
 

  

Causal Effects Contributing to Elevated Metabolic Power During 

Walking in Children Diagnosed with Cerebral Palsy 

Pavreet K. Gill1, Katherine M. Steele2, J. Maxwell Donelan1, & Michael H. Schwartz3,4 1 

1 Locomotion Lab, Simon Fraser University, Department of Biomedical Physiology & Kinesiology, 2 

Burnaby, BC, Canada 3 

2 Ability and Innovation Lab, University of Washington, Department of Mechanical Engineering, 4 

Seattle, WA, USA 5 

3 Gillette Children's Specialty Healthcare, MN, USA 6 

4 University of Minnesota, Department of Orthopedic Surgery, MN, USA 7 

* Correspondence:  8 

Pavreet Gill 9 

pavreet_gill@sfu.ca 10 

Keywords: Cerebral palsy; Walking; Causal diagrams; Energy; Bayesian; Children 11 

Abstract 12 

Metabolic power (net energy consumed while walking per unit time) is, on average, two-to-three 13 

times greater in children with cerebral palsy (CP) than their typically developing peers, contributing 14 

to greater physical fatigue, lower levels of physical activity and greater risk of cardiovascular disease. 15 

The goal of this project was to identify the total causal effects of clinical factors that may contribute 16 

to high metabolic power demand in children with CP. 17 

We included children who 1) visited Gillette Children’s Specialty Healthcare for a quantitative gait 18 

assessment after the year 2000, 2) were formally diagnosed with CP, 3) were classified as level I-III 19 

under the Gross Motor Function Classification System and 4) were 18 years old or younger. We 20 

created a structural causal model that specified the assumed relationships of a child’s gait pattern 21 

(i.e., gait deviation index, GDI) and common impairments (i.e., dynamic and selective motor control, 22 

strength, and spasticity) with metabolic power. We estimated causal effects using Bayesian additive 23 

regression trees, adjusting for factors identified by the causal model. 24 

There were 2157 children who met our criteria. We found that a child’s gait pattern, as summarized 25 

by the GDI, affected metabolic power approximately twice as much as the next largest contributor. 26 

Selective motor control, dynamic motor control, and spasticity had the next largest effects. Among 27 

the factors we considered, strength had the smallest effect on metabolic power.  28 

Our results suggest that children with CP may benefit more from treatments that improve their gait 29 

pattern and motor control than treatments that improve spasticity or strength.  30 

 31 
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1 Introduction 32 

The net metabolic power required during walking is, on average, two-to-three times greater in 33 

children with cerebral palsy (CP) than their typically developing peers (Campbell and Ball, 1978; 34 

Rose et al., 1990). As a result, walking is as difficult as performing moderate- to vigorous-intensity 35 

exercise (Balemans et al., 2017). Net metabolic power during walking (metabolic power) is the 36 

metabolic energy consumed while walking minus the metabolic energy consumed while resting per 37 

unit time. High metabolic power contributes to greater physical fatigue (Jahnsen et al., 2007; 38 

Balemans et al., 2017), lower physical activity (Carlon et al., 2013; Ryan et al., 2014), increased risk 39 

of cardiovascular disease (Hammam et al., 2021), and reduced participation in school and the 40 

community (Verschuren et al., 2012). Reducing or preventing fatigue is one of the top research 41 

priorities of the CP community (Gross et al., 2018) and reducing metabolic power is a mechanism by 42 

which to do so.  43 

Due to brain injury near the time of birth, children with CP exhibit various neurological impairments 44 

that may contribute to high metabolic power. Spasticity is present in up to 91% of children with CP 45 

(Odding et al., 2006) and clinicians often believe it causes high metabolic power via inappropriate or 46 

prolonged muscle contraction and co-contraction of agonists and antagonists. However, several 47 

recent studies have indicated that spasticity reduction does not cause meaningful reductions in 48 

metabolic power during walking (Ubhi et al., 2000; Thomas et al., 2004; Bjornson et al., 2007; 49 

