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ABSTRACT 

SARS-CoV-2 vaccines provide not just high protection against infection to the vaccinated individual 
but also provide indirect protection to its surroundings by blocking further transmission. Divergent 
results have been reported on the effectiveness of the SARS-CoV-2 vaccines. Here, we argue that 

this divergence is due to the fact that the analyses did not take into account the indirect protection. 
Using a novel heterogenous infection model and real-world data, we demonstrate that heterogeneous 
vaccination rates among families and communities, and the study design that is used, may 
significantly skew the vaccine effectiveness estimations. We show that estimations of a vaccine with 

85% effectiveness will vary between marked underestimation of ∼70% and overestimation of ∼95% 

depending on the number of interactions between vaccinated and unvaccinated individuals. 
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INTRODUCTION 

Hundreds of millions of individuals have been infected with the SARS-CoV-2 virus, and millions of 

them died as a result of the infection since it was first detected in China at the end of 2019. In response, 

several companies and research institutions developed vaccines to help suppress the pandemic, and less 

than a year after identifying of the virus, several clinical trials reported results of proven vaccine efficacy 

[1, 2]. The randomized clinical trials of the Pfizer/BioNTech and Moderna vaccines showed vaccine 

efficacy of around 95% in the first months after the second dose; however, the studies had relatively low 

numbers of infected individuals, and this level of efficacy can only be regarded as a proxy to the real-world 

vaccine effectiveness across divergent populations, demographics, and clinical features.  

By the end of 2020, many countries launched mass vaccination campaigns. The data collected through 

these mass vaccination campaigns was used to evaluate the effectiveness of the vaccines in a wide range 

of populations [3–9]. Individual-level study designs for vaccine effectiveness (VE) evaluation can be split 

into two main approaches: (1) A population-based approach (PB), where the number of vaccinated and 

unvaccinated infections are counted after correcting for possible confounders [3]; (2) A secondary 

infections approach (SI), which allows to overcome a major limitation of the first approach of unknown 

exposure. In this approach, infections are counted after a known exposure, such as secondary household 

infections [4]. Interestingly, when examining the VE estimations from studies that use each approach, there 

are major differences (Supplementary Table 1). In PB studies, VE was usually estimated at 90%-95%, 

while in SI studies, much lower VE estimations are usually reported (60%-80%). Moreover, observational 

studies in nursing home residents reported varying VE levels ranging from 53% to 92% against SARS-

CoV-2 infection [10–14]. There could be numerous reasons that may explain the differences; however, we 

hypothesize that the main reason is a difference in the number of interactions with other vaccinated 

individuals that is different between the two settings. 

Our hypothesis is based on one feature of the vaccines that has been broadly neglected in current VE 

studies. While the vaccines were designed mainly to reduce symptomatic disease, severe disease, and death, 

studies have shown that they also provide efficient transmission-blocking. A study from Sweden found that 

the number of immune members in a family was negatively correlated with the likelihood of incidence of 

infection of non-immune family members [15]. Similarly, a study from Israel found reduced infection rates 

in communities as vaccination rates increased [16]. Previous studies before COVID-19 have shown how 

interference, the potential outcomes of one individual are affected by the treatment assignment of other 

individuals, can affect VE estimations [17]. It seems that an underlying assumption made by the COVID-

19 VE studies is that there is no interference, which is an unfounded assumption. 

Here, we demonstrate how the indirect protection affects VE estimations. We develop a novel infection 

model, and use it to demonstrate that this bias is proportional to the rate of mixing between vaccinated and 

unvaccinated individuals. To illustrate this bias in real-world settings, we employ a dynamic physical model 

[18, 19] and real data from Israel [20, 21] to estimate VE in Israel under different assumptions of 

interference, i.e., under different scenarios of mixing between vaccinated and unvaccinated individuals. 

Our analyses show that different assumptions may lead to significant under- or over-estimations and might 

explain the differences in estimations between the different study design approaches. 
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METHODS 

To quantify how VE estimations are sensitive to the prevalence of interactions between vaccinated and 

unvaccinated individuals, we developed a heterogenous infection model (HIM). The HIM is a network 

composed of multiple cliques, close contact networks, which might resemble household interactions. Nodes 

in the clique may be ‘vaccinated’ or ‘unvaccinated’. For each vaccinated node, we define 𝛾 as the fraction 

of edges it has with unvaccinated nodes. We further define ⟨𝛾⟩ as the average of all 𝛾 values in the network. 

