
1 

 

An integrative analysis of clinical and epigenetic biomarkers of mortality 1 

 2 

Tianxiao Huan1,2,3†* (tianxiao.huan@umassmed.edu),  3 

Steve Nguyen4† (nguy2295@umn.edu),  4 

Elena Colicino5 (elena.colicino@mssm.edu),  5 

Carolina Ochoa-Rosales6 (c.ochoarosales@erasmusmc.nl),  6 

W. David Hill7 (David.Hill@ed.ac.uk),  7 

Jennifer A. Brody8,9 (jeco@uw.edu),  8 

Mette Soerensen10,11,12 (msoerensen@health.sdu.dk),  9 

Yan Zhang13 (y.zhang@Dkfz-Heidelberg.de),  10 

Antoine Baldassari14 (baldassa@email.unc.edu),  11 

Mohamed Ahmed Elhadad15,16,17 (mohamed.elhadad@helmholtz-muenchen.de),  12 

Tanaka Toshiko18 (tanakato@mail.nih.gov),  13 

Yinan Zheng19 (y-zheng@northwestern.edu), 14 

Arce Domingo-Relloso20-22 (ad3531@cumc.columbia.edu), 15 

Dong Heon Lee1,2 (dephs1042@gmail.com),  16 

Jiantao Ma1,2,23 (jiantao.ma@tufts.edu),  17 

Chen Yao1,2 (chenyao.bioinfor@gmail.com),  18 

Chunyu Liu24 (liuc@bu.edu),  19 

Shih-Jen Hwang1,2 (hwangs2@nhlbi.nih.gov),  20 

Roby Joehanes1,2 (roby.joehanes@nih.gov),  21 

Myriam Fornage25 (Myriam.Fornage@uth.tmc.edu), 22 

Jan Bressler26 (jan.bressler@uth.tmc.edu), 23 

Joyce BJ van Meurs26 (j.vanmeurs@erasmusmc.nl),  24 

Birgit Debrabant10 (bdebrabant@health.sdu.dk),  25 

Jonas Mengel-From10,12 (jmengel-from@health.sdu.dk),  26 

Jacob Hjelmborg10 (JHjelmborg@health.sdu.dk),  27 

Kaare Christensen10,12 (KChristensen@health.sdu.dk),   28 

Pantel Vokonas27-29 (pantel.vokonas@va.gov),  29 

Joel Schwartz30 (joel@hsph.harvard.edu),  30 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted January 31, 2022. ; https://doi.org/10.1101/2022.01.24.22269611doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.01.24.22269611


2 

 

