power were significantly higher in
the group not affected by IUGR when compared to the con-
trol group. However, in the group affected by IUGR, low-
frequency power was significantly lower and high-frequency
power was not significantly different in comparison to the
control group. Another study was presented by Lakhno on
the effect of pre-eclampsia on FHRV (9). In this study, the
modulated fetal CTG variables captured the suppression of
fetal biophysical activity and the development of fetal dis-
tress in severe pre-eclampsia. In addition to the impact of
pre-eclampsia on FHRV indices, Lakhno studied changes in
fetal ECG morphology. The presented results revealed that
FHRV metrics were directly related to the severity degree
of pre-eclampsia. Also in pre-eclampsia cases shortening of
PQ and QT and increased T/QRS ratio were observed (10).
In addition, alterations in resistance and flow could lead to
a chamber remodeling during early development. Aye et
al. (11) performed a study on prenatal and postnatal car-
diac development in fetuses born to either pre-eclampsia or
gestational hypertension. This study demonstrated that term-
born infants from hypertensive pregnancies had persistently
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smaller right ventricular end-diastolic volumes. At 3 months
of postnatal life, infants born to hypertensive pregnancies
also showed subtle changes in left ventricular mass. These
findings were similar to those presented by Timpka et al. (12)
which showed that fetuses born to pre-eclamptic pregnancies
and gestational hypertension had greater left ventricular rela-
tive wall thickness, with smaller left ventricular end-diastolic
volumes.

One non-invasive method for capturing fetal cardiac activ-
ity is a one-dimensional Doppler ultrasound (1D-DUS) with
the advantage of providing a low-cost and simple method for
fetal heart rate monitoring. The Doppler transducer transmits
and receives ultrasound waves, which reflect the fetal car-
diac activity. Using the 1D-DUS signal, blood flow, cardiac
wall and valve motions can be captured, and they are differ-
entiable based on their different velocities. Figure 1 shows
the simultaneous ECG and 1D-DUS signal. A review of us-
ing 1D-DUS to assess vascular changes in pre-eclampsia in-
dicates the effectiveness of deriving discriminating parame-
ters from this data to diagnose pregnancy complications (13).
Also, there are multiple parameters derivable from the 1D-
DUS signals which are related to placental perfusion, includ-
ing resistance index, pulsatility index, or systolic/diastolic ra-
tio from uterine artery (14, 15), fetal heart rate responses and
uteroplacental flows (16). Due to the advantages of 1D-DUS
in both the recording technique and assessment of fetal well-
being, we designed a predictive model using fetal 1D-DUS
recordings to detect hypertension.
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Time (s)

Fig. 1. Fetal Doppler ultrasound and simultaneously recorded fetal electrocardio-
gram: (top) fetal ECG signal and (bottom) fetal Doppler signal.

Recent advances in deep learning, especially recurrent
neural network (RNN) (17) and long short-term memory
(LSTM) (18) models provide useful insights on how to tackle
the problems relating to sequence modeling, time series clas-
sification and prediction. LSTM have been broadly applied to
time series data analysis due to its capability in processing of
long sequences of data. Given that we have a sequential data,
it is natural to consider the use of a recurrent neural network
to keep track of the variability and temporal dependency. At-
tention mechanisms have been shown to be effective in im-
proving the performance of sequence learning models by at-
tending to every hidden state and then making predictions af-
ter deciding which one is more informative (19, 20). Various

studies showed the effect of using appropriate loss function
in model performance. The contrastive loss has been shown
to perform well in self-supervised algorithms. The super-
vised contrastive learning approach presented by Kholsa et
al. (21) is based on pulling the normalized embeddings from
the same class closer together than embeddings from differ-
ent classes, which leads to achieving discriminative features
with smaller inter-class variability (21, 22). Our intent in this
study is to discover the relation between fetal cardiac activ-
ity and maternal blood pressure to detect hypertensive cases.
The approach taken to the blood pressure estimation used in
this work is based upon a hierarchical attention network (23),
which is a stable and powerful method for extracting features
from sequential data and learn short- and long-range dynam-
ics. This approach is used to model time dependencies in fe-
tal 1D-DUS signal and capture the variability of the cardiac
activity. In addition, multiple steps were taken to deal with
the non-uniform distribution of blood pressure levels and in
particular, the under-representation of hypertensive subjects.
The following sections detail the approach to dealing with
these problems, with a focus on identifying hypertension in
pregnancy.