A ⟨𝛾⟩ = 0 in the HIM represents a network where the vaccinated and the unvaccinated populations are 

completely distinct as there are no  close interactions between them. As ⟨𝛾⟩ increases, there is more mixture 

between the two populations. 

The cliques are weakly connected with each other. We denote δ as the ratio between infections 

happening inside the clique versus infections happening outside of the clique. Around half of all infections 

are household infections [22], so a logical δ is 1. We also define 𝛼 as the probability of transmitting the 

virus; 𝛽  as the reduced risk of infection for protected individuals (vaccinated or previously infected), 

similar to 1 minus VE. Importantly, we assume that protected individuals also further transmit at a 𝛽 rate 

compared to unvaccinated. Finally, 𝑁𝑖𝑛  is the number of nodes in each clique, and 𝑁𝑜𝑢𝑡  is the sum of nodes 

in all other cliques in the network. The parameters used in the HIM are summarized in Table 1. 

 

PARAMETER INTERPRETATION VALUE IN BASIC MODEL 

𝜶 Probability of transmitting the virus 
0.1 (not required for 

calculation of VE) 

𝜷 
Risk of infection and transmission of protected individuals 

compared to unprotected (1 - input VE) 
0.2 

⟨𝜸⟩ 
The average 𝛾 in the network. 𝛾 is defined for each vaccinated 
node as the fraction of edges with unvaccinated nodes of all 

edges in the clique. 
 

𝜹 Ratio of clique infections versus all other infections 
1 (half of infections are 

household infections) 

𝝂 Fraction of vaccinated nodes from all nodes 0.4 

𝑵𝒊𝒏 Number of nodes in clique 5 

𝑵𝒐𝒖𝒕 Number of nodes outside the clique 20 

Ivac and Iunvac Individual infection risk  

Table 1. Parameters and their interpretation in the heterogenous infection model (HIM). 
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To simplify the functions, we further define additional parameters of the number of vaccinated and 

unvaccinated edges, for each vaccinated and unvaccinated node, inside and outside of the clique. Table 2 

summarize these parameters. 

PARAMETER INTERPRETATION VALUE 

𝑁𝑣𝑣
𝑖𝑛 Number of clique edges between vaccinated 

nodes for each vaccinated node 
(𝑁𝑖𝑛   −  1) ⋅ (1 − ⟨𝛾⟩) 

𝑁𝑣𝑢
𝑖𝑛 Number of clique edges between vaccinated 

and unvaccinated nodes for each vaccinated 

node 

(𝑁𝑖𝑛 − 1) ⋅ ⟨𝛾⟩ 

𝑁𝑢𝑣
𝑖𝑛 Number of clique edges between vaccinated 

and unvaccinated nodes for each 

unvaccinated node 

(𝑁𝑖𝑛 − 1) ⋅ ⟨𝛾⟩ ⋅
𝜈

1 − 𝜈
 

𝑁𝑢𝑢
𝑖𝑛  Number of clique edges between 

unvaccinated nodes for each unvaccinated 

node 

(𝑁𝑖𝑛 −  1) ⋅ (1 − ⟨𝛾⟩ ⋅
𝜈

1 − 𝜈
) 

𝑁𝑣𝑎𝑐
𝑜𝑢𝑡 Number of vaccinated nodes in remote 

cliques 
(𝑁𝑖𝑛 + 𝑁𝑜𝑢𝑡) ⋅ 𝜈 – (𝑁𝑣𝑣

𝑖𝑛 + 1) 

𝑁𝑢𝑛
𝑜𝑢𝑡 Number of unvaccinated nodes in remote 

cliques 
(𝑁𝑖𝑛 + 𝑁𝑜𝑢𝑡) ⋅ 𝜈  –(𝑁𝑢𝑢

𝑖𝑛 + 1) 

The individual risk of infection is the sum of infections inside the clique plus infections from outside the 

clique: Infection risk from inside the clique depends on the number of vaccinated and unvaccinated nodes 

in the clique; Infection risk from outside the clique depends on the fraction of vaccinated nodes outside the 

clique. Equations (1) and (2) present the infection risk for vaccinated nodes and for unvaccinated nodes: 

 

Finally, we can calculate the observed VE, which we denote here as 𝑉𝐸̂ , by dividing (1) by (2): 

 

