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Abstract  

Visual shape completion is a canonical perceptual organization process that integrates 

spatially distributed edge information into unified representations of objects.  People with 

schizophrenia show difficulty in discriminating completed shapes but the brain networks and 

functional connections underlying this perceptual difference remain poorly understood.  Also 

unclear is whether similar neural differences arise in bipolar disorder or vary across the schizo-

bipolar spectrum.  To address these topics, we scanned (fMRI) people with schizophrenia, 

bipolar disorder, or no psychiatric illness during rest and during a task in which they 

discriminated configurations that formed or failed to form completed shapes (illusory and 

fragmented condition, respectively).  Multivariate pattern differences were identified on the 

cortical surface using 360 predefined parcels and 12 functional networks composed of such 

parcels.  Brain activity flow mapping was used to evaluate the likely involvement of resting-

state connections for shape completion.  Illusory/fragmented task activation differences 

(“modulations”) in the dorsal attention network (DAN) could distinguish people with 

schizophrenia (AUCs>.85) and could trans-diagnostically predict cognitive disorganization 

severity.  Activity flow over functional connections from the DAN could predict secondary visual 

network modulations in each group, except among those with schizophrenia.  The secondary 

visual network was strongly and similarly modulated in each subject group. Task modulations 

were dispersed over a larger number of networks in patients compared to controls.  In 

summary, abnormal DAN activity emerges during perceptual organization in schizophrenia and 

may be related to improper attention-related feedback into secondary visual areas.  Patients 

with either disorder may compensate for abnormal perception by relying upon non-visual 

networks. 

 

Keywords: dorsal attention network, resting-state functional connectivity, Kanizsa shapes, 

subjective contours  
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1. Introduction  

Schizophrenia (SZ) is a debilitating disorder charactered by delusions, hallucinations, 

disorganized thought and a decline in social/occupational functioning.  The disorder also 

adversely impacts aspects of visual perceptual organization (Silverstein and Keane, 2011) 

and, in particular, visual shape completion, which builds shape representations from co-aligned 

step-edge elements (Keane et al., 2019).  Why might this be?  The question is important, first, 

because shape completion plays an absolutely fundamental role for normal seeing (Keane, 

2018), recovering object shape, size, and number within camouflaged or cluttered distal 

environments.  Understanding subtle impairments in shape completion and related perceptual 

organization processes (Silverstein and Keane, 2011) could help us understand, for example, 

why individuals with the disorder have uncomfortable sensations of sensory flooding (Bunney 

et al., 1999) or why they have poorer overall day-to-day visual functioning (Shoham et al., 

2020).  Another reason to investigate the brain-basis of shape completion in schizophrenia is 

that the underlying mechanisms are already partly understood.  Extensive investigations in 

human and non-human primates using single-unit recording, TMS, EEG, and fMRI, have all 

shown that shape completion relies upon a mid-level visual regions such as lateral occipital 

cortex and V4, as well recursive interactions with V1 and V2 (Cox et al., 2013; Murray et al., 

2006).  A recent brain network analysis, described further below, has additionally revealed that 

shape completion activates a sparse but densely interconnected coalition of regions that is 

seated in the secondary visual network and that incorporates pieces of at least four other 

networks (Keane et al., 2021a).  Patient neuroimaging findings can thus be situated within this 

existing literature. 

We postulate on the basis of past work that SZ patients form illusory contours at initial 

stages of processing but do not properly use such contours at later, conceptual stages. As 

evidence, in a visual evoked potential study, when participants discriminated configurations 

that formed or failed to form illusory shapes, there was an intact illusory contour formation 

waveform over lateral occipital regions at 106-194 ms post-stimulus onset (see also, Wynn et 

al., 2015) and an increased, possibly compensatory, “closure negativity” waveform across 

frontal regions at 240-400 ms.  In a methodologically similar EEG study, when subjects 

discriminated illusory square from non-illusory (fragmented) stimuli, SZ patients exhibited a 

unique response-locked high-gamma oscillation—with a fronto-temporal topography—at a 
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relatively late processing stage (100 ms before button-press) (Spencer and Ghorashi, 2014).   

In a psychophysical study, schizophrenia patients reacted normally to distractor lines placed 

near illusory contours, suggesting intact illusory contour formation, but were overall poor at 

discriminating illusory shapes, suggesting a lessened ability to notice and use contours (Keane 

et al., 2021b; 2014).  In a non-clinical psychophysical study, when certain participants were 

cognitively biased through instructional templates and verbal instructions to see the inducing 

pac-man edges as disconnected, these individuals performed as if they had schizophrenia; 

that is, they normally reacted to distractor lines, normally discriminated non-illusory stimuli 

(which fail to form illusory contours), but poorly discriminated illusory shapes (Keane et al., 

2012).  The foregoing results, taken together, suggest that patients’ visual networks may 

operate relatively normally during shape completion but that higher-order cognitive networks 

may not.  A purpose of the present investigation is to verify this assertion with functional MRI.     

A second goal was to consider the neural basis of shape completion in bipolar disorder.  

Bipolar disorder was considered, first, because it offers an important foil for schizophrenia.  

Over 40% of bipolar disorder patients take anti-psychotic medications (Rhee et al., 2020), over 

half report at least one lifetime psychotic symptom (Dunayevich and Keck, 2000), both are 

associated with chronic medical problems and past substance abuse history (Cassidy et al., 

2001; Dixon, 1999), and there is genetic overlap between the two (Lichtenstein et al., 2009).  

Therefore, establishing group differences would more convincingly demonstrate specificity to 

schizophrenia.  Moreover, understanding visual disturbances in bipolar disorder is important in 

its own right.  Despite being twice as prevalent as schizophrenia (American Psychiatric 

Association, 2013), a PubMed title/abstract search yielded 5% as much literature on “visual 

perception” (Search date: October 27th, 2021).  We had no hypotheses regarding which 

networks would be affected, given the dearth of data on the subject. 

A third goal was to move beyond the traditional DSM-5 nosology and to probe for neural 

signatures that might be shared between disorders or that might depend on factors that cut 

across the schizo-bipolar spectrum (Kozak and Cuthbert, 2016).  Based on past work, we 

expected to find neural signatures linked to cognitive disorganization, a cardinal symptom of 

schizophrenia (Keane et al., 2019; Spencer and Ghorashi, 2014; Spencer et al., 2004).  This 

link was expected to emerge within a brain network that was differentially modulated in 

schizophrenia. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 28, 2022. ; https://doi.org/10.1101/2022.01.26.22269913doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.26.22269913
http://creativecommons.org/licenses/by-nc-nd/4.0/


ABNORMAL BRAIN NETWORKS OF PERCEPTUAL ORGANIZATION  

  

 

A final and more exploratory question pertained to the extent to which top-down 

feedback might influence activity in the secondary visual network during shape completion, 

given the critical role of this network for shape completion (Keane et al., 2021a).  We have 

provided evidence that—in healthy controls—the dorsal attention network (DAN) plausibly acts 

as a bridge to the secondary visual network and we have supported this claim with a “brain 

activity flow” modeling procedure (“ActFlow”) in which task activations and resting-state 

functional connections from the DAN could be used to model task activations in the secondary 

visual network (Cole et al., 2016; Keane et al., 2021a). There are reasons to think that such 

feedback should be weak in schizophrenia.  For example, dynamic causal modelling has 

shown that—during a depth inversion illusion task—SZ patients exhibited poor top-down 

feedback from the intraparietal sulcus (in the dorsal attention network) to the lateral occipital 

cortex (Dima et al., 2010) but normal feedforward activity between the same regions.  Other 

studies have shown intact subliminal processing of masked words or digits, indicating that 

much of bottom-up processing may be preserved (Berkovitch et al., 2017).   If top-down 

feedback is indeed impaired in schizophrenia, then the above-described modeling effort should 

not be successful in schizophrenia patients. 