Munger et al., 2017; Zaino et al., 2020). Reduced metabolic power following spasticity treatment in 50 

observational settings likely arises from other factors such as aging. In addition to spasticity, muscle 51 

weakness and poor motor control are also common neurological impairments in CP. Both may 52 

contribute to high metabolic power via inefficient muscle activation and altered gait mechanics 53 

(Damiano et al., 2000; Rose and McGill, 2007; Bennett et al., 2012; Steele et al., 2015; Schwartz et 54 

al., 2016), but they are inextricably linked, so it is challenging to isolate their effects. Conner et al. 55 

(2020) recently showed that resistance training via ankle exoskeletons significantly improved muscle 56 

strength and reduced metabolic power in children with CP. Further, their exoskeleton training also 57 

caused significant improvements in motor control and walking mechanics (Conner et al., 2021). Prior 58 

studies of resistance training have demonstrated mixed results (MacPhail and Kramer, 1995; 59 

Damiano and Abel, 1998; Eagleton et al., 2004; Ryan et al., 2020), suggesting that muscle weakness 60 

may also be a cause of high metabolic power. Understanding the relative effects of strength, motor 61 

control, and other factors on high metabolic power in CP is challenging, but important to understand 62 

and reduce these demands.  63 

In addition to neurological impairments, children with CP also exhibit atypical gait kinematics that 64 

may contribute to high metabolic power. Bony malalignments are common in CP and contribute to 65 

altered gait kinematics. Many children undergo orthopedic surgery to correct these malalignments 66 

and display significantly improved gait kinematics post-treatment. However, no controlled study has 67 

directly investigated whether changes in gait kinematics after surgery – in contrast to other factors 68 

such as aging – cause significant reductions in metabolic power. For example, McMulkin et al., 69 

(2016) assessed surgical outcomes for children undergoing multi-level surgery with and without a 70 

femoral derotation osteotomy. In this study, treatment and control groups were matched except for 71 

the inclusion of a femoral derotation osteotomy. McMulkin’s study showed that a femoral derotation 72 

osteotomy results in slightly better outcomes after surgery (McMulkin et al., 2016), but was not able 73 

to show that better gait kinematics cause lower metabolic power since both groups underwent near-74 

identical treatments and experienced similar changes in gait kinematics. Similar studies provide 75 

further insights into how gait kinematics and metabolic power change after surgery (Thomas et al., 76 
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2004; Wren et al., 2013), but cannot address this central question of whether improved kinematics 77 

lowers the metabolic power required to walk. 78 

Currently, experimental data does not clearly refute or confirm various factors as causes of high 79 

metabolic power in CP. The gold standard for making causal inferences is to perform controlled 80 

experiments, where all other factors except the factor of interest are kept constant. However, 81 

controlled experiments are not always possible. For example, it is not possible to keep kinematics 82 

and kinetics constant while changing muscle spasticity. In place of experimental data, we may be 83 

able to analyze the natural variability present in observational data to understand what factors are 84 

responsible for high metabolic power and their relative effect sizes.  85 

Researchers often hesitate to make causal inferences from observational data due to confounding. 86 

Two things are needed to infer causation – the "cause" must occur before the "effect" (temporal 87 

priority) and all other "potential causes" (confounders) must be controlled for. Confounding is 88 

common in observational studies since data are collected in uncontrolled environments. We can 89 

reduce confounding by statistically controlling (adjusting) for factors, but we may induce bias if we 90 

fail to do so correctly. MacWilliams and colleagues have shown that without appropriate adjustment, 91 

linear regression analysis can greatly over or underestimate effect sizes for factors causing function 92 

limitations in CP (MacWilliams et al., 2020). If we can correctly identify confounders, causal 93 

inferences are possible (Pearl, 1995).  94 

Causal models provide a systematic approach to identifying confounders. One type of causal model 95 

is the structural causal model, often depicted as a directed acyclic graph. A directed acyclic graph is a 96 

graphical representation of causal relationships that can be queried to determine possible confounders 97 

