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1. Abstract 

Background: Treatment of acute ischemic stroke is heavily contingent upon time, as there is a strong 

relationship between time clock and tissue progression. We sought to a develop a deep learning 

algorithm for classifying time since stroke (TSS) from MR images by comparison to neuroradiologist 

assessments of imaging signal mismatch and evaluation on external data.  

Methods: This retrospective study involved patients who underwent MRI from 2011-2019. Models 

were trained to classify TSS within 4.5 hours; performance metrics with confidence intervals were 

reported on both internal and external evaluation sets.  

Results: A total of 772 patients (66 ± 9 years, 319 women) were used for model development and 

evaluation. Three board-certified neuroradiologists’ assessments, based on majority vote, yielded a 

sensitivity of 0.62, a specificity of 0.86, and a Fleiss’ kappa of 0.46. The deep learning method 

performed similarly to radiologists and outperformed previously reported methods, with the best model 

achieving an average evaluation accuracy, sensitivity, and specificity of 0.726, 0.712, and 0.741, on an 

internal cohort and 0.724, 0.757, and 0.679, respectively, on an external, unseen evaluation cohort from 

another institution. 

Conclusion: This model achieved higher generalization performance on external evaluation datasets 

than the current state of the art for TSS classification.  
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2. Introduction 

For acute ischemic stroke (AIS) patients, the benefit of thrombolytic therapy is positively 

associated with earlier reperfusion time.1,2 Until recently, thrombolysis was only recommended for AIS 

patients with a known symptom onset time (TSS) within 4.5 hours.2,3 AIS with unknown or unclear TSS 

has been reported in as many as 35% of patients.4 In one study only 6.5% of patients hospitalized for 

AIS received intravenous thrombolysis, with unknown TSS being the primary reason for treatment 

exclusion.5 Many studies have sought clinical factors to assess eligibility and risk for thrombolytics, 

with significant focus on neuroimaging.6–8 The Efficacy and Safety of MRI-Based Thrombolysis in 

Wake-Up Stroke (WAKEUP) trial showed that signal mismatch between diffusion-weighted imaging 

(DWI) and fluid-attenuated inversion recovery (FLAIR) mismatch can be used to select AIS patients 

with unknown TSS for thrombolytic treatment.9 Accordingly, use of DWI-FLAIR mismatch is now 

recommended (level IIa) to identify unwitnessed AIS patients who may benefit from thrombolytic 

treatment in the updated American Heart Association-American Stroke Association (AHA-ASA) 

guidelines.2 DWI-FLAIR mismatch, like any subjective assessment, is prone to reader variability that 

may result in erroneous exclusion of patients who could benefit from thrombolytic treatment.10 TSS on 

the other hand, is an objective surrogate biomarker in clinical settings. Thus, an automated method that 

classifies TSS could broaden the number of patients eligible for thrombolytic treatment. Machine 

learning has shown utility for stroke-specific clinical decision support.11,12 Deep learning specifically 

has been widely explored for imaging-based tasks.13,14 However, models may suffer from reduced 

performance on unseen external datasets, requiring external evaluation of these algorithms.15  

In this retrospective work, we evaluate three methods to assess TSS: DWI-FLAIR mismatch 

assessments by neuroradiologists, a previously published state-of-the-art machine learning method, and 

our new deep learning algorithm. We report their performance and compare them to the mismatch 

assessments. Using an external evaluation set, we explore the algorithms’ generalizability by varying the 
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amounts of new data used for model refinement and retraining. Finally, we use occlusion and gradient-

based visualizations to gain insight into model behavior.  

3. Materials and Methods 

3.1. Datasets 

This study was retrospective, observational dataset comprising patients from two institutions. 