To consider the above questions, we scanned 16 schizophrenia (SZ) participants and 

15 people with bipolar disorder (BP) during rest and during a task in which they discriminated 

pac-man configurations that either formed or failed to form visually completed shapes (illusory 

and fragmented condition, respectively) (Ringach and Shapley, 1996).  These results were 

compared to healthy control data (n=20) that were already reported in an earlier study (Keane 

et al., 2021a).  Our sample sizes were obviously not large.  However, because our analyses 

were conducted on networks rather than individual regions, we were able to bypass massive 

multiple comparison correction and pool over functionally related cortical areas to magnify any 

possible group effects (Cremers et al., 2017; Ji et al., 2019; Noble et al., 2021).  Similar to past 

studies, shape completion was operationalized as the difference in performance or activation 

between the illusory/fragmented conditions (Keane et al., 2021a; 2019).  This so-called 

“fat/thin” task was chosen because it has been used extensively to investigate shape 

completion via psychophysics, fMRI, EEG, and TMS (Maertens and Pollmann, 2005; Murray et 

al., 2006; Pillow and Rubin, 2002; Wokke et al., 2013) and because it has also been used to 

demonstrate shape completion deficits in past behavioral work in schizophrenia (Keane et al., 
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2019).  The resting-state scan data allowed us to compute the resting-state functional 

connectivity (RSFC) matrix between all pairs of regions, which in turn allowed us to model top-

down feedback into the secondary visual network. 

The above-stated hypotheses were tested in five steps.  First, in each group, we divided 

the parcels into 12 functional networks (Ji et al., 2019) and quantified each network’s 

contribution to shape completion by applying MVPA to parcel-wise illusory and fragmented 

task activations.  The networks that were of special interest were those traditionally associated 

with cognitive control (frontoparietal, dorsal attention, default mode, cingulo-opercular) and 

visual perceptual organization (secondary visual network).  In the next step, for each pair of 

subject groups, we identified the networks that were differentially modulated by applying MVPA 

to parcel-wise task activation differences (illusory-fragmented).  Third, we employed cross-

validation and permutation testing to consider whether task activation differences within the 

DAN (whose relevance was established in steps 1 and 2) could predict cognitive 

disorganization severity.  In a fourth preparatory step described in the Supplementary Material, 

we computed the resting-state functional connectomes (RSFC matrices) and demonstrated the 

likely utility of these functional connections for shape completion via ActFlow.  Finally, again 

using ActFlow, we determined which network contained the most informative resting-state 

connections for inferring differential task activity in the secondary visual network (whose 

relevance was established in Step 1).  Brain activity flow mapping allowed us to determine 

whether the DAN (and other networks) could model activity in the secondary visual network in 

each group, which in turn provided clues on how the groups might differ on top-down 

modulation during shape completion.   

   

2. Materials and Methods 

2.1. Participants.  The sample consisted of 20 healthy controls (HCs), 15 people with bipolar 

disorder (BPs; type I, type II, and 1 unspecified), and 16 people with schizophrenia including 

one with schizoaffective disorder (SZs; See Table 1).  The control data were separately 

published to establish the normal brain network mechanisms of shape completion and to set 

the stage for patient comparisons (Keane et al., 2021a).  One control and one bipolar 

participant lacked resting-state data but were still included in the task analyses.  Patients were 

recruited from the Newark and Piscataway outpatient and partial hospital clinics at Rutgers 
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University Behavioral Health Care (with one exception being a schizophrenia patient from the 

Nathan Kline Institute in Orangeburg NY).  Controls were recruited from the same metropolitan 

areas. To prevent exaggerated group differences in IQ and education, controls without four-

year college degrees were preferentially recruited. As can be seen from Table 1, groups did 

not differ on age, education (self/parental), smoking habits, handedness or gender; the patient 

groups did not differ on illness duration, olanzapine/imipramine equivalents or 

current/premorbid functioning. 

 

Table 1. Demographic and clinical characteristics of participants 

  HC (n=20) BP (n=15) SZ (n=16) 
Group   
comp. Pairwise        

comparisons 
(uncorrected) 

Variable 

Mean 
or 

Percent SD 

Mean 
or 

Percent SD 

Mean 
or 

Percent SD p 
Age (yrs.) 37.6 11.2 39.7 8.6 40.3 7.6 .660   
Education,            

parental average 
(yrs.) 

12.8 2.7 13.5 2.1 13.0 4.1 .812   

Education, self (yrs.) 14.9 2.6 14.6 1.7 13.0 3.4 .105   

FSIQ (Shipley-2) 100.5 9.9 105.7 5.8 95.6 14.4 .040 SZ<BP* 

Gender (% Male) 60   33   69   .118   

Handedness  
(% Right) 80   87   88   .515   

Smoking habits  
(% smokers) 17   43   47   .137  

Nicotine dependence 
(FTND scores) 21.3 5.5 19.7 7.5 20.1 7.8 .95  

Antipsychotic Type: 
typical/atypical/both 

(%) 
  0/100/0   14/79/7   .262   

Olanzapine equiv. 
(mg/day)   6.4 10.6 14.1 14.5 .103   

Imipramine equiv. 
(mg/day)   41.7 69.9 31.9 71.8 .703 

  

Lithium equiv. 
 (mg/day)   803.9 654.8 216.9 412.3 .005   

Functioning, current 
(SLOF)   4.1 .6 4.1 .5 .736   

Functioning, 
premorbid (PAS)   0.22 0.10 0.28 0.18 .294   
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Illness duration (yrs.)   20.0 10.9 15.7 9.3 .249   
Illness onset age 

(yrs.)   19.6 9.5 22.3 9.2 .458   
CDSS, total   6.9 6.3 4.7 3.6 .250   

Schizo-Bipolar Scale, 
total   1.7 1.8 7.6 1.5 

<.001 
  

YMRS, total   2.9 2.6 9.1 6.6 .002   
PANSS, positive   1.4 0.6 2.8 1.1 <.001   
PANSS, negative   1.6 0.7 1.8 0.6 .318   

PANSS, disorganized   1.8 0.4 2.3 0.8 .045   
PANSS, excitement   1.7 0.5 1.8 0.5 .498   
PANSS, depression   3.5 1.5 3.2 1.1 .586   

PANSS, total   1.7 0.4 2.2 0.4 .001   
Note.  FSIQ = Full-Scale IQ. SLOF = Specific Levels of Functioning Scale mean score per 
scorable item (1-5, with 5 being highest functioning).  FTND =Faegerstrom Test of Nicotine 
Dependence, which were only reported for subjects who smoked. Antipsychotic type pertains 
only to those who were using antipsychotics.  PAS = Premorbid Adjustment Scale, averaged 
across age period (with higher scores denoting more dysfunction). CDSS = Calgary 
Depression Scale for Schizophrenia. YMRS = Young Mania Rating Scale. PANSS = Positive 
and Negative Syndrome Scale mean score per item.  Interval/ordinal variables were compared 
with ANOVAs/t-tests.  Frequency statistics (e.g., handedness, gender) were measured with 
Chi-square or Fisher’s exact test (i.e., on 2x2 tables).  *p<.05 uncorrected. 

 

The inclusion/exclusion criteria for all subjects were: (1) age 21-55; (2) no 

electroconvulsive therapy in the past 8 weeks; (3) no neurological or pervasive developmental 

disorders; (4) no recent substance use disorder (i.e., participants must not have satisfied more 

than one of the 11 Criterion A symptoms of DSM-5 substance use disorder in the last three 

months); (5) no positive urine toxicology screen or breathalyzer test on any day of testing, 

including THC; (6) no brain injury due to accident or illness (e.g., stroke or brain tumor) and no 

accompanying loss of consciousness for more than 10 minutes; (7) no amblyopia (as 

assessed by informal observation and self-report); (8) visual acuity of 20/32 or better (with 

corrective lenses if necessary); (9) the ability to understand English and provide written 

informed consent; (10) no scanner related contraindications (no claustrophobia, an ability to fit 

within the scanner bed, and no non-removable ferromagnetic material on or within the body); 

11) no intellectual impairment (IQ<70) as assessed with brief vocabulary test (Shipley-2; see 

below).  Additional criteria for controls were: (1) no DSM-5 diagnosis of past or current 

psychotic or mood disorders (including past mood episode); (2) no current psychotropic- or 

cognition-enhancing medication; (3) no first-degree relative with schizophrenia, schizoaffective, 
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or bipolar disorder (as indicated by self-report).  Additional criteria for patients were: (1) a 

DSM-5 diagnosis of schizophrenia, schizoaffective (depressive subtype), or bipolar disorder.  

Patients could not be in a manic state at the time of testing. 