(Pearl, 1995). Directed acyclic graphs are easier to use and less likely to fail at identifying 98 

confounders compared to traditional methods (Hernán and Robins, 2020), enabling causal inferences 99 

from observational data. 100 

In the study described here, we (1) propose a causal model for metabolic power in CP as a function 101 

of gait kinematics, selective motor control, dynamic motor control, strength, and spasticity, and (2) 102 

compute the total causal effect of each factor on metabolic power with large scale data. We decided 103 

to investigate these five factors as they are commonly measured or treated and likely contribute to 104 

high metabolic power in children with CP. We used directed acyclic graphs to form our causal model 105 

and identify confounders. Then, we used Bayesian additive regression trees (BART) to compute the 106 

causal effects of these five factors, including model-identified confounders in the analysis to adjust 107 

for their effects.  108 

2 Materials and Methods 109 

2.1 Participants 110 

We obtained approval for this research from the Research Ethics Board (REB) at Simon Fraser 111 

University. 112 

We retrospectively analyzed data collected from 6220 children seen between the years 2000 and 113 

2020 at the Center for Gait and Motion Analysis at Gillette Children's Specialty Healthcare. We 114 

selected children who met the following criteria: formally diagnosed with CP; classified as level I, II, 115 

or III under the Gross Motor Function Classification System (GMFCS); 18 years or younger; and had 116 

undergone a quantitative 3D gait assessment and a 6-minute walking metabolic assessment. Many 117 
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children had visited the lab more than once. To avoid pseudoreplication, we selected the visit with 118 

the least missing data.  119 

2.2 Data Collection 120 

Spasticity was measured by a trained physical therapist using the Ashworth Scale (Bohannon and 121 

Smith, 1987; Pandyan et al., 1999). The Ashworth scale is a 5-point scale defined by the following: 122 

(1) no increase in tone, (2) slight increase in tone, (3) more marked increase in tone, (4) considerable 123 

increase in tone, and (5) rigidity. Six muscle groups were assessed bilaterally: hip flexors, hip 124 

adductors, rectus femoris, hamstrings, plantarflexors, and tibialis posterior. We calculated a summary 125 

spasticity score by applying polychoric principal component analysis to the bilateral measurements 126 

from these six muscles for individuals with complete data (Rozumalski and Schwartz, 2009; Zaino et 127 

al., 2020). We used polychoric principal component analysis since standard principal component 128 

analysis produces biased estimates with categorical data (Kolenikov and Angeles, 2009).  129 

Strength was measured by a physical therapist for the hip flexors, hip adductors, rectus femoris, 130 

hamstrings, plantarflexors, and tibialis posterior. This was measured on a 5-point scale where 1 is 131 

defined as a ‘visible or palpable contraction (no range of motion)’ and 5 is defined as ‘full range of 132 

motion against gravity’. Again, we calculated a summary strength score using polychoric principal 133 

component analysis, which included measurements from both lower limbs for individuals with 134 

complete data (12 measurements total).  135 

Selective motor control (SMC) was measured by a physical therapist using a 3-point scale defined by 136 

the following: (0) very little or no control of a single joint voluntary movement, (1) impaired 137 

voluntary movement at a single joint, and (2) good voluntary movement at a joint. The physical 138 

therapist measured SMC for hip flexion, hip adduction, knee extension, knee flexion, plantarflexion, 139 

and posterior tibialis. Again, we calculated a summary SMC score with the same methods used to 140 

calculate summary spasticity and strength scores. 141 

Patients underwent a quantitative 3D gait analysis with electromyography of the anterior tibialis, 142 

lateral and medial hamstrings, gastroc-soleus, and rectus femoris muscles. Using the motion capture 143 

and electromyographic data, respectively, we calculated gait deviation index (GDI) (Schwartz and 144 