Patients were included in the cohorts based on the following inclusion criteria: 1) diagnosis with acute 

ischemic stroke, 2) received pretreatment MRI protocol with DWI, FLAIR and apparent diffusion 

coefficient (ADC) series without motion degradation, and 3) known TSS within 24 hours of image 

acquisition. The internal cohort comprised 417 patients treated from 2011-2019; the patient workflow is 

summarized in Figure 1. The second dataset, published by Lee et al., totaled 355 patients, with more 

extensive exclusion criteria previously described.12 To ensure consistency across both datasets, images 

were subjected to a preprocessing pipeline.16 Images had the neck and skull removed via the Brain 

Extraction Tool and underwent N4-bias field correction.17,18 The T2 series was registered to the MNI-

152 T2 atlas, then served as the fixed volume for co-registration. Finally, they were subjected to z-score 

intensity normalization and histogram matching.19 Patient were binarized into two groups: a positive 

label was given to those who underwent imaging within 4.5 hours of known symptom onset, and a 

negative label assigned to patients who underwent imaging outside this window. The two datasets were 

divided into development and evaluation sets to be used for training and testing following an 80/20 

random stratified split with respect to the target label as well as clinical parameters.  

3.2. DWI-FLAIR Mismatch Assessments 

For each patient in the evaluation sets, three neuroradiologists independently assessed mismatch 

between DWI and FLAIR series. These labels served as a proxy for TSS, as mismatch indicates that a 

stroke occurred recently enough such that there are regions that have experienced ischemia (visible on 
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DWI) but are not yet infarcted (visible on FLAIR). Radiologists performed these assessments on 

workstations within the same facility, and they were blinded to model classifications and EHR data. 

Final assessments were determined by majority vote among the three experts. 

3.3. Model Evaluation 

To train models, the development sets were split into five folds for cross-validated 

hyperparameter tuning, and the chosen parameters were used to train a model on the entire development 

set. Training was run in replication across ten random seeds. These trained models were run on the 

evaluation data, and metrics were computed and aggregated to generate confidence intervals. Metrics 

included sensitivity, specificity, accuracy, and receiving-operator characteristic area under the curve 

(AUC). The AUC analysis threshold was determined utilizing Youden’s Index on the training data. 

These statistics were compared to those of the majority radiologist classification. Additionally, Fleiss’ 

kappa was calculated to measure the level of agreement among the three radiologist assessments. We 

also report the inter-label agreement between the clinically recorded TSS and the DWI-FLAIR 

mismatch.  

To evaluate the clinical utility of the machine learning and deep learning algorithms, we 

conducted the following experiments: 1) training and testing on data from the same institution, 2) 

training on one institution’s data and testing on the other, 3) training on data from both institutions.21 We 

report the performance on both internal and external evaluation sets.   

3.4. Deep Learning Model 

Following image pre-processing, the deep learning (DL) model utilized DWI, ADC, and FLAIR 

volumes. Model input encompassed three corresponding MRI slices, one from each series, of a single 

hemisphere of the brain. We designed a multi-slice model that utilizes weight sharing to extract 

neighboring slices’ spatial information. Image series were stacked as channels and fed into a shared 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 4, 2022. ; https://doi.org/10.1101/2022.01.26.22269260doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.26.22269260


 

 6 

convolutional layer and ResBlock. Intermediate features of neighboring slices were grouped and fed 

through five individual weight-sharing neighborhood subnetworks based on a ResNet34 backbone. The 

outputs were fed into a trainable softmax layer to fuse the features across subnetworks, enabling the 

model to learn the importance of certain subnetworks over others. Channel and spatial attention modules 

were attached at the last two ResBlocks to extract multi-scale features.20 Outputs were then fused with 

backbone features and fed through a fully connected layer to generate a patient-level TSS classification. 

A schematic of our model is illustrated in Figure 2. We adopted our previously published transfer 

learning schema to the model for the training process.16 The model was trained for 100 epochs with 

early stopping if validation AUC did not improve for five epochs. Binary cross-entropy was used as the 

loss function, with the Adam optimizer and weight decay, a learning rate of 0.0001, and a batch size of 

12. 

3.5. Comparison Model 

A previously published radiomics machine learning (ML)12 method was also evaluated. The ML 

method began with infarct segmentation via normalized absolute thresholding. Regions of interest (ROI) 

were used as the basis for radiomic feature extraction, using DWI and FLAIR series and a FLAIR-ADC 

ratio map. These features were subjected to univariate t-tests to select the most informative features that 

were used in random forest, support vector machine, and logistic regression models.  