 The participants in our study—while less numerous—were well-vetted and highly 

functioning, with few comorbidities.  Of the consented HCs, 6 met DSM-5 criteria for an 

undisclosed past or current mood disorder (typically major depressive disorder), 1 could not 

reach a visual acuity of 20/32, 1 had amblyopia, 1 had scanner related contraindications, 4 

tested positive for recreational or illicit substances, and 1 was excluded due to a safety 

concern.  Of the consented BPs, 3 were excluded due to age (verified with ID), 6 had an IQ < 

70, 2 could not reach a visual acuity of 20/32, 1 was excluded due to a head injury, 1 had 

scanner related contraindications, 1 had an alcohol use disorder, 2 tested positive for 

recreational or illicit substances, 1 had a neurological disorder, and 4 were excluded for 

multiple reasons.  Of the consented SZs, 11 had an IQ < 70, 1 had amblyopia, 1 had scanner 

related contraindications, 2 had alcohol use disorders, 4 tested positive for recreational or illicit 

substances, and 2 were excluded for multiple reasons. The foregoing exclusions were in 

addition to those who were screened out before the consent, who ultimately received an 

inappropriate diagnosis, or who were disqualified for exhibiting COVID-19 symptoms or who 

had comorbidities that exacerbated the risks of COVID-19 (in the last year of recruitment).  

Written informed consent was obtained from all subjects after explanation of the nature 

and possible consequences of participation.  The study followed the tenets of the Declaration 

of Helsinki and was approved by the Rutgers University Institutional Review Board.  All 

participants received monetary compensation and were naive to the study’s objectives. 

 

2.2. Assessments.   

Psychiatric diagnosis was assessed with the Structured Clinical Interview for DSM-5 

(28) and was assigned only after consulting detailed medical history and the SCID. All 

diagnoses were further considered during a weekly diagnostic consensus meeting.  All clinical 

instruments were administered by a rater who had established reliability with raters in other 

ongoing studies (ICC > 0.8).   

Intellectual functioning of all subjects was assessed with a brief vocabulary test that correlates 

highly (r=0.80) with WAIS-III full-scale IQ scores (Canivez and Watkins, 2010; W. C. Shipley et 
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al., 2009, p. 65).  Visual acuity was measured with a logarithmic visual acuity chart under 

fluorescent overhead lighting (viewing distance = 2 meters, lower limit =20/10), and in-house 

visual acuity correction was used for individuals without appropriate glasses or contacts.  The 

Alere iCup Dx Drug Screen Cup was utilized to probe for the presence of recreational and illicit 

substances (i.e., THC, cocaine, methamphetamines, amphetamines, and opiates). The 

AlcoHawk Pro breathalyzer was administered to test for recent alcohol consumption. All 

included subjects tested negative for each test at the time of scanning.  Nicotine use was 

assayed with the Faegerstrom Test for Nicotine Dependence (FTND) (Heatherton et al., 1991).   

Standardized medication dose equivalents (olanzapine, lithium, and imipramine equivalents) 

were determined for each patient using published tables (Bollini et al., 1999; Gardner et al., 

2010) (Table 1). 

The Positive and Negative Syndrome Scale (PANSS; Kay et al., 1987) was 

administered within two weeks of the scan and provided information about symptoms over the 

last two weeks. PANSS symptom scores were reported via a “consensus” 5-factor model, 

which was designed on the basis of 29 previous five-factor models (Wallwork et al., 2012).  

The disorganization score was the clinical variable of greatest interest, given its previously 

documented relation to shape completion (Keane et al., 2019).  

To fully characterize the patient samples, we also administered several other 

symptom/functioning assessments.  Depressive and manic symptoms were assessed with the 

Calgary Depression Scale in Schizophrenia (D. Addington et al., 1993) and the Young Mania 

Rating Scale, respectively (Young et al., 1978). The Specific Levels of Functioning Scale 

(SLOF) estimated day-to-day functioning in areas such as physical functioning, personal care, 

interpersonal relationships, social acceptability, activities, and work skills.  The Premorbid 

Adjustment Scale (PAS; Cannon-Spoor et al., 1982) measured sociability, peer relationship 

quality, scholastic performance, school adaptation, and (where appropriate) social-sexual 

functioning up to 1 year before illness onset; this was done for childhood (up through age 11), 

early adolescence (ages 12-15), late adolescence (ages 16-18), and adulthood (ages 19 and 

above).  In line with what others have done, the PAS General score was not included since it is 

reflective of functioning before and after illness onset (van Mastrigt and J. Addington, 2002).  

For individuals with schizophrenia, illness onset on the PAS was defined as when one or more 

positive symptoms first became noticeable or concerning to the patient.  For individuals with 
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bipolar disorder, illness onset was defined as the onset of the first mood episode (either manic 

or major depressive). Each patient’s position along the schizo-bipolar spectrum was assessed 

with the Schizo-Bipolar Scale (Keshavan et al., 2011).  Higher scores indicated that a subject 

was more toward the pure ‘schizophrenia’ end of the spectrum.   

 

2.3. Experimental Design and Statistical Analysis 

2.3.1. Stimulus and procedure.  

Participants performed a “fat/thin” shape discrimination task in which they indicated whether 

four pac-men formed a fat or thin shape (“illusory” condition) or whether four downward-facing 

pac-men were uniformly rotated left or right (“fragmented” condition) (see Fig. 1).  The 

fragmented task is a suitable control in that it involves judging the lateral properties of the 

stimulus—just like the illusory condition—and in that it uses groupable elements (via common 

orientation, Beck, 1966).  As described elsewhere (Keane et al., 2021), the two tasks shared 

most stimulus and procedural details (stimulus timing, pac-man features, spatial distribution, 

etc.) and therefore relied on many of the same processes (temporal attention, divided 

attention, visual working memory, etc.) (Keane et al., 2019).  Perhaps because of these 

similarities, the tasks generate similar performance thresholds, reaction times, and accuracies, 

and are highly correlated behaviorally (Keane et al., 2021a; 2019), which is interesting since 

extremely similar visual tasks are often uncorrelated even within large samples (Grzeczkowski 

et al., 2017).  In sum, by having employed a closely matched and already tested control 

condition, we were in a position to judge mechanisms relatively unique to shape completion.   

Subjects viewed the stimuli in the scanner from a distance of 99 cm by way of a mirror 

attached to the head coil.  There were four white sectored circles (radius = .88 deg, or 60 

pixels) centered at the vertices of an invisible square (side = 5.3 deg, or 360 pixels), which 

itself was centered on a gray screen (see Fig. 1).  Stimuli were initially generated with 

MATLAB and Psychtoolbox code (Pelli, 1997) with anti-aliasing applied for edge artifact 

removal.  Images were subsequently presented in the scanner via PsychoPy (version 1.84; 

(Peirce, 2007) on a MacBook Pro. Illusory contour formation depended on the geometric 

property of “relatability” (Kellman and T. Shipley, 1991): when the pac-men were properly 

aligned (relatable), the illusory contours were present (the “illusory” condition); when 

misaligned (unrelatable), they were absent (“fragmented” condition).   
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Fig. 1. Stimuli, trial sequence, and block arrangement for the visual shape completion experiment. (A

Sectored circles (pac-men) were oriented to generate visually completed shapes (illusory condition) 

fragmented configurations that lacked interpolated boundaries (fragmented condition).  There were t

difficulty conditions corresponding to the amount by which the pac-men were individually rotated to 

create the response alternatives. (B) After briefly seeing the target, subjects responded with a button

press. (C) Each half of a run consisted of a fixation screen, a 5 second instructional screen, 25 trials 

a single task condition (including 5 fixation trials), and then another fixation screen. Figure re-used fr

(Keane et al., 2021a). 

 

Within each of the four runs, there was one block of each task condition.   Block 

ordering (illusory/fragmented or vice versa) alternated from one run to the next.  Each block 

had two difficulty levels, corresponding to the magnitude of pac-man rotation (+/- 10 degrees

“easy”, or +/- 3 degrees of rotation, “hard”).  Within each block, there were 20 task trials and

fixation trials. Half of the task trials were easy, and half were hard; half of these two trial type

were illusory, and half were fragmented.  The ordering of these trial types (including fixation)

was counterbalanced. Each trial consisted of a 250 ms pac-man stimulus (task trial) or 250 m

fixation dot (fixation trial), followed by a 2750 ms fixation dot.  Subjects needed to issue a 

response before the end of a task trial; otherwise, a randomly selected response was assign
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at the end of that trial and the following trial ensued.  Feedback was provided at the end of 

each run in the form of accuracy averaged cumulatively across all test trials. 