Methods
Data Sources. In this work, we used 1D-DUS recordings
from 653 pregnant women (736 visits) at 5 to 9 months
of gestation plus contemporaneous blood pressure measure-
ments from the Guatemala RCT Database, which were col-
lected as part of a randomized control trial, conducted in ru-
ral highland Guatemala in the vicinity of Tecpan, Chimal-
tenango (24, 25). The study focused on the impact of a
mHealth decision support system to improve the continuum
of care for indigenous women of the target region. It was
approved by the Institutional Review Boards of Emory Uni-
versity, the Wuqu’ Kawoq | Maya Health Alliance, and Agnes
Scott College (Ref: IRB00076231 - ‘Mobile Health Interven-
tion to Improve Perinatal Continuum of Care in Guatemala’)
and registered as a clinical trial (ClinicalTrials.gov identi-
fier NCT02348840). This data set includes 1D-DUS sig-
nals, recorded by traditional birth attendants (TBAs), who
were trained to use the hand-held 1D-DUS device. Imme-
diately before recording the 1D-DUS signals, the TBA also
entered the gestational age in months and the maternal heart
rate, and captured maternal blood pressure by photograph-
ing the screen of a self-inflating blood pressure device. The
blood pressure monitor device used was an Omron M7 (Om-
ron Co., Kyoto, Japan), which has been validated in a pre-
eclampsic population (26). The blood pressure values were
extracted from the images, and the transcription method was
designed to automatically detect the LCD in the photo and
extract the SBP and DBP values (27). The 1D-DUS device
was an AngelSounds Fetal 1D-DUS JPD-100s (Jumper Med-
ical Co., Ltd., Shenzhen, China) with an ultrasound trans-
mission frequency of 3.3 MHz. Data were captured at 44.1
kHz, using a Samsung S2, S3 mini or S4 mini and stored
as uncompressed WAV files at 7056 Kb/s (16 bits). All data
were captured using the same mobile application designed to
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record the 1D-DUS. Figure 3-a illustrates the devices used in
this study.

Blood pressure was recorded in a supine position which is
slightly lower than blood pressure in a sitting position. The
BP difference by body position is estimated as mean SBP
difference=4.02 mmHg and DBP=2.97 mmHg (28). Figure 2
shows the joint distribution of the average left-right arms SBP
and DBP after adjustment for supine position. In this dataset,
there are 3 severe hypertensive cases (SBP>160 or DBP>110
mmHg) and 7 mild/moderate hypertensive cases (SBP 140-
160 or DBP 90-110 mmHg) recordings. And, table 1 shows
the mean and standard deviation of recorded blood pressure
based on gestational age.

Fig. 2. Joint distribution of average left-right arm SBP and DBP of all patients after
adjustment for supine position used in this work. Observations with SBP greater
than or equal to 140 mmHg or DBP 90 mmHg were considered as hypertensive
cases.

Table 1. Mean and standard deviation of blood pressure (mmHg) in gestational
ages 5 to 9 months in the dataset.

Gestational age 5 6 7 8 9
meanSBP 99.6 99.4 101.5 103.1 109.3

stdSBP 8.0 6.9 8.7 9.0 13.5
meanDBP 60.1 60.1 62.9 62.4 69.5

stdDBP 7.6 6.5 5.9 7.3 9.7

Overview of algorithms. Our method for detecting hyper-
tension in pregnancy from fetal 1D-DUS signals is struc-
turally similar to that used in (23). In order to improve the
representation learning, we used the training approach pre-
sented by Khosla et al. (21). Given the input signal, the
sequence of scalogram images were generated, then the hier-
archical attention network was used to encode the sequence
and obtain the normalized embedding. The representation
was further propagated through a projection network that is
discarded in inference time. The encoder and projection net-
works were trained by using a contrastive loss function. The
weights of the encoder network was then freezed and used
on top of the classification network to classify hypertension.
Figure 3-(b,c) illustrates the overview of the model and the
training process.

Supervised Contrastive learning. The idea of supervised
contrastive learning is to teach the network to learn how to
map the normalized encoding of samples belonging to the
same category closer and the samples belonging to the other
classes farther. In the deep sequence classification models,
the network converts the signals into a representation and
then uses these representations to classify the signals. So
forming the representation using the contrastive learning ap-
proach leads to having better performance in the classifica-
tion stage. The components of the approach used in this study
are as follows:

• Sequence Encoder, Enc(.). The Enc(.) network con-
sists of two levels of LSTM structure. Processing in
LSTM is realized by three key gate units: input gate,
output gate, and forget gate, which are used for imple-
menting information protection and control. In order to
process the 1D-DUS signal, two-step sequence model-
ing was leveraged. The attention network in both steps
can assign larger weight to the most important sections
of the input data regarding the objective of the prob-
lem. The Enc(.) network, maps input x to a repre-
sentation vector r ∈ RDE . r is normalized to the unit
hypersphere in RDE .