We can see that the equation for 𝑉𝐸̂  is dependent 𝛽, 𝛾, 𝛿 and 𝜈, but are independent on 𝑁𝑖𝑛  (the size of 

the clique) and α (the probability of transmission). To summarize, HIM is a relatively simple model that 

simulates infections in a population with non-uniform vaccination rates and at heterogenous circuits of 

𝐼𝑣𝑎𝑐 = 𝛼 ⋅ 𝛽 ⋅ {[𝛽 ⋅ 𝑁𝑣𝑣
𝑖𝑛 + 𝑁𝑣𝑢

𝑖𝑛] + 𝛿 ⋅
𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡

 [𝛽 ⋅ 𝑁𝑣𝑣
𝑜𝑢𝑡 + 𝑁𝑣𝑢

𝑜𝑢𝑡 ]} (1)  

𝐼𝑢𝑛 = 𝛼 ⋅ {[𝛽 ⋅ 𝑁𝑣𝑢
𝑖𝑛 + 𝑁𝑢𝑢

𝑖𝑛  ] + 𝛿 ⋅
𝑁𝑖𝑛 − 1

𝑁𝑜𝑢𝑡

  [𝛽 ⋅ 𝑁𝑢𝑣
𝑜𝑢𝑡  + 𝑁𝑣𝑢

𝑜𝑢𝑡  ]} (2)  

𝑉𝐸̂(𝛽, 𝛾, 𝛿, 𝜈) = 1 −
𝐼𝑣𝑎𝑐

𝐼𝑢𝑛

= 1 −
𝛽 ⋅ {[𝛽 ⋅ (1 − ⟨𝛾⟩) + ⟨𝛾⟩ ] + 𝛿 ⋅

1
𝑁𝑜𝑢𝑡 

 [𝛽 ⋅ 𝑁𝑣𝑣
𝑜𝑢𝑡  + 𝑁𝑣𝑢

𝑜𝑢𝑡  ]} 

[𝛽 ⋅
⟨𝛾⟩𝜈

1 − 𝜈 
+ (1 −

⟨𝛾⟩𝜈
1 − 𝜈

) ] +
𝛿

𝑁𝑜𝑢𝑡 
[𝛽 ⋅ 𝑁𝑢𝑣

𝑜𝑢𝑡  + 𝑁𝑢𝑢
𝑜𝑢𝑡  ]

 (3) 
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infection risks. It takes into account the risk of infection in vaccinated households and allows to quantify 

the population observed VE, corrected by the interference, as opposed to the individual-level VE. 

. 

RESULTS 

We developed a heterogenous infection model (HIM) that allows to simulate infections, where there are 

both household infections and non-household infections. The HIM model allows to calculate an observed 

vaccine effectiveness (VE) as a function of the mixture of vaccinated and unvaccinated individual, which 

is defined with ⟨𝛾⟩ (full details in Methods). For illustration purposes of HIM, we present three possible 

mixtures described using three networks. In all networks, there is a similar amount of vaccinated and 

unvaccinated nodes, and there are precisely four close connections for each individual (𝑁𝑖𝑛 = 5, 𝑁𝑜𝑢𝑡 =
20) (Figure 1A-C). The only difference between the three networks is the dispersal of the vaccinated and 

unvaccinated nodes: in network (A), there is complete segregation between vaccinated and unvaccinated 

nodes (⟨γ⟩ = 0). This network might simulate nursing homes that were vaccinated early, while the majority 

of the rest of the population was not yet vaccinated. In network (B), for each vaccinated node, half of the 

edges are to vaccinated nodes and half to unvaccinated nodes (⟨γ⟩ = 0.5). In network (C), each vaccinated 

node is connected to one vaccinated node and three unvaccinated nodes (⟨γ⟩ = 0.75). Network (C) might 

simulate households where two members are vaccinated (e.g., parents) and two are not (e.g., children). 