Subjects received brief practice outside of and within the scanner before the actual 

experiment.  During practice, subjects were reminded orally and in writing to keep focused on 

a centrally-appearing fixation point for each trial.  To ensure that subjects thoroughly 

understood the task, pictures of the fat/thin stimuli were shown side-by-side and in alternation 

so that the differences could be clearly envisaged.  Subjects issued responses with a two-

button response device that was held on their abdomens with their dominant hand.  Subjects 

practiced with this same type of device outside of the scanner. Feedback after each trial was 

provided during the practice phase only (correct, incorrect, slow response). 

2.3.2. fMRI acquisition 

Data were collected at the Rutgers University Brain Imaging Center (RUBIC) on a 

Siemens Tim Trio scanner.  Whole-brain multiband echo-planar imaging (EPI) acquisitions 

were collected with a 32-channel head coil with TR = 785 ms, TE = 34.8 ms, flip angle = 55°, 

bandwidth 1894/Hz/Px, in-plane FoV read = 211 mm, 60 slices, 2.4 mm isotropic voxels, with 

GRAPPA (PAT=2) and multiband acceleration factor 6.   Whole-brain high-resolution T1-

weighted and T2-weighted anatomical scans were also collected with 0.8 mm isotropic voxels.  

Spin echo field maps were collected in both the anterior-to-posterior and posterior-to-anterior 

directions in accordance with the Human Connectome Project preprocessing pipeline (version 

3.25.1) (Glasser et al., 2013).  After excluding dummy volumes to allow for steady-state 

magnetization, each experimental functional scan spanned 3 min and 41 s (281 TRs).  Scans 

were collected consecutively with short breaks in between (subjects did not leave the scanner).  

An additional 10-minute resting-state scan (765 TRs) occurred in a separate session, with the 

same pulse sequence.  Note that due to scanner time constraints one SZ participant finished 

only 751 of the 765 TRs.   

2.3.3. fMRI preprocessing and functional network partition 

Preprocessing steps have been reported before (Keane et al., 2021a) but are repeated below.  

Imaging data were preprocessed using the publicly available Human Connectome Project 

minimal preprocessing pipeline which included anatomical reconstruction and segmentation; 

and EPI reconstruction, segmentation, spatial normalization to standard template, intensity 

normalization, and motion correction (Glasser et al., 2013).  All subsequent preprocessing 
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steps and analyses were conducted on CIFTI 64k grayordinate standard space.  This was 

done for the parcellated time series using the Glasser et al. (2016) atlas (i.e., one BOLD time 

series for each of the 360 cortical parcels, where each parcel averaged over vertices).  The 

Glasser surface-based cortical parcellation combined multiple neuroimaging modalities (i.e., 

myelin mapping, cortical thickness, task fMRI, and RSFC) to improve confidence in cortical 

area assignment.  The parcellation thus provided a principled way to parse the cortex into 

manageable number of functionally meaningful units and thereby reduce the number of 

statistical comparisons.  The parcellation also provided units for the brain network partition 

described further below. 

We performed nuisance regression on the minimally preprocessed task data using 24 

motion parameters (6 motion parameter estimates, their derivatives, and the squares of each) 

and the 4 ventricle and 4 white matter parameters (parameter estimates, the derivates, and the 

squares of each) (Ciric et al., 2017).  For the task scans, global signal regression, motion 

scrubbing, spatial smoothing, and temporal filtering were not used.  Each run was individually 

demeaned and detrended (2 additional regressors per run).   

The resting-state scans were preprocessed in the same way as the parcellated task 

data (including the absence of global signal regression) except that we removed the first five 

frames and applied motion scrubbing (Power et al., 2012).  That is, whenever the framewise 

displacement for a particular frame exceeded 0.3 mm, we removed that frame, one prior 

frame, and two subsequent frames (Schultz et al., 2018).  Framewise displacement was 

calculated as the Euclidean distance of the head position in one frame as compared to the one 

preceding.  One HC and one BP did not perform a resting-state scan; one SZ and one BP had 

too few frames after motion scrubbing (<2.5 standard deviations relative to the mean of their 

respective subject groups).  Group comparisons on the remaining subjects (19 HCs, 15 SZs, 

and 13 BPs) revealed no differences on either the mean framewise displacement after motion 

scrubbing (MHC=.12, MBP=.15, and MSZ=.14 mm; F(2,44)=1.49, p=.23) or the mean number of 

unscrubbed frames (HC—696, BP—632, SZ—663; F(2,44)=1.59, p=.22). 

For the task scans, there were 6 task regressors, one for each instructional screen 

(illusory/fragmented) and one for each of the four trial types (illusory/fragmented, easy/hard).  

A standard fMRI general linear model (GLM) was fit to task-evoked activity convolved with the 

SPM canonical hemodynamic response function (using the function spm_hrf.m).  Betas for the 
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illusory and fragmented condition were derived from all trials of the relevant condition across 

all four runs.  For the within-group classifier analyses, described below, task activation betas 

were derived separately for each run, but all other steps were the same as described.   

The location and role of each parcel was considered within the context of their 

functional network affiliations.  As noted, an advantage of network-based analyses (rather than 

individual clusters) is that it substantially increases power to detect average-size effects (Noble 

et al., 2021). We used the Cole-Anticevic Brain Network partition, which comprised 12 

functional networks that were constructed from the above-mentioned parcels and that were 

defined via a General Louvain community detection algorithm using resting-state data from 

337 healthy adults (Ji et al., 2019 see Figure 4A).  This partition included: well-known sensory 

networks—primary visual, secondary visual, auditory, somatosensory; previously identified 

cognitive networks—frontoparietal, dorsal attention, cingulo-opercular, and default mode; a 

left-lateralized language network; and three entirely novel networks—posterior multimodal, 

ventral multimodal, and orbito-affective.   

 

2.3.4. Multivariate pattern analyses  

To understand whether specific networks were being used within each subject group, we 

performed a MVPA with an exhaustive leave-two-runs-out cross-validation for each network 

(equivalent to split-half cross-validation).  This procedure, which has been implemented before 

(Keane et al., 2021a) and which is applied to each subject individually, entailed determining 

whether the illusory and fragmented parcel-wise betas for each of the two left-out runs better 

correlated to the averaged illusory or fragmented betas of the remaining runs (with the number 

of illusory/fragmented trials always being the same in each run).  Similar to past studies, we 

chose Pearson correlation as the minimum distance classifier (Mill et al., 2020; Mur et al., 

2009; Spronk et al., 2020) because it intuitively measures a group’s proximity to an individual 

in multivariate feature space without requiring parameter choices (e.g., the “C” parameter in 

support vector machines).  Note also that simple linear classifiers perform just as well as 

sophisticated non-linear methods (e.g., deep learning) with noisy (fMRI) data (Schulz et al., 

2020).  Results were averaged for each subject across the 6 possible ways to divide the four 

runs between test and validation. Statistical significance was determined via permutation tests, 

which generated a null distribution of classification accuracies through the same procedure 
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with 10,000 samples.  That is, for each sample and before the cross-validation, the “illusory” 

and “fragmented” labels were shuffled for each subject and run. The classification results were 

then averaged across subjects and across the 6 possible divisions of test and validation data 

sets.   False Discovery Rate (FDR) correction was applied to the twelve tests (one for each 

resting-state networks) (Benjamini and Hochberg, 1995).    

To determine which networks were differentially modulated between groups, we 

conducted, for each pair of groups, a repeated split-half cross-validation using 

illusory/fragmented activation differences as features.  More explicitly, for each repetition of the 

cross-validation, we considered whether the parcel-wise activation differences (illusory-

fragmented) for half of the subjects better correlated with the averaged activation differences of 

the remaining subjects for each of the two subject groups.  Folds were stratified to ensure that 

each was representative of the overall sample.  Results were averaged over 20 repetitions, by 

which point statistical power plausibly reaches a near-maximum (Valente et al., 2021).  