3.6. Deep Learning Visualizations 

We implemented three visualization methods used for model interpretability: occlusion 

sensitivity, class activation maps (CAMs), and integrated gradients. Each method provides unique 

feature importance maps for a given input. Occlusion sensitivity involves perturbing patches of input 

images and calculating the effect each perturbation has on the target class prediction.22 To generate 

CAMs, an activation map is computed using the output from the last convolutional layer of the network; 
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this serves to identify regions of the image that provide the greatest discrimination for the correct label. 

Finally, outputs are backpropagated through the network to create pixelwise maps of network gradients 

for individual input images. We also visualize the class activation map (CAM) and gradients generated 

via guided backpropagation.23  

3.7. Ethical Standards 

This study conforms with World Medical Association Declaration of Helsinki. It was approved 

by the UCLA Medical Institutional Review Board #3 (MIRB3) under IRB#18-000329 “A Machine 

Learning Approach to Classifying Time Since Stroke using Medical Imaging”. Patient records were 

collected in accordance with IRB approval and HIPAA compliance standards. Informed consent was 

waived under Exemption 4 for retrospective data.  

3.8. Data Availability Statement 

The datasets presented in this article are not readily available due to protection of patient privacy. We 

are willing to validate other models internally on our data as part of collaborations. Program code and 

derived data will be made available at https://github.com/zhanghaoyue/stroke_tss_DL upon publication.  

4. Results  

Our study utilized two datasets. Of the internal set, 222 patients had a TSS under 4.5 hours, with 

the remaining 195 patients had a TSS over 4.5 hours. For external evaluation, we utilized a dataset 

totaling 355 patients, of which 182 underwent MRI within 4.5 hours of onset and 173 after 4.5 hours of 

onset.12 Clinical characteristics of these datasets are summarized in Table 1.  

4.1. DWI-FLAIR Mismatch Assessments 

Among the 130 patients assessed from both datasets, 37.8% (28/74) and 55% (31/54) of patients 

were found to have DWI-FLAIR mismatch in the internal and external evaluation sets, respectively. 
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Inter-reader agreement among the radiologists as pairs and collectively are summarized in Table 2. 

Fleiss’ was 0.460 for the internal dataset and 0.575 for the external dataset, which are both typically 

classified as a moderate level of agreement. Performance of the human readers, compared to time clock 

assessment, is illustrated in Table 3 for the internal and external datasets. The majority radiologist 

assessment of mismatch for the internal evaluation set, when compared to the EHR-derived TSS, had 

low sensitivity (0.622) with high specificity (0.865). The aggregate assessment achieved higher accuracy 

(0.743) compared to the average accuracy of any individual radiologist (0.658). The mismatch 

assessments for the external evaluation set had higher sensitivity (0.743) while maintaining a high 

specificity (0.800).  

4.2. TSS Classification Models 

The performance results of the DL and ML methods trained on the internal, external, and 

combination training sets, are summarized in Table 4. As a result of the thresholding technique applied 

by the ML method, 204 patients out of 417 patients from the internal dataset had an extracted ROI, and 

343 out of 355 patients from the external dataset had an extracted ROI. Additionally, the ML model 

selected different radiomics features depending on the dataset. In applying univariate t-tests to 89 

radiomics features, 37 features were selected for the internal training set and 35 were selected for the 

external training set with only seven features overlapping. When compared to the radiologist 

assessments, both the ML and DL model had higher sensitivity, though lower specificity. The average 

rate of agreement between the DL predictions and radiologist assessments was 0.411 (0.01), indicating a 

similar level of agreement as among the radiologists for the internal evaluation set. 

The internally trained model achieved an AUC of 0.768 (0.03), with an accuracy of 0.726 (0.02), 

a sensitivity of 0.712 (0.08) and a specificity of 0.741 (0.09). On the external dataset, the model 

achieved an AUC of 0.737 (0.03), an accuracy of 0.724 (0.04), a sensitivity of 0.757 (0.04), and a 
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specificity of 0.679 (0.07). When trained on the aggregate, performance on both evaluation sets 

improved, achieving an average AUC of 0.840 (0.03) on the internal dataset and 0.814 (0.01) on the 

external dataset. This aggregate model yielded an average accuracy of 0.794 (0.04), surpassing the 

accuracy of the aggregate neuroradiologist assessment. 