 

Figure 1. Infection networks with different types of interactions between vaccinated and unvaccinated nodes. A-C. Orange 
individuals are vaccinated nodes, blue individuals are unvaccinated nodes. Each circle is a tightly connected clique. Weak 

interactions with individuals outside of the clique. D. the observed VE, 𝑉𝐸̂ 
as a function of 𝛾, for 𝛿 = 1 and 𝛽 = 0.2: Blue 

band: 𝑉𝐸̂ 𝑓𝑜𝑟 𝜈 = [0,1]; Red dashed line: 𝜈 =  2/3; Grey solid line: 1 − 𝛽 =  0.8. E. the infection risk, I, for 𝑁𝑖𝑛 = 5, 𝛼 =
 0.1 and 𝛿 = 1 and 𝜈 =  0.7 ±  0.3 ; Blue band: 𝐼𝑣𝑎𝑐; Green band: 𝐼𝑢𝑛. The width of the band originates from the variability of 𝜈. 
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For each of the networks we count the number of infections, I, and calculate 𝑉𝐸̂(𝛾, 𝜈) for 𝛽 = 0.2 (VE 

= 80%), 𝛼 = 0.1 and 𝛿 = 1. Using the equations descried in the HIM, for a scenario where two-thirds of 

the population are vaccinated (𝜈 = 0.4)  we find that the risk of infection in (B) for vaccinated nodes is 

0.12 and 0.62 for unvaccinated nodes, which translates to 𝑉𝐸̂  = 81%, similar to the input VE. However, in 

(A) and (C) we see a diversion from the input VE: in (A) risk for vaccinated is 0.083 and 0.74 for 

unvaccinated, which translates to an overestimation of almost double reduced risk (89%), and in (C) these 

numbers are 0.13 and 0.56, respectively, which translate to an underestimation (75%). Generally, we 

observed that for 𝛾 around 0.5-0.7 the input VE is similar to 𝑉𝐸̂  (Figure 1D); Lower ⟨𝛾⟩ levels produce 

overestimations of 𝑉𝐸̂  up to 90%, and higher ⟨𝛾⟩  levels produce underestimations towards 70%. 

Interestingly, as ⟨𝛾⟩ increases, and there is higher mixture of vaccinated and unvaccinated individuals, the 

infection risk of the unvaccinated population decreases (Figure 1E). This is due to the indirect protection 

enjoyed by unvaccinated individuals, as they have more interactions with vaccinated individuals.  

In summary, we show here that the rate of interactions between vaccinated and unvaccinated individuals 

significantly alters VE estimations. 

We next attempted to model the infections occurred in the real world and show how calculations of VE 

can be skewed based on different assumptions regarding ⟨𝛾⟩. We previously developed a spatial-dynamic 

Monte Carlo algorithm that was able to accurately predict infection dynamics in Israel. In this work, we 

expand this model to include more complex interaction networks. In contrast to the basic HIM, in the real 

world, interaction networks are much more complicated. Therefore, we now use a three-circuits interaction 

network that aims to mimic interactions of close contact household members, lower level contact with the 

immediate community, and low level of remote contacts with a larger community group. Around half of 

all infections in Israel are in households [22]. Therefore, we use it as a guide for the infection dynamics in 

our model (full details about the model are available in Supplementary Methods). 

Using this model, we simulated the spread of COVID-19 infections in Israel from the beginning of the 

vaccination campaign on December 20, 2020, for ten different mixing scenarios between vaccinated and 

unvaccinated individuals. In all scenarios, vaccination rates across communities are based on real-world 

data [21], but the scenarios differ in how vaccines are dispersed across each community (more details are 

available in Supplementary Methods). 

The scenarios simulated infections throughout Feb 2021.  In each date we calculated the observed 

vaccine effectiveness, 𝑉𝐸̂ using the population-based approach (PB) and the secondary infection approach 

(SI). The analysis showed a clear negative correlation between 𝑉𝐸̂ and ⟨𝛾⟩ for both the PB and SI analysis 

(Figure 2A-B). Interestingly, in the PB analysis we observed that for all the range of ⟨𝛾⟩, up to almost 

random assignment of vaccinees across the population (⟨𝛾⟩ = 0.9), 𝑉𝐸̂ was higher than the input VE, which 

was 85%. The explanation for this result is that there was high heterogeneity in vaccination uptake across 

communities in Israel (Supplementary Figure 1). While the majority of communities have reached high 

vaccination rates rapidly, there where some communities with low vaccination uptake, leading to a bimodal 

distribution of vaccinations rates, and in turn of ⟨𝛾⟩ (Figure 2C). In those low vaccined communities, there 

is low indirect protection, and the heterogneity across the population is what is causing the high 

overestimation across the whole range of ⟨𝛾⟩. This result should warrant that crude VE estimations in 

heterogenous population are bound to overestimate VE.  