Accuracy, sensitivity, specificity, and areas under the curve were calculated using classification 

values that were averaged across repetitions for each subject.  The classifier’s statistical 

significance was judged relative to a null distribution, which was created by shuffling the 

subject group labels and repeating the foregoing steps for each of 10,000 samples. Note that 

the labels were permuted outside of the cross-validation loops, which gives less optimistic (and 

more realistic) estimates of the underlying null (Etzel and Braver, 2013; Valente et al., 2021). 

Note also that for each group comparison and across all networks, the mean value of the null 

distribution always fell near 50% accuracy (range: 49.9-51.2%), demonstrating that sample 

size imbalances introduced minimal classifier bias.  MVPA was applied to each of the twelve 

resting-state networks and resulting p-values were FDR corrected as before.   

  

2.3.5. Estimating resting-state functional connectivity (RSFC) matrices  

For each group, we generated a resting-state functional connectivity (RSFC) matrix to model 

shape completion via activity flow mapping (see below).  We derived each subject’s RSFC by 

using principal components regression with 100 components, as in past studies (Hearne et al., 

2021; Keane et al., 2021a).  PC regression was preferred over ordinary least squares to 

prevent over-fitting (using all components would inevitably capture noise in the data).    

Multiple regression was preferred over Pearson correlation since the former removes indirect 
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connections (Reid et al., 2019).  For example, if there exists a true connection from A to B and 

B to C, a Pearson correlation, but not regression, would incorrectly show connections between 

A and C.  To generate a subject’s RSFC, for each target parcel time series, we used PCA to 

decompose the time series of the remaining (N=359) parcels into 100 components, regressed 

the target onto the PCA scores, and back-transformed the PCA betas into a parcel-wise 

vector.  The average amount of variance explained by the components across subjects was 

84% for controls [range: 81-88%], 84% for bipolar patients, [range: 78-89%] and 83% for 

schizophrenia patients [range: 81-85%]  

 

2.3.6. Brain activity flow mapping (“ActFlow”) 

In the next set of analyses, we employed RSFC matrices and brain activity flow mapping to 

model illusory/fragmented task activation differences.  For each subject, task activations in a 

held-out parcel (‘j’ in Fig. 5A) was predicted as the weighted average of the activations of all 

other parcels, with the weights being given by the resting-state connections.  That is, for each 

subject, each held-out region’s predicted value was given as the dot product of the task 

activations in the remaining regions (‘i’ in Fig. 5A) and the subject’s resting-state FC between j 

and i (using the FC weight from the appropriately oriented regression, i.e., j as the target and i 

as the predictor). The accuracy of the activity flow predictions was then assessed by 

computing the overlap (Pearson correlation) between the predicted and actual task activations. 

Subject-level overlap was expressed by comparing actual and predicted activations for each 

subject, and then averaging the resulting Fisher-transformed r values (rz) across subjects.  

Statistical significance was determined by comparing the vector of rz values to zero via a one-

sample t-test.  ActFlow has yielded accurate estimates of task-evoked activations for cognitive 

control, visual working memory, and visual shape completion tasks, among others (Cole et al., 

2016; Hearne et al., 2021; Keane et al., 2021a).   

We applied the ActFlow methodology to consider possible group differences in how 

other networks interfaced with the secondary visual network.  The secondary visual network 

was of interest because it is central to shape completion in healthy adults (Keane et al., 2021a) 

and because particular regions falling within this network (i.e., LO, V4) have been repeatedly 

implicated in shape completion via EEG, MEG, TMS, and single-unit recording (Cox et al., 

2013; Halgren et al., 2003; Murray et al., 2006; Wokke et al., 2013).   We considered how 
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ActFlow estimates improved in that network, when any of the remaining networks were 

individually added (Fig. 3).  This change was determined simply by comparing via a paired t-

test the prediction accuracies (Fisher Z-transformed correlations) before and after adding each 

network.  A significant improvement would indicate which other networks, if any, guided activity 

flow in the secondary visual network. 

 

2.3.7. Predicting cognitive disorganization from illusory/fragmented parcel-wise modulations  

The DAN was differentially modulated in SZs relative to the other groups in the aforementioned 

MVPA.   Cognitive disorganization has been associated with impaired shape completion and 

altered neural oscillations as noted (Keane et al., 2019; Spencer et al., 2004; Spencer and 

Ghorashi, 2014).  Can these results be linked more directly?  To consider the question, we ran 

a linear regression with leave-one-out cross-validation.  Leave-one-out was chosen because, 

contrary to popular conceptions, it generally yields the least bias/variance for prediction (Zhang 

and Yang, 2015) and because its predictions can generalize surprisingly well to held-out fMRI 

data (Anticevic et al., 2014; Rosenberg et al., 2015).  Within each training loop, the outcome 

variable (disorganization) and each predictor variable (modulations for a given DAN parcel) 

were z-scored using the means and standard deviations from the training set (to prevent 

circularity) (Mill et al., 2020; Shen et al., 2017).  In the training set, the disorganization scores 

were regressed onto the modulations and the resulting beta coefficients were used to predict 

the held-out subject’s disorganization score. Model prediction accuracy was gauged as the 

mean absolute error between predicted and actual disorganization (MAE).  Statistical 

significance was judged via permutation testing. That is, we compared the true MAE to a 

distribution of such values that were generated by randomly shuffling the disorganization 

scores across subjects (without changing the feature matrix).  As before, the disorganization 

variable was reshuffled once for each of the 10,000 samples of the null distribution, before the 

cross-validation loops.  To demonstrate robustness, we additionally ran repeated leave-two-out 

and 10-fold cross-validation.  The method was the same as just described except that MAE 

was averaged across 100 randomized splits between test and training.   

 

2.3.8. Experimental design and statistical analysis 
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Analyses were performed with RStudio (Version 1.2.1335) and MATLAB R2019a, except for 

the behavioral analyses which were done with SPSS version 27.  Cortical visualizations were 

created with Workbench (version 1.2.3).  Between-group variance was removed from error 

bars when reporting the standard error of the means in within-subject comparisons (Loftus, 

1994).  The final sample sizes were determined by the duration of funding (see 

Acknowledgements and section 2.1 above).  False Discovery Rate correction, when applied, 

was denoted by pcorr and had a threshold of q<.05 (Benjamini and Hochberg, 1995).   

T-test effect sizes were given as Hedges’ g and were generated with the measures-of-effect-

size toolbox in MATLAB (Hentschke, 2021). 

 

2.3.9. Data/code accessibility 

Brain activity flow mapping MATLAB code is part of the freely-available ActFlow toolbox: 

https://github.com/ColeLab/ActflowToolbox.  HCP minimal preprocessing pipelines are also 

publicly available: https://github.com/Washington-University/HCPpipelines/releases.  The Cole 

Anticevic Brain Network partition can be found here: 

https://github.com/ColeLab/ColeAnticevicNetPartition.  Neural data will be released on 

OpenNeuro.org along with resting-state functional connectivity matrices and unthresholded 

task activation maps. 

 

3. Results 

3.1. Behavioral task performance 

Employing a 2 (task condition) by 2 (difficulty) by 3 (group) within-subjects ANOVA (type III 

sum of squares), we found that performance was more accurate in the fragmented than 

illusory condition (88.9% versus 80.9%, F(1,48)=28.9, p<.01) and better in the (“easy”) large-

rotation condition than the “hard” small-rotation condition (F(1,48)=229.5, p<10-19) (See Table 

2).  The accuracy difference between illusory and fragmented conditions did not depend on 

difficulty level, although there was a trend toward a greater difference on the smaller rotation 

condition (two-way interaction: F(2,48)=3.3, p=.08).  The marginal interaction probably arose 

from ceiling effects for the fragmented condition since there was no corresponding interaction 

in the reaction time data (F(2,48)=.82, p=.37).  Reaction time data were in other ways entirely 

predictable from the accuracy results, with faster performance in the fragmented than the 
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illusory condition (F(1,48)=11.4, p<.01), and faster performance in the easy than the hard 

condition (F(1,48)=65.7, p<10-9).  The no-response trials were infrequent, occurring on only 

3.9% of the trials on average. The frequency of no-response trials did not vary with difficulty 

level or task condition nor was there an interaction between difficulty and task condition (all 

p>.10).  Note that one SZ patient exhibited chance task performance but was retained so as to 

have a more typical and representative patient sample.  Most importantly, across all three 

ANOVAs (accuracy, RT, no-response frequency), there were no main effects or interactions 

with subject group (all p>.28; all partial eta squared<.055).  Note that we were not necessarily 

expecting significant behavioral differences with our sample sizes since the group difference in 

a larger-scale study was of medium-large magnitude (d=.67; 134 patients, 66 HCs) (Keane et 

al., 2019).  We nevertheless propose reasons in the Discussion why our observed shape 

completion deficits were smaller than anticipated.      