• Projection Network, Proj(.). The projection network
is a multi-layer perceptron and maps r to a vector
z = Proj(r) ∈ RDP . The output was again normal-
ized to lie on the unit hypersphere, which enables using
an inner product to measure distances in the projection
space (stage 1 of training).

• Classifier Network, Classifier(.). The classifier net-
work is also a multi-layer perceptron. In stage 2 of
training process, the embeddings from the Enc(.) net-
work is fed to the classifier network and cross-Entropy
loss is used to optimize the parameters.

Experimental set-up
1D-DUS signal processing. Given the nature of the phys-
iological time-series, 1D-DUS signals are likely to be cor-
rupted with internal and external interference such as respi-
ration, movement, and environmental noise. In this work,
a second-order band-pass Butterworth filter was used to re-
duce the noise. By observing the frequency components of
the 1D-DUS signals, the cut-off frequencies were set to 25
and 600 Hz, corresponding to cardiac oscillations. In addi-
tion, the signal quality assessment method presented in (29)
was used before processing to exclude low quality record-
ings. After the quality assessment, each 5 minutes recording
was devided into 3.75 seconds and the scalogram was gener-
ated using 50 ms Hanning window for better representation
of the signal in time and frequency.

Network implementation. The sequence encoder network
(Enc(.)) gets the scalogram of the signal and consists of
three layers of 2-D convolutional neural network (kernel
size=(3,3)). Each layer is followed by batch normalization,
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Fig. 3. An overview of the proposed process for training a deep sequence learning model to detect high maternal blood pressure from abdominal Doppler acquired during
routine fetal monitoring. a) Data sources. The 1D ultrasound is captured by a cellphone in rural communities by a TBA using Doppler transducer. The blood pressure is
captured using an oscillometric cuff device and the result is recorded on the phone via. photograph taken by the TBA. The DUS and photo are uploaded to AWS and the
image is transcribed into a BP reading. b) The scalogram of 1D-DUS is calculated and fed to hierarchical attention network. c) The mapping is learnt through two step
training process including stage 1, representation learning by updating weights of encoder using contrastive loss and stage 2, freezing the encoder and training the classifier
to estimate the probability of hypertension (P (H)).

rectified linear (ReLU) units, and max pooling units. Then
the extracted feature was fed to the first step of sequence
encoder networks which consist of LSTM networks with 50
units. The projection network proj(.) is one dense layer with
32 units and the classification layers includes dropout layer
and dense layer with 32 units. For the representation learn-
ing step, the contrastive learning loss function and for the
classification part, the cross-Entropy loss function was used.
Mini batch stochastic gradient descentt (SGD) was leveraged
to optimaze the parameters of the network. The proposed
method is implemented in tensorflow 2.0 and Python3.

Evaluation metrics. The network was trained and tested us-
ing five minutes 1D-DUS recordings. To evaluate the model
performance, confusion matrix, Receiver operating charac-
teristic (ROC) and area under ROC curve (AUC) were pro-
vided. The mapping of data in two dimensional space is also
provided to show the performance of encoder network.

Results
Classification results. Figure 4 shows the performance of
the classification model on randomly sampled test data. This
resulted to 180 true negative, 1 false positive, 2 true positive
and 2 false negative.

Regression results. We also tested the performance of the
model on blood pressure estimation. Therefore, after the rep-
resentation learning the output of the encoder network was

Fig. 4. Result of classification of normotensive and hypertensive pregnancies. a)
Receiver operating characteristic and b)confusion matrix.

used to train the regression model. Figure 5 shows the result
of SBP estimation from 5 minutes 1D-DUS signals.

Qualitative results. Figure 6 shows the sample test data in
two-dimensional space. In order to visualize the data in lower
space, t-Distributed Stochastic Neighbor Embedding (tSNE)
method was applied on the output of proj(.) layer. The map-
ping presented in here indicates hypertensive cases are lo-
cated at the periphery of the distribution. The data embed-
ding is provided for the set of train and test data (figure 6).

Note that the small number of hypertensive examples
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Fig. 5. Blood pressure estimation from 5 minutes Doppler signals.
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Fig. 6. Training data (a) and Test data (b) represented in a two dimensional space.
The dimension was reduced to two by applying the tSNE method on the output of
the projection layer. Note that the data associated with the hypertensive patients
are located at the extremes.

leads to a slight overfitting, although clearly the hypertensive
events are still located at one extreme of the projected distri-
bution. We can therefore infer that the model can learn the
discriminative features in the training phase, and the overfit-
ing can likely be mitigated by adding more samples of high
blood pressure cases.