4.3. External Evaluation  

The impact of external training data on model AUC is summarized in Figure 3. The model 

achieved lower performance on the external evaluation set when no refinement is performed; however, 

the model achieved comparable performance for both evaluation sets when as few as 40 external 

samples were introduced into training, and better performance when 160 external patients were 

used. Intuitively, this corroborates the idea that deep learning algorithms achieve higher performance 

when trained on larger amounts of data and is illustrated in the second panel of Figure 3, where the 

performance on both cohorts did not improve with replacement of internal data with external data.  

4.4. Deep Learning Visualizations 

Visualizations were generated to reveal image regions on which the model focused. Four patients 

are shown in Figure 4. Figure 4A illustrates a case in which radiologist DWI-FLAIR assessment and 

TSS align with each other and the model prediction. The model does not solely focus on areas of high 

imaging signal, including the white matter hyperintensity seen on the FLAIR series, suggesting that our 

model localizes to lesions with other signal differences present. Figure 4B shows a case with a stroke 

onset time just under the 4.5-hour threshold that the neuroradiologists agreed contained no signal 

mismatch. In this instance, the model’s classification was outside the window. The gradients and CAM 

localize to the stroke lesion, while the occlusion method shows that areas outside the stroke volume 

were most salient to the prediction. Figure 4C shows a case just over the 4.5-hour threshold in which the 

radiologists were unanimous in identifying signal mismatch, despite the onset time being outside the 
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window. Our model predicted this case to be within the treatment window. This discrepancy highlights 

that clock time may not encapsulate physiological state. Finally, Figure 4D shows a case well over the 

window for tPA. The radiologists agree that there is no mismatch, yet our model predicted that this case 

was within the window. The occlusion-based visualization shows that the model is unable to localize the 

stroke on either the ADC or FLAIR series. The class activation map (CAM) highlights that there is not a 

strong region of activation. Notably, the signal intensity of the stroke is relatively low, which may 

account for the model’s behavior. It is possible that changes to the preprocessing protocol may better 

distinguish the lesion and improve model performance for such cases.  

5. Discussion 

Our experiments yielded several findings. The radiologists’ readings for DWI-FLAIR mismatch 

were in moderate agreement. Our DL model achieved higher average performance than any of the ML 

models and higher sensitivity than the majority vote radiologist readings. The DL model was also able to 

generalize to an unseen external dataset. While there was a performance gap between internal and 

external evaluation sets, retraining the model with small amounts of external data improved 

classification performance.  

The relationship between TSS and imaging features has been studied extensively; nevertheless, it 

remains unclear which signal patterns accurately capture the time course of ischemic tissue. DWI-

FLAIR mismatch is one eligibility measure for thrombolysis in the most recent treatment guidelines. In 

our study, the inter-reader agreement for DWI-FLAIR mismatch aligns with that found in previous 

studies.24,25 Despite an average of 12 years’ experience among the neuroradiologists, variability among 

their assessments implies that a patient’s treatment options and therefore potential outcomes are reader 

dependent. Using TSS as the eligibility metric (“time clock”), the radiologist assessments identified 62% 

(23/37) of evaluation set patients who were within the 4.5-hour window of stroke onset. The DL model, 
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by contrast, identified 76% (29/37) of patients within the window of eligibility. The lack of agreement 

among radiologists for the DWI-FLAIR mismatch assessments, along with the discrepancy between 

“tissue clock” and “time clock”, illustrate the need for more research into this relationship.  

Our study reports the average performance of 10 replicates and evaluates two methods on the 

same datasets, revealing insight into the generalizability of these algorithms. When evaluated on 

external data, our model was able to achieve higher performance than the current state-of-the-art. This 

could be due to a few reasons: exclusion of potentially informative brain tissue when performing ROI 

extraction, and the bias introduced by statistical testing used for feature selection. Previous models, 

including the ML model evaluated in this study, have utilized segmentation models that identify the 

stroke region of interest from diffusion-weighted imaging.12,26 When compared to expert segmentation, 

performance of these methods has been moderate, primarily under-segmenting the stroke lesion. 