Consistent with past results (Keane et al., 2021a; 2019), the fragmented and illusory 

conditions were highly correlated behaviorally across subjects (accuracy—r=.67, p<10-7; RT—

r=.85, p<.10-11), confirming that the two were reliant upon a common core of mechanisms.  The 

correlations were robust and remained significant when calculated with non-parametric tests or 

after log-transforming the RT data.  

 

 

 

Table 2. Task Performance 

    HC BP SZ 

% Correct, Illus  82.9  (3.0) 80.0 (3.5) 79.6 (3.4) 

% Correct, Frag 89.6 (2.2) 89.7 (2.5) 87.4 (2.4) 

Reaction Time (s), Illus 1.04 (.07) .93 (.08) 1.06 (.07) 

Reaction Time (s), Frag .94 (.07) .84 (.08) .99 (.08) 

% Slow Response, Illus 4.3 (2.6) 0.4 (3.0) 5.2 (2.9) 

% Slow Response, Frag 6.8 (2.8) 0.6 (3.2) 6.3 (3.1) 

Note. Mean values for each variable (with standard error of the mean) 

 

3.2. Traces of shape completion were scattered over more networks in patients 

To determine the networks relevant to shape completion in each group, we ran a leave-two-

runs-out MVPA, which assessed—for each subject and network—whether the illusory and 

fragmented betas from the training runs could be used to correctly classify the illusory and 
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fragmented betas from the two remaining runs.  To determine the involvement of each network 

within a group, classification accuracy results were aggregated across subjects and compared 

to a null distribution (see Methods).  For healthy controls, the secondary visual network 

encoded the modulations, as already reported (accuracy=63%, pcorr=.001) (Keane et al., 

2021a).  For schizophrenia patients, three networks encoded the modulations: secondary 

visual (accuracy=63%, pcorr=.002), dorsal attention (accuracy=61%, pcorr=.008), and default 

mode (accuracy=59%, pcorr<.05).  Finally, for bipolar patients, six significant networks encoded 

the modulations: secondary visual (accuracy=69%, pcorr<.0001; somatomotor (accuracy=59%, 

pcorr=.03), cingulo-opercular (accuracy=60%, pcorr=.01), dorsal attention (accuracy=71%, 

pcorr<.0001), language (accuracy=59%, pcorr=.03), and frontoparietal (accuracy=59%, 

pcorr=.010). These results suggest that whereas the secondary visual network was important in 

each subject group (essentially an out-of-sample replication of the control group result) 

additional cognitive networks also appeared relevant.  These results also show that 

multivariate traces of shape completion were distributed through more networks in patients.   
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Fig. 2. (A) The twelve functional networks (Ji et al., 2019) are color-coded to match panels B

and C. (B) Box plots depicting illusory/fragmented classification accuracy for each group usi

leave-two-runs-out cross-validation.  The red dotted lines demarcate 50% performance.  (C)

Box plots depicting group classification accuracy for each pair of groups using repeated split

half cross-validation, where the features correspond to illusory/fragmented differences.  See

text for additional classification statistics.   *pcorr<.05, **pcorr<.01, ***pcorr <=.001. 
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3.3. Dorsal attention and orbito-affective networks distinguished schizophrenia patients 

To consider whether groups could be distinguished in parcel-wise patterns, we trained MVPA 

classifiers separately for the 12 functional networks (Ji et al., 2019).  For each pair of subject 

groups and for each network, the classifier used illusory/fragmented activation differences to 

categorize subjects by their group membership (see Methods).  After FDR correction, no 

network could distinguish bipolar patients and healthy controls.  The networks that could 

distinguish schizophrenia patients from healthy controls were the dorsal attention (pcorr = .005, 

sensitivitySZ  = .74, specificitySZ = .74, AUC = .86) and orbito-affective (pcorr = .03, sensitivitySZ 

=.65, specificitySZ = .72, AUC = .77).  When comparing bipolar and schizophrenia patients, 

only the DAN reached significance (pcorr=.007, sensitivitySZ=.73, specificitySZ=.73, AUC=.87).  

The secondary visual network did not distinguish any of the three groups (all pcorr>.24).  To 

summarize, patterns of dorsal attention task activations could distinguish schizophrenia 

patients from the other groups; and the orbito-affective network was also able to distinguish 

SZs from controls.  These results, which will be elaborated upon more fully in the Discussion, 

are consistent with our hypothesis that brain network differences during visual perceptual 

organization in schizophrenia are primarily related to higher-level cognition.  

 

3.4. Dorsal attention network activity was related to cognitive disorganization  

Increased cognitive disorganization has been associated with poorer shape completion and 

abnormal oscillations, as noted (Keane et al., 2019; Spencer et al., 2004; Spencer and 

Ghorashi, 2014).  Task-related DAN modulations can distinguish SZ patients from other 

subject groups (Fig. 3C). Can these variables be linked more directly?  To consider the 

question, we individually regressed each clinical variable onto the modulations of the 23 dorsal 

attention parcels using leave-one-out cross-validation with permutation testing (see Methods).    

Across all 31 patients, the modulations were indeed related to cognitive disorganization (r=.65, 

MAE=.78, p=.007).  These results were robust and would also be significant if we were to use 

leave-two-out or 10-fold cross-validation (both p<=.01). 
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3.5. Potentially reduced feedback activity from dorsal attention to secondary visual 

networks in schizophrenia 

A recently-developed predictive modeling approach—activity flow mapping (“ActFlow”) (Cole et 

al., 2016)—has demonstrated that resting-state connections are likely relevant to shape 

completion in healthy controls (Keane et al., 2021a).   This method computes the activation 

difference (illusory minus fragmented) in a held-out “target” parcel as the linear weighted sum 

of the activation differences in all other parcels, with the weights being given by the resting-

state connections to the target (Fig. S2 in Supplementary Materials).  This algorithm is based 

on neural network simulations, and can thus be thought of as a rough simulation of the 

movement of task-evoked activity that likely contributed to each brain region’s task-evoked 

activity level, which in turn can provide evidence that the resting-state connections 

mechanistically support shape completion.  As described in more detail in the Supplementary 

material, when applied to all 360 parcels across cortex, the ActFlow modeling generated 

accurate results for all three groups (all r>.56, all p<10-6) and this accuracy did not differ 

between groups (all p>.23).  

We developed a novel extension of the ActFlow framework, which shows that—in 

healthy controls—the DAN can model activity in the secondary network, potentially reflecting 

feedback to mid-level visual areas (Keane et al., 2021a).  In this method, we computed a 

single correlation between the actual and estimated parcel difference values (illusory-

fragmented) across the 54 secondary visual network parcels.  We then recomputed this 

correlation, when each of the 54 parcels could also be predicted by parcels and connections 

from the 23 dorsal attention regions (see Fig. 3).  Finally, we Fisher-z transformed the 

correlations, subtracted the two, and then performed a one-sample t-test to see if the 

correlations increased as a result of the network’s inclusion.   Can the DAN model activity in 

the secondary visual network in the patient groups?  As shown in Fig. 3E, the DAN improved 

the predictions for the secondary visual network in healthy controls (∆r≈∆rZ=.11; t(18)=3.3, 

p=.004, g=.76) and bipolar patients (∆r≈∆rZ=.09; t(12)=3.7, p=.003, g=1.03), but not in 

schizophrenia patients (∆r≈∆rZ=.03; t(14)=1.2, p=.25, g=.31).  No other network could model 

the secondary visual network in any group.  These results would be the same with an FDR  

correction (across all networks).  Thus, DAN fails to robustly model the secondary visual 
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network in schizophrenia, perhaps because of reduced feedback from dorsal attention to 

secondary visual areas. 