Rozumalski, 2008)and dynamic motor control (DMC) (Shuman et al., 2019) scores for each child.  145 

Breath-to-breath oxygen consumption was measured during six minutes of overground, barefoot 146 

walking around a rectangular 80-meter track (Ultima CPX, Medical Graphics Corporation, St. Paul, 147 

MN, USA). Breath-to-breath oxygen consumption was also measured during the 10 minutes of 148 

reclining rest that preceded the walking session. The average steady state value was calculated for 149 

both periods according to the method proposed by (Schwartz, 2007). Oxygen consumption per unit 150 

time was converted to power using the conversion rate of 20.1 Joules/mL O2 (Lusk, 1924; Taylor and 151 

Heglund, 1982). We then calculated net metabolic power by subtracting resting from walking values. 152 

We also calculated average walking speed during the trial and recorded patient age, height, mass, and 153 

sex.  154 

2.3 Causal Model 155 

Structural causal models are visual representations of causal assumptions that we can systematically 156 

test for plausibility and query to identify confounders. Nodes represent variables, and arrows drawn 157 

(or excluded) between variables indicate causal relationships (or lack thereof) between them. The 158 

absence or presence of arrows can be used to determine conditional independencies implied by the 159 
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causal model. By checking these independencies, we can test the plausibility of a model. And, just as 160 

we can test a model's plausibility, we can also determine from the model what variables are potential 161 

confounders (see Greenland & Pearl (2017) for a detailed explanation). We can then statistically 162 

adjust for these potential confounders in our computational analysis to reduce potential bias (Pearl, 163 

1995). It may be necessary to adjust for more than one factor. An adjustment set is the minimum set 164 

of factors to adjust for when computing the causal effect of X on Y (Pearl, 1995).  165 

We define causal effects as the total effect of X on Y. This includes both the direct (unmediated) and 166 

indirect (mediated) effects of X on Y. We focused on the total effect of each factor as treatments in 167 

CP rarely affect a single factor due to their inter-relatedness. For example, strength may directly 168 

affect metabolic power, but it may also indirectly affect metabolic power via changes in kinematics. 169 

We built a causal model for this study that represents our hypotheses and assumptions about the 170 

mechanisms contributing to metabolic demand during walking (Figure 1). We created and tested the 171 

proposed model using the dagitty package in R (Textor et al., 2016). From our causal model, we 172 

determined adjustment sets that we used in our data analysis to compute the causal effects of each 173 

factor on metabolic power.  174 

2.4 Data Analysis 175 

After obtaining adjustment sets from our causal model, we used the Bayesian additive regression 176 

trees (BART) method (Chipman et al., 2010) to compute the causal effects of GDI, DMC, SMC, 177 

strength, and spasticity on metabolic power. Since BART is a regression-based approach, including 178 

factors from each adjustment set as predictors in the BART model adjusted for their effects and 179 

reduced confounding. A causal model identifies sources of bias, but it does not provide information 180 

regarding the strength or direction of a causal relationship. Thus, it was necessary to use regression 181 

analysis (i.e., BART) to compute effect sizes.  182 

The BART method is an excellent option to identify the magnitude of causal effects from 183 

observational data in CP. The BART method demonstrates superior predictive abilities against other 184 

common methods (Dorie et al., 2019) and has been successfully used in the causal inference of 185 

observational data (Hill, 2011). Many observational studies make linear assumptions. CP is a 186 

complex condition, and although linear or multiple linear regression are convenient and easy-to-187 

understand tools, it is unwise to assume linearity between factors. For example, as a child’s tibial 188 

torsion increases (either internally or externally), we can expect their walking pattern to deteriorate, 189 

resulting in a U-shaped relationship. Besides its predictive prowess, BART is a non-parametric tool 190 

that a) uses Bayesian methods to produce estimates with honest uncertainty bounds in its predictions, 191 

b) can handle large numbers of predictor variables of various types (scale, ordinal, categorical), c) 192 

requires little-to-no hand-tuning, and d) does not require investigator involvement to determine the 193 

shape of the response surface (Hill, 2011). In addition, BART natively handles missing data 194 