Moreover, these methods fail to incorporate penumbral regions that could inform vascular stroke 

progression status.27 In contrast, the DL model utilizes the ipsilateral brain hemisphere, thereby 

including information from both the ischemic core and the penumbral tissue outside diffusion-weighted 

lesions that may provide key insights into the tissue clock. Additionally, ROI extraction methods such as 

thresholding may exclude cases; utilizing brain hemispheres also keeps more cases that would not be 

able to be analyzed due to ROI generation process. For the ML model, the selection of statistically 

significant radiomics features may induce bias into the model that favors the training data; our DL 

model, in contrast, distills features from the entire input iteratively. The DL model also carries 

advantages over previous deep learning models16, likely as it uses attention modules to focus on 

pertinent channel and brain regions as well as the integration of information from neighboring slices. 

Despite these advantages, the DL model does have some drawbacks. The model has more input 

parameters than a standard radiomics-based ML model, requiring larger datasets and more 

computational time. This computation time is negligible for inference i.e., prediction, but should be 
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considered for updating models when training. Additionally, there was still a performance gap for the 

DL model between the internal and external datasets, which motivated our external evaluation 

experiments. Aggregating the training datasets improves performance on both evaluation cohorts, 

indicating that DL classifiers improve synergistically when exposed to diverse training data.  

Our study has several areas of potential improvement. While our dataset comprises the largest 

used for TSS classification from two cohorts, it cannot fully represent all patients seen in practice. Our 

preprocessing ideally minimizes dataset variation, but further analysis is needed to assess applicability to 

cohorts from other institutions. Second, we were only able to evaluate this model for a small set of 

patients for which the radiologists assessed mismatch. A common bottleneck when using machine 

learning for medical image tasks is that acquiring the label, e.g., having multiple neuroradiologists 

assess images for DWI-FLAIR mismatch, is labor-intensive and may not be feasible on a large scale. 

Third, TSS is not a perfect surrogate biomarker, as it does not always correlate to underlying tissue 

changes informing ischemia.9 Nonetheless, given the low inter-reader agreement of DWI-FLAIR 

mismatch, a TSS classification using an automated method may aid the radiologist in clinical decision-

making.  

Our proposed DL model allowed prediction of TSS based on MR images and achieved higher 

AUC than the ML model when external data was introduced, showing a more robust automated 

algorithm to determine stroke onset time. The results of this study indicate that a small amount of 

external data can improve generalized performance across patients from multiple institutions. These 

findings support the future study of implementation of a deep learning algorithm for clinical decision 

support in the setting of acute ischemic stroke treatment.   
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8. Tables  

Table 1: Patient Characteristics 

 Internal Dataset External Dataset 

 Train (n = 343) Test (n = 74) Train (n = 299) Test (n = 56) 

Age (years) 70 (55-80) 68 (57-79) 63 (55–73) 67 (55–71) 

Female 176 (52%) 46 (56%) 86 (34%) 20 (36%) 

Admission NIHSS 8 (4-16) 6.5 (2-18) 4 (2–10) 5 (2–12) 

Onset to MRI (min) 210 (105-683) 230 (107-661) 270 (152–715) 240 (142–448) 

Within 4.5h Window (%) 185 (54%) 37 (50%) 153 (58%) 24 (43%) 

Distribution of clinical demographics for the datasets: internal (left) and external (right, reproduced from 

12). Represented as n (%) or median (interquartile range). NIHSS: National Institutes of Health Stroke 

Scale. 
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Table 2: Inter-rater Agreement for the Internal and External Datasets 

Site Rad Agreement (κ) 

Internal 

Rad 1 – Rad 2 0.3677 

Rad 1 – Rad 3 0.5264 

Rad 2 – Rad 3 0.4879 

All Radiologists 0.4600 

Agg – TSS 0.4430 

External 

Rad 1 – Rad 2 0.5893 

Rad 1 – Rad 3 0.6306 

Rad 2 – Rad 3 0.5086 

All Radiologists 0.5755 

Agg – TSS 0.5208 

Calculated using Cohen’s kappa, except for All Radiologists, which is computed Fleiss’ kappa. 
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Table 3: Radiologist Performance Metrics 

Site Reader 
Mismatch  

Positive 
Accuracy Sensitivity Specificity 

Internal 

(n=74) 