 

 

 

Fig. 3. Gauging modeling contributions of the dorsal attention network (DAN) to the secondary visual 

network (Visual2). (A) For a given subject, task activation differences for each significant Visual2 parcel 

were estimated (dotted circles) using actual task activation differences in the remaining parcels (solid 

circles) and their resting-state connections (red lines).  For illustration, only six regions are shown for 
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each network.  (B) ActFlow accuracy was defined as the correlation between actual and estimated task 

activation differences, across the Visual2 parcels. (C) Task activation differences were again estimated 

via ActFlow, except that, this time, the connections and activation differences from dorsal attention 

regions could also contribute.  (D) The difference between the original and re-calculated estimates was 

computed for each subject (after a Fisher Z-transform) and directly compared across subjects within a 

group via a one-sample (or paired) t-test.  (E) The DAN could significantly improve ActFlow estimates in 

the secondary visual network in controls and bipolar patients, but not in schizophrenia patients.  

Errors=+/-SEM **p<.01.  Figure is adapted from Keane et al. (2021a). 

 

4. Discussion 

Visual shape completion plays a critical role in extracting object shape, size, position, and 

number from edge elements dispersed across the field of view.  Prior electrophysiological and 

psychophysical work has suggested that schizophrenia patients properly form illusory contours 

at initial stages of processing but potentially exhibit later-stage differences related to cognitive 

control.  However, these findings have not been corroborated with other neuroscience 

methods and were generally limited by their lower spatial resolution.  Here, we leveraged 

recent tools in computational neuroimaging to investigate the functional connections and brain 

networks that may differ in schizophrenia during shape completion.  We additionally 

considered whether such differences arise in bipolar disorder or whether they vary 

monotonically with illness factors that cut across the schizo-bipolar spectrum.  It was 

hypothesized that cognitive—but not visual—networks would be differentially active in SZ, that 

activity in one of these networks would be linked to cognitive disorganization, and, more 

speculatively, that top-down feedback to the secondary visual network would be faulty in SZ. 

Five major findings emerged.  First, the DAN was differentially active in SZ compared to 

the other groups.  Next, the secondary visual network was strongly modulated within each 

group and did not differ group-wise in its activation pattern.  Third, dorsal attention modulations 

across all patients were related to cognitive disorganization severity.  Fourth, in schizophrenia, 

our modelling showed little influence of the DAN on the secondary visual network (in contrast 

to the other groups, who did show an influence).  A final unanticipated finding was that—

regardless of diagnosis—patients incorporated more networks overall during shape 

completion.  Below, we discuss these findings in more detail, identify potential limitations, and 

suggest future directions along the way. 
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4.1. Aberrant DAN activity in schizophrenia 

Dorsal attention network activity was unequivocally aberrant in SZ.  This is consistent with 

earlier SZ studies, which have argued for abnormal dorsal stream contributions to motion 

perception (O'Donnell et al., 1996), stereopsis (Schechter et al., 2006), and fragmented object 

recognition (Sehatpour et al., 2010).  Visual working memory deficits (and broader indices of 

cognition) have also been attributed to abnormal activation in posterior parietal cortex (Hahn et 

al., 2018), which overlaps with the DAN.  A goal for future research will be to determine to what 

extent abnormal DAN activity emerges across these and other visual tasks in SZ.  Because 

DAN differences were so large and because they were found relative to both healthy controls 

and bipolar disorder patients (AUCs>.85; sensitivities>.72; specificities>.72), such differences 

might yield a candidate biomarker for differential diagnosis or predicting future psychosis 

onset.  More highly powered studies with early-stage or high-risk patients are needed to 

confirm these possibilities.   

DAN task activity was also related to a central feature of psychosis, cognitive 

disorganization. The brain networks undergirding cognitive disorganization—alternatively 

referred to as “formal thought disorder” or “conceptual disorganization”—are largely unknown 

perhaps because disorganization is less often parsed out as a separate construct (with many 

studies preferring instead to lump it in with the more encompassing positive symptom factor).  

An interesting possibility going forward will be to examine whether DAN activity during 

perceptual organization can serve as a proxy for cognitive disorganization or whether 

stimulating parts of DAN can ameliorate symptom severity.  

 

4.2. Possibly reduced top-down attentional feedback in schizophrenia and more 

“cognitive” perceptual organization in SZ 

It is not possible to tease apart feedforward and feedback activity using the hemodynamic 

response.  However, a realistic possibility is that DAN dysfunction may disrupt top-down 

attentional amplification (Berkovitch et al., 2017; 2018), which may be needed to properly 

notice and use illusory contours for shape discrimination (Keane et al., 2012).  Such disruption 

has been linked specifically to cognitive disorganization, NMDA receptor hypofunction, and 

gamma band synchrony abnormalities, all of which characterize the schizophrenia phenotype 
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(Berkovitch et al., 2017).  This view fits with past behavioral work showing that SZ patients 

have impaired top-down attentional control for noticing subtle stimuli (Gold et al., 2007; Luck 

and Gold, 2008); it also fits with the assertion that people with schizophrenia have impaired 

dorsal top-down feedback to ventral object-recognition areas (Tapia and Breitmeyer, 2011).   

In light of the significant DAN activity in the SZ group, we speculate that patients may 

compensate for poor top-down modulation by carrying out computations within the DAN itself 

or by the DAN interfacing with other non-visual networks.  This view of perceptual organization 

as being more cognitively reliant might also explain why conceptual knowledge aids 

interpretation of a vague visual stimulus more for people with psychosis or psychotic-like 

experiences than for people without such conditions (Teufel et al., 2015).  

The above sketch implies that perceptual organization deficits may become more 

prominent if the (longer-latency) cognitive networks are given less time to operate (Wyatte et 

al., 2014).  The current study presented a 250 ms pac-man configuration with no mask (to 

ensure a more robust BOLD response), but earlier psychophysical studies presented the pac-

men for 200 ms with a mask 50 ms afterwards (Keane et al., 2021b; 2019).  This difference 

may help explain why the shape completion in a prior larger-scale study was medium-to-large 

(d=.67) (Keane et al., 2019), whereas the group difference in the current study was small 

(d=.10).   A prediction is that if we were to present stimuli more briefly with shorter masking 

SOAs or with more disruptive masks, then shape completion deficits should emerge more 

clearly.  Another prediction is that applying single-pulse transcranial magnetic stimulation over 

dorsal attention regions 200-300 ms after stimulus onset (Wyatte et al., 2014) may elicit 

stronger shape completion impairments in schizophrenia than in controls.   

 

4.3. Orbito-affective dysfunction in SZ during perceptual organization 

Modulations in the recently-defined orbito-affective network could distinguish SZs and HCs and 

this too suggests that higher-order cognition may play a more important role for patients.  We 

had speculated in a past psychophysical investigation that orbitofrontal cortex could be 

relevant (Keane et al., 2014) because: i) this region is differentially active 300 ms after stimulus 

onset during Kanizsa shape detection tasks in healthy adults (Halgren et al., 2003); ii) the 

orbitofrontal cortex contributes to object recognition under impoverished viewing conditions 

(Bar, 2003); and iii) gray matter volume in the region gradually shrinks over the course of the 
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illness, especially among persons with thought disorder (Nakamura et al., 2008).  The orbito-

affective network overlaps with posterior orbitofrontal cortex, which is associated with “reward 

processing” (Kahnt et al., 2010) and is strongly connected to the ventral striatum, the 

substantia nigra/ventral tegmental area, and the globus pallidus (Ji et al., 2019).  Some of 

these same regions are routinely found to be hyperconnected to visual cortex in SZ  (Anticevic 

et al., 2014; Damaraju et al., 2014) and are associated with dopaminergic dysregulation in in 

unmedicated schizophrenia patients (Horga et al., 2016).   While it is outside the scope of this 

work, it is worth investigating the cooperation between these subcortical structures and the 

orbitofrontal cortex as SZ patients attempt to recognize partly visible shapes. 

 

4.4. Bipolar disorder and schizophrenia have more diffuse neural representations 

An unexpected but interesting finding was that completed shapes were encoded across a 

broader range of networks in each disorder.  The reason for this more distributed neural 

representation is unknown but could be because computations ordinarily performed by vision 

could have been outsourced to nominally non-visual networks as suggested above; or they 

could be byproducts of a less modularized brain network architecture (Ma et al., 2020).  

Networks in bipolar disorder may be especially less well-integrated and less centralized as 

compared to those in healthy controls or even schizophrenia (van Dellen et al., 2020).    It is 

worth considering in future research whether similarly diffuse neural representational patterns 

emerge in other visual and cognitive tasks. 