(increasing sample representativeness) and outperforms imputation methods when dealing with data 195 

not missing at random (Kapelner and Bleich, 2015).  196 

To visualize and interpret the causal effects specified by our BART models, we utilized accumulated 197 

local effects plots (Apley and Zhu, 2020). These plots show the average change in the response 198 

variable (i.e., metabolic power) due to changes in the predictor variable (i.e., GDI, DMC, SMC, 199 

strength, or spasticity). Machine learning algorithms, such as BART, are harder to interpret than 200 

linear regression because they use more complex (and often hidden) functions. By visualizing the 201 

results, we could interpret the causal effects specified by our model. Accumulated local effects plots, 202 
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in particular, are unbiased when features are highly correlated compared to other visualization 203 

methods, such as partial dependence plots (Apley and Zhu, 2020).  204 

We used the R package bartMachine (Kapelner and Bleich, 2015) to create our BART models. 205 

Following hyperparameter optimization, the model settings were: num_trees = 50, k = 5, nu = 3, q = 206 

0.99, use_missing_data = TRUE. For replicability, we set the seed of each model as 42. To visualize 207 

the causal effects of each factor in the form of accumulated local effects plots, we used the R package 208 

ALEPlot (Apley, 2018). From each plot, we approximated effect sizes using the range of the middle 209 

95th percentile of the sample. 210 

3 Results 211 

3.1 Participants 212 

We analyzed data from 2157 children who met our inclusion criteria (Table 1). Of those children, 213 

32.1% were missing DMC scores, 18.3% were missing spasticity scores, 17.7% were missing 214 

strength scores, 17.5% were missing SMC scores, and 0.6% were missing GDI scores. 215 

3.2 Outcomes of Causal Model 216 

Our model satisfied all implied conditional independencies. The conventional cut-off for 217 

independence is ±0.3. All partial correlation coefficients were smaller than ±0.2, suggesting that the 218 

observed data was consistent with the proposed relationships in our causal model (i.e., our model was 219 

plausible). From our model, we obtained sufficient adjustment sets for all variables (Table 2). 220 

Adjustment sets were the same for DMC, SMC, spasticity and strength. 221 

3.3 Outcomes of BART 222 

The purpose of this project was to determine the causal effects of GDI, DMC, SMC, strength and 223 

spasticity on metabolic power. Based on the adjustment sets indicated by our assumed causal model, 224 

we only required two BART models: one to compute the effects of GDI (r2 = 0.81, rmse = 32.96) and 225 

one to compute the effects of DMC, SMC, strength and spasticity (r2 = 0.72, rmse = 39.48). From the 226 

accumulated local effects plots (Figure 2), we approximated effect sizes using the range of the middle 227 

95th percentile of the sample (Figure 3). GDI had approximately a two-fold effect on metabolic 228 

power than DMC, SMC and spasticity. Strength had the smallest effect on metabolic power. These 229 

results indicate that gait kinematics had the largest effect on high metabolic power. 230 

The GDI had the steepest curve (Figure 2), on average, suggesting that changing GDI can elicit the 231 

largest changes in metabolic power. Most of the factors shared a near-linear or sigmoidal relationship 232 

with metabolic power. However, strength and metabolic power shared an almost inverted-U 233 

relationship. Regardless of shape, most factors plateaued at the extremes of each plot. These plateaus 234 

suggest that after a certain level of impairment, metabolic power may not increase or decrease 235 

considerably. So, children with mild or very severe level impairments may experience limited 236 

reductions in metabolic power following treatment. For example, children with largely in-tact 237 

dynamic motor control may experience limited changes in metabolic power due to ceiling effects 238 

whereas, children with severely compromised DMC may experience limited changes in metabolic 239 

power due to movement limitations.  240 

4 Discussion 241 
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Reducing metabolic power is a means of reducing fatigue and facilitating physical activity in children 242 

with CP. Our analysis indicates that gait kinematics (as quantified by GDI) had the largest causal 243 

effect on metabolic power, more than twice as large as the other factors. The effects of SMC, DMC 244 

and spasticity had the next largest contributions to metabolic power. Strength had the smallest effect. 245 