When using the SI approach for calculating 𝑉𝐸̂ , we observed an even stronger negative correlation 

between 𝑉𝐸̂  and ⟨𝛾⟩. In this analysis we only consider infections within the close-contact circuit, which is 

similar to a situation of 𝛿 = 0 in HIM. Thus, low ⟨𝛾⟩ represents a scenario where most close-contacts 

circuits are partially vaccinated (i.,e. a family with only one parent vaccinated), and high ⟨𝛾⟩ represents a 

scenario where most close-contact circuits are either fully vaccinated or not vaccinated at all. Similarly to 
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the HIM-based analysis we see in our real-world modeling that if ⟨𝛾⟩  > 0.5 , the observed VE is lower 

than the input VE. 

We next performed the same analysis, but this time VE was calculated by matching the number of 

vaccinated and unvaccinated in each community, which eliminates the heterogeneity in vaccination rates 

among communities, and is similar to a matched analyses of VE, where individual-level data is available 

(Figure 2A-B). After matching  for both SI and PB analyses, 𝑉𝐸̂  could be both under- and overestimated. 

The estimations of 𝑉𝐸̂  in the matched analysis was from ~60% to 95%, depending on ⟨𝛾⟩. The input VE 

was only obtained at for ⟨𝛾⟩ at levels around 0.5 and 0.3 for PB and SI, respectively. The reason why 

matching is still insufficient to retrieve the input VE stems from the additional circuits we added in the 

modelling that aim to mimic household contacts. This creates heterogeneity of ⟨𝛾⟩ at the close contacts-

level, not just at the community-level. To overcome this issue, we derived an additional analysis that 

considers the level of mixing. Since it is not simple to adjust for different ⟨𝛾⟩ levels in real-world data for 

PB analysis, we performed the analysis by including only close-contact circuits with over 50% vaccinated 

individuals. This analysis showed that for PB, is it possible to get relatively accurate estimations of VE 

with relatively simple approach. Of note, in SI analysis, both 𝛾 and 𝜈 can be theoretically obtained for each 

family (and 𝛿 = 0) , therefore, 𝑉𝐸̂  can be adjusted more easily in real-world data. 

 

Figure 2. Estimations of VE in different levels of mixing between vaccinated and unvaccinated individuals.  A. Estimations 

of the observed VE as a function of ⟨𝛾⟩ using population-based analysis. Yellow line: crude analysis; red line: with matching of 
vaccinated and unvaccinated individuals in each statistical area; blue line: matching for statistical areas and additionally filtering 
out individuals in close-contact circuits with more than 50% vaccination. B. Similar to A, but for secondary infection-based 
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analysis. C. Distribution of γ in all vaccinated individuals on February 1 in three scenarios of mixing vaccinations across the 
population. 

DISCUSSION 

We demonstrated here that VE estimations are sensitive to the dispersion of vaccinations across the 

population. We found that the level of mixing between vaccinated and unvaccinated individuals can 

completely alter the observed VE. High level of mixing creates indirect protection to unvaccinated 

individuals, which in turn leads to underestimation of VE, while low level of mixing leads to additional 

protection to the already protected individuals, and in turn to overestimation of VE. Regardless of what is 

the real mixing between vaccinated and unvaccinated, which we assume is far from random, it is clear from 

our analyses that the observed VE can significantly differ from the real individual-level protection offered 

by the vaccine. 

It is not simple to estimate the level of mixing in the population. However, we note that during the time 

of first estimations of VE coming from Israel [3], Israel was mostly under a lockdown that was imposed 

between January 8, 2021, and February 9, 2021. Under the lockdown there were limited interactions overall, 

and especially between the vaccinated elderly population and the rest of the population which were 

vaccinated later. It is therefore safe to assume that ⟨𝛾⟩ at the time of the study was trending towards 0, or 

at least much lower than later on. Based on this, we argue that the high VE reported 95% for adults over 

70 years old [3] is grossly overestimated. Furthermore, the lower VE reported for the 40-69 years old group 

in that study (90%) is a result of the higher mixing rate of that group. Later on, Israel imposed “green 

passports”, which limit entrance of unvaccinated individuals to crowded places. This is another measure 

that reduces vaccined-unvaccined interactions and may again skew towards overestimation of VE. 

On the other hand, we argue that study designs of secondary household infections underestimate VE. 

Gazit et al. used this approach to estimate VE in Israel and found VE to be 80% [4].  In households, 

especially in a country with relatively big families as in Israel, most interactions of vaccinated individuals 

are with unvaccinated children that were not vaccinated at the time of the study. This translates to high ⟨𝛾⟩ 

levels, and as we show this leads to significant underestimation. We note that some of the lower VE in 

household infections can be attributed to the prolonged exposure, and in theory, the vaccination is less 

effective in such scenario. 