 

4.5. Addressing limitations  

The most obvious limitation is sample size.  However, we avoided stringent multiple 

comparison corrections by restricting our analyses to only 12 pre-defined networks.  Network-

based analyses are also plausibly more powerful in that they pool weaker parcel-wise effects 

over larger functionally related areas (Cremers et al., 2017; Ji et al., 2019; Noble et al., 2021).  

Moreover, the implicated networks in our analysis did not emerge out of the blue but were 

suspected on the basis of past psychophysical and electrophysiological work (see 

Introduction).  Additionally, the abnormal DAN activity in SZs was shown relative to two 

clinically and demographically well-matched groups (Table 1); both effects were large and 

could survive an FDR (or a Bonferroni) correction.  Finally, the cognitive disorganization 
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relation was anticipated from past work (Keane et al., 2019; Spencer et al., 2004; Spencer and 

Ghorashi, 2014) and was shown with multiple forms of cross-validation using the larger 

combined patient sample (n=31).   

Another limitation is that patients were on medication.  Note, however, that the patient 

groups did not significantly differ on olanzapine equivalents and prior behavioral and 

electrophysiological studies found no relationships between shape completion and the 

type/dose of neuroleptics (Foxe et al., 2005; Keane et al., 2019; Spencer and Ghorashi, 2014).  

Another objection is that groups differed in their eye movements and this may have 

confounded the results.  This too is unlikely since: 1) pac-men locations were equidistant from 

fixation, equally informative within a trial, and matched between conditions, reducing the 

chance of systematic task condition differences; 2) the illusory and fragmented conditions were 

highly correlated in RT and accuracy and groups were undifferentiated on RT and accuracy, 

suggesting again that any possible eye movement differences impacted performance 

minimally; 3) saccading after stimulus onset would offer little benefit since saccade latency is 

~200 ms (Sumner, 2011) and the stimuli appeared for only 250 ms at unpredictable times 

during a block (See also Keane et al. (2021a); 4) there is little evidence that eye movements 

impact visual shape completion in non-translating displays and some evidence that it has no 

effect relative to a control “fragmented” condition (Cox et al., 2013 see the fixational heat maps 

in their Figure S2).   

A related objection is that subjects covertly attended to—and responded on the basis 

of—exactly one pac-man.   Aside from being contrary to task demands, this again is unlikely 

since it is doubtful that any one network would be differentially modulated in such a scenario.  

The fact that the secondary visual network could strongly differentiate the two conditions, 

consistent with past research (Keane et al., 2021a), suggests that each group represented 

completed shapes in one condition but not in the other.    

There could also be residual confounds: the Glasser atlas could have been 

inappropriate for patient groups (e.g., due to differences in cortical folding), lithium intake could 

have made the neural results incommensurable, or imperfect motion correction could have still 

led to group differences.  However, RSFC matrices were similar between groups on univariate, 

multivariate, and Mantel tests, arguing against such confounds (see Supplementary materials). 
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To summarize, employing a well-validated perceptual organization task, we revealed 

clinically relevant DAN abnormalities in schizophrenia, orbitofrontal differences in 

schizophrenia, and more distributed shape representations across all patients, potentially 

reflecting compensatory mechanisms.  Goals for future research will be to establish a causal 

role for the DAN and to consider whether briefer (masked) stimulus presentations can 

minimize potential compensatory cognitive influence or generate more obvious group 

differences in shape completion performance.  
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Supplementary Methods and Results 

Similar RSFC matrices between groups 

Group differences/similarities in RSFC were assessed in three ways.  First, we compared 

groups on each connection weight in the full 360x360 matrix using FDR-corrected independent 

t-tests.  After FDR correction, there were no significant differences on any pairwise 

comparisons. Second, we considered whether patterns of connection weights differed between 

groups, by vectorizing the lower triangle of each subject’s RSFC matrix and employing the 

between-group MVPA method described above in section 2.3.4.  This was done for each of the 

12 resting-state networks, with FDR-correction as before.  There were no significant 

differences between any pair of groups for any network (all pcorr>.27).  Finally, we quantified 

the similarity between FC matrices via the non-parametric Mantel permutation test (Mantel, 

1967; Spronk et al., 2020), which accounts for the non-independence of FC matrix values 

(Diniz-Filho et al., 2013).  This test was conducted by i) taking the lower triangle of the RSFC 

matrices of each subject, ii) averaging the vectorized regression weights element wise across 

subjects within group, and iii) computing a Pearson’s R between the two group-averaged 

vectors.  Statistical significance of the resulting correlation was judged relative to a null 

distribution, which was generated the same way except that the region identities were shuffled 

for each of 10,000 samples.  As in prior work, the resulting null distribution for this RSFC 

analysis was converted into a probability distribution function (using MATLAB function 

ksdensity) before calculating a p-value (Spronk et al., 2020).  We found similar RSFC for each 

pair of groups for the 360 x 360 matrix (HC vs. BP: r=.76, p<10-7 ; HC vs. SZ: r=.77, p<10-7; BP 

vs. HC: r.=.73, p<10-7).  As an additional comparison, and for illustration purposes only, we 

also compared the RSFC of the regions that were significantly modulated during the task 

(illusory-fragmented) among healthy controls (Keane et al., 2021a).  Conducting the same 

analyses as just described, there were no significant differences, after correcting for multiple 

comparisons.  The broadly similar RSFC matrices are consistent with past results (Spronk et 

al., 2020) and provide evidence that each group’s data were of similar quality. 
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Fig. S1. Resting-state functional connectivity (RSFC) matrices were similar for each subject group. (A-

C) A full unthresholded 360x360 RSFC matrix showing group-averaged regression coefficients for 

healthy controls, bipolar disorder patients, and schizophrenia patients.  The blue/red colors indicate the 

degree to which a given parcel time series was predicted by all remaining parcels.  Colors on the 

outskirts of the matrices indicate the network to which a given region belonged (see Fig. 2A). (D-F)  As 

an additional comparison, we also compared the functional connectivity matrices using the three dozen 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 28, 2022. ; https://doi.org/10.1101/2022.01.26.22269913doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.26.22269913
http://creativecommons.org/licenses/by-nc-nd/4.0/


ABNORMAL BRAIN NETWORKS OF PERCEPTUAL ORGANIZATION  

  

 

regions that were significantly task modulated among healthy controls (using a univariate illusory-

fragmented contrast).  As can be seen, the RSFC matrices were very similar.   Each trio of matrices 

was scaled in the same way across groups to enable cross-group comparisons.  

 

Resting-state connections likely subserve shape completion in each subject group  

A recently-developed predictive modeling approach—activity flow mapping (“ActFlow”) (Cole

al., 2016)—has demonstrated that resting-state connections are likely relevant to shape 

completion in healthy controls (Keane et al., 2021a).   This method computes the activation 

difference (illusory minus fragmented) in a held-out “target” parcel as the linear weighted sum

of the activation differences in all other parcels, with the weights being given by the resting-

state connections to the target (Fig. S2).  This algorithm is based on neural network 

simulations, and can thus be thought of as a rough simulation of the movement of task-evok

activity that likely contributed to each brain region’s task-evoked activity level, which in turn c

provide evidence that the resting-state connections mechanistically supported shape 

completion.  Prediction accuracies (correlations between the actual and predicted activation

differences computed for each individual subject) were well above zero at the whole-cortex 

level for each group (HC: r=.64, p<10-9; BP: r=.63, p<10-8; SZ: r=.57, p<10-6).  Between-grou

comparisons of these correlations (with Fisher-Z transforms) yielded no significant difference

(F(2,44)=.9, p=.42; eta squared=.04; on pairwise comparisons, all g <.41 and all p>.23 

uncorrected).  Taken together, these results demonstrate that the resting-state connectivity 

data could be used to model shape completion activations in each group.  These results atte

to the appropriateness of the brain activity flow mapping procedure for understanding shape

completion in healthy and schizo-bipolar populations and lend credibility to the modeling 

results in the main article. 
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Fig. S2. Activity flow mapping procedure. For each subject, the task activation differences (illusory-

fragmented) in a held-out parcel (j) is given by the dot product between the activation differences in the 

remaining parcels (regions i) and the resting-state connection strengths (betas) between i and j. Thicker 

red lines denote stronger functional connections. 
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