These results suggest that improving gait kinematics may elicit reductions in metabolic power that 246 

are more likely to be clinically meaningful.  247 

On average, children with CP need to reduce their metabolic power by 50% to achieve values within 248 

the typical range. Such a reduction may not be possible, but a 10% reduction in metabolic power is 249 

still considered clinically meaningful (Oeffinger et al., 2008). This value can be used to interpret the 250 

observed effects in this study.  251 

We cannot perform randomized control trials, but we must assess the order of magnitude of our 252 

results to either confirm or refute our findings. The model-predicted changes in metabolic power 253 

following changes in GDI are comparable to experimental studies. In the study by McMulkin et al., 254 

children (GMFCS level I/II) who underwent surgical intervention with a femoral derotation 255 

osteotomy improved their GDI by ~13 points and their net oxygen cost (net volume of oxygen 256 

consumed per unit distance) by ~15% (McMulkin et al., 2016). According to our results, metabolic 257 

power would decrease by 12-27W if GDI increased by 13 points. For a child with median metabolic 258 

power in our sample (124W), this would be equivalent to a 10-22% decrease in metabolic power. The 259 

values seen by McMulkin et al. fall within this range. In another study, children with CP improved 260 

their GDI by approximately five points and their net oxygen cost by 2.5% one year following 261 

surgical intervention (Wren et al., 2013). According to our results, metabolic power would change by 262 

2-13% for a child with the median metabolic power if the GDI increases by five points. While our 263 

estimates seem high, Wren et al. may have found insignificant results because their sample included 264 

children with more severe CP (i.e., GMFCS level IV). Children with more severe impairments (i.e., 265 

GMFCS level III and IV) have significantly greater metabolic power during walking (Bolster et al., 266 

2017). So, even if they experience similar absolute reductions in metabolic power, relative reductions 267 

in metabolic power may not be as significant because metabolic power is higher overall. This may be 268 

why Wren et al. saw lower changes than those predicted by our results. Further, McMulkin et al. only 269 

saw significant reductions in metabolic power for children with GMFCS level I/II despite greater 270 

absolute reductions in metabolic power for children with GMFCS level III. Thus, treatments that 271 

produce greater changes in gait kinematics may yield more significant results for children with lower 272 

metabolic power when we consider relative rather than absolute changes. 273 

This research highlights how myriad factors impact metabolic power in CP, which can provide 274 

numerous pathways for potentially improving walking power. Our model suggests that changes in 275 

GDI and motor control affect metabolic power. Interventions that can improve these factors may 276 

improve metabolic power. This was recently observed in a pilot study by Conner et al. A small group 277 

of children with CP improved DMC by 7% and reduced metabolic power by 29% after resistance 278 

training with an ankle exoskeleton (Conner et al., 2021). According to our results, metabolic power 279 

should decrease by 1-11% for a 7% improvement in DMC. These estimates are lower than Conner et 280 

al., but Conner et al. have also shown that their exoskeleton training results in mechanically more 281 

efficient gait (Conner et al., 2021) and significantly greater muscle strength (Conner et al., 2020). 282 

Since our model does not include a metric of gait kinetics, this could have affected our causal effect 283 

estimates. In addition, a large proportion of children in our sample (31.2%) are missing DMC scores. 284 

Although BART natively handles missing data, greater missing data increases model uncertainty. 285 

Both unexplained factors and model uncertainty might explain why our estimates are lower. We 286 

estimate SMC has similar effects on metabolic power as DMC. SMC and DMC are only moderately 287 
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correlated (r = 0.54), which suggests that although both are related, they also explain different aspects 288 

of motor control in CP. Thus, the treatment of children with CP should include both selective and 289 

dynamic motor control training.  290 

Despite modest total effects, spasticity itself may not be a large contributor to high metabolic power. 291 