Rad 1 38 0.608 0.568 0.649 

Rad 2 19 0.676 0.432 0.919 

Rad 3 28 0.689 0.541 0.838 

Agg 28 0.743 0.622 0.865 

External 

(n=56) 

Rad 1 31 0.691 0.686 0.700 

Rad 2 35 0.836 0.857 0.800 

Rad 3 24 0.636 0.543 0.750 

Agg 31 0.764 0.743 0.800 

Performance metrics for individual and aggregate radiologist assessments for the internal and external 

datasets. Rad: Individual Radiologist. Agg: Aggregate reading by radiologists. 
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Table 4: Performance Metrics 

 Train Set Test Set AUC Accuracy Sensitivity Specificity 

DL 

Internal 

(n = 340) 

Internal 0.768 (0.03) 0.726 (0.02) 0.712 (0.08) 0.741 (0.09) 

External 0.737 (0.03) 0.724 (0.04) 0.757 (0.04) 0.679 (0.07) 

External 

(n = 299) 

Internal 0.732 (0.02) 0.707 (0.03) 0.716 (0.09) 0.687 (0.08) 

External 0.772 (0.02) 0.767 (0.03) 0.850 (0.08) 0.648 (0.09) 

Both 

(n = 639) 

Internal 0.840 (0.03) 0.789 (0.04) 0.777 (0.06) 0.802 (0.07) 

External 0.814 (0.01) 0.800 (0.04) 0.850 (0.08) 0.727 (0.08) 

ML 

Internal 

(n = 164) 

Internal 0.730 (0.07) 0.675 (0.07) 0.405 (0.07) 0.811 (0.08) 

External 0.680 (0.15) 0.653 (0.10) 0.714 (0.15) 0.500 (0.13) 

External 

(n = 284) 

Internal 0.698 (0.08) 0.625 (0.09) 0.297 (0.08) 0.865 (0.10) 

External 0.780 (0.05) 0.735 (0.05) 0.657 (0.05) 0.800 (0.08) 

Both 

(n = 448) 

Internal 0.783 (0.03) 0.750 (0.04) 0.405 (0.03) 0.892 (0.03) 

External 0.795 (0.03) 0.735 (0.03) 0.686 (0.03) 0.750 (0.04) 

Performance metrics for the deep learning (DL) machine learning (ML)12 models trained on the internal, 

external, and combination training sets, and tested on each separate test set. Statistics are reported as 

average (standard deviation). 
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9. Figures 

Figure 1: Patients were included based on clinical criteria.  

 

Patient flowchart illustrating inclusion criteria for this study. 
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Figure 2: Convolutional neural network architecture with shared weights used to classify time 

since stroke (TSS) 

 

The deep learning architecture used DWI, FLAIR, and ADC series as input. The model split the volume 

into slices 𝑧!, … , 𝑧"and stacks the image series as channels. Each slice 𝑧# was fed into a shared set of 

convolutional layers. Intermediate output features from groups of adjacent slices were then propagated 

through five neighborhood subnetworks 𝑛𝑒𝑡𝑤𝑜𝑟𝑘!, … , 𝑛𝑒𝑡𝑤𝑜𝑟𝑘$, where weights are shared among the 

slice neighborhoods. Each subnetwork contained convolutional ResBlocks as well as convolutional 

attention modules to assist the model with localization. The resulting outputs from each subnetwork are 

aggregated using a weighted softmax function to generate a TSS classification for the image. 
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Figure 3: Performance of Models when Varying Training Data. 

 

Receiving-operator characteristic area under curve (AUC) of models with varying amounts of external 

training data, both when added to (a) or replacing (b) samples in the internal training set. Performance 

on both internal and external test sets are reported, in blue and pink, respectively, with 95% confidence 

intervals. Numbers on the x-axis indicate the number of internal/external samples used for training. 
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Figure 4: Deep learning visualizations demonstrate models focus on ischemic stroke regions 

 

Deep learning algorithm visualizations for four patients (a-d), ordered with respect to time since stroke 

onset (TSS). For each patient, three visualizations were generated: occlusion, guided backpropagation 

(GBP), and class activation mapping (CAM). The table below lists the TSS, age, radiologist-assessed 

mismatch, and prediction yielded by the model.  
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