Our study is not the first to caution about VE estimations confounded by indirect protection. Previous 

studies developed a causal inference framework with interference to deal with this issue [17]. Interestingly, 

although this issue is well known, in our literature review of VE studies for COVID-19, we did not identify 

any study that takes this issue into account. We believe that our heterogenous infection model (HIM) 

provides a novel and relatively  simple framework for dealing with vaccine interference, and, as we show 

here, can be implemented in real-world settings. The HIM is structured to differentiate between different 

types of interactions (close and remote), and therefore, better represents real-world infection networks. 

In conclusion, we argue here that observed VE estimations of 90%-95% and 80% stems from a vaccine 

that probably provides individual-level protection of around 85%. We suggest that by adjusting to the 

fraction of unvaccinated individuals in a household, in addition to demographic and clinical features, it is 

possible to reduce the bias when estimating VE. We hope that future studies will take into account the 

possible bias we highlight in this study and attempt to correct for it, as the rate of effectiveness of the 

vaccines have high impact on strategies for controlling the spread of the pandemic. 
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Supplementary Methods 

In this work, we use a diffusive Monte-Carlo (MC) model originally introduced by De-Leon and 

Pederiva [18, 19] to model the spread of the COVID-19 in Israel in the presence of effective vaccines from 

December 2020 until March 2021, and as a result, to estimate the observed vaccine effectiveness. As 

opposed to other infection models, such as the Susceptible Infected Removed (SIR) [23, 24], this particle 

model enables us to distinguish between different age groups and treat each one separately, assuming that 

the infection occurs throughout the population simultaneously. Furthermore, a particle model can be 

adjusted to the actual rate of population immunization. This model enables us to accurately examine the 

different effects of the vaccine on subgroups of the vaccinated population and the entire population. We 

used numerical simulations that consist of 9 · 106  particles (which simulates the number of residents in 

Israel), where each particle has a number from 1 to 9 · 106 under the assumption of three infection circuits 

(arranged according to the likelihood of infection from high to low): a household infection cycle involving 

five people (which is the average in Israel); community based-infection, an infection cycle of 25 people; 

and infections in a remote community – an infection circle of 125 people. We define the model to generate 

half of all infections in the simulation to occur within households, by assuming that particle 1 interacts 

mostly with particles 2-5 (i.e., particles 1-5 resemble a household, so any group of 5 particles). Still, there 

is almost no contact between 1 and particle number 2000. 

Modeling the spread of COVID-19 in the presence of effective vaccines 

For modeling the spread of COVID-19 in the presence of effective vaccines, it is necessary to 

differentiate between  𝑅𝑡  (the theoretical reproduction number of the virus) and  𝑅𝑒  (the effective 

reproduction number of the virus). 𝑅𝑡  estimates the number of encounters between carriers and healthy 

individuals that would have resulted in an infection if the vaccines had not been available and is defined by 

how contagious the current variant is. 𝑅𝑒  is affected by vaccination rates and protection offered by the 

vaccines, i.e., the vaccine’s effectiveness. In this work, following the easing of social restrictions in Israel 

in February 2021, we estimate the theoretical 𝑅𝑡  in Israel from January 2021 until February 2021 to be 1.2 

[25]. It is important to note that in contrast to 𝑅0 , the basic reproduction rate, 𝑅𝑡  considers the non-

pharmaceutical interventions (NPIs) used in Israel to control the spread, notably mandatory isolation for 

individuals with confirmed infection and to those exposed to a confirmed case, and additionally mask 

covering indoors. 

To model vaccine effectiveness, we assumed the protection from the vaccine starts seven days after the 

first dose and reached its maximum after seven days from the second dose [3, 26].  

Adjustment for real-world data 

We use here publicly available data from Israel [21] for 1,578 different statistical areas, which are 

regions defined by the Central Bureau of Statistics of Israel and include regions of about 5,000 individuals 

on average. Using this data allows us high resolution of the heterogeneity in vaccinations uptake. We use 

the regional vaccination data between the end of December 2020 and March 2021 to calculate the daily 

number of confirmed cases in Israel for each statistical area. We assume that most infections are local, and 

half of the infections occur at home, and only less than 1% of the infections occur outside the statistical 

area. 