In a study by Zaino et al. (2020), children who underwent selective dorsal rhizotomy experienced a 292 

0.9 point reduction in lower body spasticity (approximately a change of one level out of four 293 

typically seen) and a 12% reduction in metabolic power, on average. For the same reduction in 294 

spasticity, our results indicate that metabolic power should decrease by 2-14% for a child with the 295 

median metabolic power. Our estimates capture the values found by Zaino et al. Similar to Zaino’s 296 

study, our results reflect the total effect of spasticity on metabolic power. Total effects include 297 

indirect effects, such as those associated with changes to gait kinematics, so spasticity alone may not 298 

be an important determinant of metabolic power. To further support this point, Zaino et al. found 299 

changes in metabolic power were not significantly different when compared to a control group, and 300 

when we calculate the direct effect of spasticity, it is only a third of its total effect. Therefore, other 301 

factors may be responsible for meaningful reductions in metabolic power following spasticity 302 

reduction. 303 

Compared to the other variables assessed in this study, strength has smaller causal effects and 304 

training strength is not likely to cause meaningful reductions in metabolic power. With a single 305 

standard deviation change in strength, our model predicts that metabolic power changes by 1-7% for 306 

the average child in our sample. While this may seem like a small reduction, it is not entirely 307 

unexpected. As a result of strength training, children with CP often walk faster and for longer 308 

distances (Damiano and Abel, 1998; Eagleton et al., 2004). Since walking faster ultimately increases 309 

metabolic power, it would explain why strength has a smaller total effect on metabolic power. 310 

Interestingly, strength shares a slight inverted-U-shaped relationship with metabolic power. Weaker 311 

individuals may experience increased metabolic power after strength training because they can walk 312 

longer and faster. And stronger individuals may experience decreased metabolic power after strength 313 

training because their motor control has improved along with their strength, so they can walk more 314 

efficiently. Other studies have also speculated that different responses to strength training arise due to 315 

changes in walking speed and mechanical efficiency (Damiano and Abel, 1998; Eagleton et al., 316 

2004). But, although metabolic power may not change drastically, strength training is still important 317 

for improving other functional outcomes important to children with CP (Conner et al., 2020).  318 

We did not normalize or non-dimensionalize metabolic power. We made this choice to simplify our 319 

causal model and avoid spurious relationships caused by imperfect normalization. Most non-320 

dimensionalization schemes assume a linear dependence of metabolic power on mass. While this 321 

assumption holds true in typically developed populations, it may not apply to children with CP. A 322 

study by Plasschaert et al. simulated weight gain during walking in children with and without CP – 323 

they noticed that mass normalization was not as effective in removing mass-dependence for the 324 

children with CP (Plasschaert et al., 2008). We noticed a similar phenomenon in our data. This 325 

suggests that mass and metabolic power share a non-linear relationship in children with CP. If this is 326 

true, decreases in mass may elicit greater reductions in metabolic power for a child with CP than a 327 

typically developed child. The opposite would also be true, and both would have important 328 

implications for weight management in children with CP. 329 

Our model, like all models, requires assumptions. An advantage of structural causal models is that 330 

the assumptions are made clear and explicit, and the plausibility of those assumptions is tested. So, 331 

while our model may not perfectly represent the causes of high metabolic power in CP, by explicitly 332 
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specifying our causal assumptions, researchers will be able to compare their results and models. We 333 

believe our causal model is a valuable starting point and will lead to experimental research that 334 

accepts or rejects hypotheses informed by these results. 335 

Reducing metabolic power can play an important role in reducing or delaying fatigue onset in 336 

children with CP and allowing them to be more physically active. Using large-scale data spanning a 337 

diverse study sample of widely varying age, GMFCS level, and CP subtype, we sought to understand 338 

the causal effects of commonly treated variables (i.e., GDI, SMC, DMC, spasticity, and strength) on 339 

metabolic power. Our findings suggest that impaired gait kinematics contribute the most to high 340 

metabolic power, followed by SMC and DMC. If the primary goal of treatment is to reduce fatigue, 341 

improving motor control and gait mechanics may be the most effective treatment options. Future 342 

research should look to perform controlled experiments to test the legitimacy of these findings. 343 
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 503 