Discussion

The results presented here demonstrate that the classifica-
tion accuracy and representation learning respectively pro-
vide sufficiently accurate hypertension detection. We note
several minor limitations of the current study. First, there
were relatively few hypertensive subjects in our cohort (3 se-
vere hypertension and 7 hypertension in totall of 736 visits)
and the subjects were all single race (Native Central Amer-
ican of Mayan origin from rural highland Guatemala). Al-
though this is initially a strength, and helps reduce variables
associated with race and environment, it prevents a defini-
tive claim that this would extend to other races and settings.
Never-the-less, we see no principled reason that the approach
would not extend beyond the population studied (and indeed,
the medical community has used blood pressure monitors
largely developed on mostly Caucasian cohorts for decades
without significant objections from the regulatory authorities
or medical community.) As we continue to collect data, we
will continue to expand the cohort for a range of diverse con-
ditions, blood pressure ranges and populations.

It is important to note that blood pressure has been es-
timated from Doppler before. However, when measuring
blood pressure with a Doppler, the principle is to occlude ar-
terial blood flow by inflating a cuff and then deflating it until
the flow goes back to normal. When the pressure in the cuff is
just below the systolic blood pressure, blood flow can pass the
cuff and is detected by the Doppler probe. This ‘sphygmo-
manometry’ approach requires significant additional equip-
ment and is much less pleasant for the patient. Moreover, it
cannot be easily integrated into the routine monitoring pro-
cess for ultrasound screening of fetuses.

The presented model for hypertension detection is based
on the processing of fetal cardiac activity, therefore, it is im-
portant to consider the effect of hypertension on fetus and
possible cases of IUGR. In this study, clinical labels of pre-
eclampsia and IUGR conditions were not availabe for use. As
it has been shown in figure 7 high maternal blood pressure are
associated with both low and normal birth weights.

Finally, it is important to note that all ultrasound data
recorded in this study was not recorded at a specific site, but
rather was placed such that a fetal heart beat could be heard.
Therefore, the analysis presented here has uncovered changes
in the fetal Doppler signal that are related to maternal blood
flow. This may be due to the relationship between the fetal
and maternal cardiovascular systems, or may be due to some
other maternal blood flow component interposed between the
sensor and the fetus.
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Fig. 7. Association of maternal blood pressure and birth weight. Normal Birth
Weight is defined by setting weight threshold to 2.64 kg for male newborns, and for
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based on last menstrual period (LMP) in month.

Conclusion

This work presents a novel approach to hypertension detec-
tion in pregnancy using a low-cost one-dimensional Doppler
probe. To our knowledge, this is the first demonstration of
blood pressure estimation from a 1D Doppler device without
the need for arterial occlusion / sphygmomanometry. More-
over, since an end-to-end deep learning approach is used, no
preprocessing is required to perform the analysis. We demon-
strate the utility in a population of 653 pregnant women, with
blood pressures in the range of 71 to 169 mmHg SBP and
41 to 110 mmHg DBP, indicating that hypertension is pre-
dictable. Interestingly, we noticed differences based on ges-
tational age, which we have also shown can be evaluated from
the Doppler device used in this study(31). A dual age-blood
pressure prediction therefore can improve performance, and
provide a more useful diagnostic.

Notably, we identified this Doppler-hypertension relation-
ship from blood flow on the fetal side of the placenta, indi-
cating that fetal blood flow is significantly affected by high
maternal blood pressure. Earlier work on statistical and fluid
dynamic models has indicated that there is likely to be a re-
lationship (32–34), and in particular, pathological Doppler
velocimetry of the uterine and uteroplacental circulation is
a predictor of proteinuric pregnancy-induced hypertension,
IUGR and other events in high-risk pregnancies (35–37).
Nevertheless, no direct connection between fetal blood pres-
sure and maternal hypertension has been reported in humans
before.

The ability to detect hypertensive disorders in pregnancy

is particularly important, with few validated devices on the
market (26). We note that 1D Doppler recordings are routine
in pregnancy, and can be performed at home by the mother
or a community healthcare worker (as we demonstrated in
(38) using a device that retails at USD$17). By adding this
functionality to existing Doppler devices, it presents minimal
additional burden and cost to screening and provides the op-
portunity to identify pre-eclampsia and other hypertension-
related disorders during pregnancy and beyond. Only a few
seconds of data are required to make an estimate, and esti-
mates can be made on both the fetus and the mother, provid-
ing the opportunity to examine blood flow patters around the
body in a short period of time.

Moreover, the developed algorithm could run on relatively
low cost hardware (such as the Coral TPU), the approach de-
scribed in this work could be easily implemented in a large
range of mHealth and portable devices, leading to rapid and
low cost scaling of the technology.
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