We created ten different scenarios which differed in the mixing between vaccined and unvaccined 

individuals/particle such that for each scenarios, the order of immunization within the statistical area ranges 
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from absolute randomness (⟨𝛾⟩ = 1), to immunization according to families (⟨𝛾⟩ = 0), which affect the 

number of interactions between vaccinated and unvaccinated (different 𝛾  levels). Consequently, the 

vaccination order within each statistical region is important since the greatest chance of infection is between 

two adjacent serial numbers. Since not all populations were vaccinated simultaneously in reality,  ⟨ 𝛾⟩ 
changes through time. As a result, we define for every day a mean value of 𝛾, ⟨𝛾(𝑡)⟩, which represents the 

daily average percentage of vaccined-unvaccinated interactions for the vaccinated population.  

Note that we assume that half of all infections occur in the first infection circuit (at home). Therefore, the 

contribution from the second and third circuits is lower than the contribution from the first circuit.  

Calculation of the observed vaccine effectiveness 

For calculating VE, we defined the VE, seven days after the second dose for each day as: 

 

where: 

• 𝐶𝐶𝑣𝑎𝑐(𝑡) - daily number of particles who became infected seven days or more after receiving the 

second dose of the vaccine. 

• 𝐶𝐶𝑛𝑜𝑛(𝑡) - daily number of particles who became infected before receiving the first dose of the vac- 

cine. 

• 𝐴𝑙𝑙𝑣𝑎𝑐 (t) - daily number of fully vaccinated particles in the population (seven days or more from 

receiving the second dose of the vaccine). 

• 𝐴𝑙𝑙𝑛𝑜𝑛(t) - daily number of unvaccinated people in the population (before receiving the first dose of 

the vaccine). 

    We used two methods for calculating the daily VE for each vaccination scenarios using two different 

methods (Figure 2). The crude approach, which is just counting daily infections, and the matched approach, 

where similar amount of vaccinated and unvaccinated individuals are chosen randomly from each statistical 

area. Matching across statistical areas reduces the effect of the heterogeneity in vacciations uptake, and in 

theory should eliminate the overestimation caused by this. However, since our model consists of a ’family’ 

circuit, the matching is insufficient for avoiding the overestimation. We note that this is most probably true. 

For example, if one partner is vaccinated, most likely, the other partner will be vaccinated as well.  
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SUPPLEMENTARY DATA 

STUDY METHOD VE 

Dagan et al [3] PB 90% (40 yr-69 yr) 

95% (70+ yr) 

Polack el al[26] PB 95% 

Pilishvili et al[6] PB (health care) 94% 

Lopez et al [27] PB 93% 

Gazit et al [4] SI 80% 

Braeye et al [9] SI 60%-74%  

(vaccinated-unvaccinated connection) 

90 % 

(vaccinated-vaccinated interactions( 

de Gier et al, [28] SI 71% 

 

Table S1. List of vaccine (2 dose of BNT162b2 vaccine) effectiveness estimations studies. PB: population-

based approach; SI: secondary infection approach. 
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Figure S1. Distribution of vaccination in Israel. Vaccine uptake for COVID-19 in Israel is not uniform across the 

population. The vaccination campaigns started by vaccinating older individuals before moving to younger populations. Further, 

there is a significant association between vaccine uptake and socioeconomic status (SES) and other factors [29].  In Israel, based 

on the data from [20] for the population of each statistical area and the data from [21] for the daily A vaccinated people for each 
of the 1,578 statistical areas, we can calculate, on a daily basis what is the percentage of the population which is vaccinated with 

two doses of vaccine. We found that the distribution of the percentage of the population that was vaccinated with two vaccine 
doses on April 1, 2021, manifested in a somewhat bi-modal distribution of vaccine uptake across the population: while in the 

majority of the statistical regions (>90%), we observe a normal distribution around 60% with standard deviation of 10% 4 
months after the beginning of the campaign, in 10% of regions, the vaccination rate was only <25% (Figure 3A). This 
heterogeneity in vaccine uptake is even more pronounced in the first 45 days of the vaccination campaign. A. Distribution of the 
rate of fully vaccinated individuals in 1,578 statistical regions in Israel on April 1, 2021. B. Daily vaccination rates in Israel for 

each of the 1,578 statistical. Rows represent statistical regions, columns represent days, and the color is the cumulative 
percentage of vaccinated individual in the region. 
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