 
Figure 1. Causal model (portrayed as a directed acyclic graph) of the potential contributors to high 

metabolic power during walking in children with cerebral palsy (CP). The initial brain injury is colored 

white to represent an unmeasured factor. Despite being unmeasured, including the initial brain injury 

helps to simplify the complex relationship between neurological impairments in CP. Blue nodes are 

factors often treated and measured in the clinic (neurological and physical impairments), so 

understanding their effects offers a better understanding of their importance in treating metabolic power. 

Metabolic power, colored in black, is the outcome of interest. Gray variables are potential confounders.  
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Table 1. Participant Characteristics 

 Total GMFCS I GMFCS II GMFCS III 

n (%) 2157 662 (30.7%) 1000 (46.4%) 495 (22.9%) 

Sex = male (%) 1212 (56.2%) 375 (56.6%) 552 (55.2%) 285 (57.6%) 

Age (median (SD)) 9.3 (3.7) 10.1 (3.5) 8.8 (3.7) 8.2 (3.7) 

Height (median (SD)) 129.5 (20.3) 136.5 (18.8) 127.5 (20.4) 119.9 (19.4) 

Mass (median (SD)) 26.9 (15.8) 31.4 (16.1) 26.5 (15.9) 23.5 (14.6) 

GDI (median (SD)) 71.1 (12.5) 80.0 (10.3) 70.9 (11.1) 60.7 (9.2) 

DMC (median (SD)) 83.3 (9.9) 90.3 (8.0) 81.7 (8.7) 74.1 (8.3) 

SMC (median (SD)) 0.25 (1.1) 0.88 (0.7) 0.13 (1.0) -1.11 (1.0) 

Spasticity (median (SD)) -0.25 (1.1) -0.52 (0.7) -0.16 (1.1) 0.36 (1.3) 

Strength (median (SD)) 0.16 (1.1) 0.85 (0.7) 0.08 (0.9) -1.15 (0.9) 

Met. Power (median (SD)) 124.2 (75.3) 119.9 (66.9) 127.5 (77.2) 120.1 (81.2) 

Height is described in cm. Mass is described in kg. SMC, spasticity, and strength are scores derived from 

polychoric principal component analysis.  

 

Table 2. Adjustment sets necessary to minimize confounding bias  

 Adjustment Set 

GDI Walking speed, DMC, SMC, spasticity, strength, age, height, mass 

DMC SMC, spasticity, strength, age, height mass 

SMC DMC, spasticity, strength, age, height, mass 

Spasticity DMC, SMC, strength, age, height, mass 

Strength DMC, SMC, spasticity, age, height, mass 
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Figure 2. Accumulated local effects plot of the total causal effects of gait deviation index, selective motor 

control, dynamic motor control, spasticity, and strength on metabolic power with 95% bootstrapped confidence 

intervals. These plots represent the average change in metabolic power that can be expected with a change in the 

x-variable. X-axis variables are normalized as z-scores, where increasing or more positive scores indicate a lesser 

severity of impairment (i.e., more typical gait, more coordinated, less spastic, stronger). Rug plots along the x-

axis display the distribution of scores for each impairment. The bottom right scale indicates how large a single 

standard deviation is with respect to original units.  
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Figure 3. The range of the causal effect for each factor for the middle 95th percentile. The dotted and 

dashed lines show the 25th percentile and median metabolic power of children included in this study. 

The total effect of GDI is approximately twice that of SMC and DMC, and more than thrice that of 

spasticity or strength. 
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