Sina A. Gahrib8,9 (sagharib@u.washington.edu),  31 

Nona Sotoodehnia8,9 (nsotoo@uw.edu),  32 

Colleen M. Sitlani8,9 (csitlani@uw.edu),  33 

Sonja Kunze15,16 (sonja.kunze@helmholtz-muenchen.de ),  34 

Christian Gieger15,16,17 (christian.gieger@helmholtz-muenchen.de),  35 

Annette Peters16,17,31,32 (peters@helmholtz-muenchen.de),  36 

Melanie Waldenberger15,16,17 (waldenberger@helmholtz-muenchen.de),  37 

Ian J. Deary7 (iand@exseed.ed.ac.uk),  38 

Luigi Ferrucci18 (FerrucciLu@grc.nia.nih.gov),  39 

Yishu Qu19 (yishu.qu@northwestern.edu), 40 

Philip Greenland19 (p-greenland@northwestern.edu), 41 

Donald M Lloyd-Jones19 (dlj@northwestern.edu), 42 

Lifang Hou19 (l-hou@northwestern.edu),  43 

Stefania Bandinelli33 (stefania1.bandinelli@uslcentro.toscana.it),  44 

Trudy Voortman6 (trudy.voortman@erasmusmc.nl),  45 

Brenner Hermann13,34 (h.brenner@Dkfz-Heidelberg.de),  46 

Andrea Baccarelli35 (ab4303@cumc.columbia.edu),  47 

Eric Whitsel14,36 (eric_whitsel@med.unc.edu),  48 

James S. Pankow4* (panko001@umn.edu),  49 

Daniel Levy1,2* (levyd@nhlbi.nih.gov) 50 

 
51 

 52 

1 The Framingham Heart Study, Framingham, MA, USA  53 

2 The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, 54 

National Institutes of Health, Bethesda, MD, USA 55 

3 Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, MA, USA 56 

4 Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, 57 

Minneapolis, MN, USA 58 

5 Icahn School of Medicine at Mount Sinai, New York, NY, USA 59 

6 Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands 60 

7 Dept of Psychology, Univ of Edinburgh, Edinburgh, UK 61 

8 Division of Pulmonary, Critical Care and Sleep Medicine, Center for Lung Biology,  University of 62 

Washington, Seattle, WA, USA 63 

9 Cardiovascular Health Research Unit, Seattle, WA, USA 64 

10 Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern 65 

Denmark, J.B. Winsløws Vej 9B, 5000, Odense C, Denmark 66 

11 Department of Clinical Biochemistry and Pharmacology, Center for Individualized Medicine in Arterial 67 

Diseases, Odense University Hospital, J.B. Winsløws Vej 4, 5000, Odense C, Denmark 68 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted January 31, 2022. ; https://doi.org/10.1101/2022.01.24.22269611doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.24.22269611


3 

 

12 Department of Clinical Genetics, Odense University Hospital, J.B. Winsløws Vej 4, 5000, Odense C, 69 

Denmark 70 

13 Division of Clinical Epidemiology & Aging Research, German Cancer Rsrch Ctr (DKFZ) 71 

14 Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel 72 

Hill, NC, 27599, USA 73 

15 Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for 74 

Environmental Health, Neuherberg, Germany 75 

16 Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 76 

Neuherberg, Germany 77 

17 German Research Center for Cardiovascular Disease (DZHK), Partner site Munich Heart Alliance, Germany  78 

18 Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA 79 

19 Ctr for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Ctr & Dept of Preventive Medicine, 80 

Northwestern Univ Feinberg School of Medicine, Chicago, IL, USA 81 

20 Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health 82 

Institute, Madrid, Spain. 83 

21 Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New 84 

York, NY, USA 85 

22 Department of Statistics and Operations Research, University of Valencia, Spain 86 

23 Nutrition Epidemiology & Data Science, Friedman School of Nutrition Science and Policy & Cardiovascular 87 

Nutrition Laboratory, USDA Human Nutrition Rsrch Ctr on Aging, Tufts Univ, Boston, MA, USA 88 

24 Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA 89 

25 Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, 90 

Houston, TX, USA 91 

26 Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands 92 

27 Veterans Affairs, Normative Aging Study, Boston, MA, USA 93 

28 Veterans Affairs, Boston Healthcare System, Boston, MA, USA 94 

29 Boston University School of Public Health, Boston, MA, USA 95 

30 Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, 96 

MA, USA 97 

31 German Center for Diabetes Research (DZD), München-Neuherberg, Ingolstädter Landstr. 1, 85764, 98 

Neuherberg, Germany 99 

32 Institute of Medical Information Sciences, Biometry and Epidemiology, Ludwig-Maximilians-University, 100 

Munich, Germany 101 

33 Geriatric Unit, Azienda Sanitaria Firenze (ASF), Florence, Italy 102 

34 Network Aging Research (NAR), Univ of Heidelberg, Heidelberg, Germany 103 

35 Precision Medicine Program, Department of Environmental Health Sciences, Mailman School of Public 104 

Health, Columbia University, New York, NY, USA 105 

36 Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA 106 

  107 
† Authors contribute equally  108 

* Corresponding authors 109 

 110 

Daniel Levy, MD 111 

Framingham Heart Study 112 

Population Sciences Branch 113 

National Heart, Lung, and Blood Institute 114 

73 Mt. Wayte Avenue, Suite 2 115 

Framingham, MA 01702 116 

Email : LevyD@nih.gov 117 

Phone: 508-935-3458 118 

Fax: 508-872-2678 119 

 120 

James S. Pankow, PhD, MPH 121 

Division of Epidemiology and Community Health 122 

School of Public Health, University of Minnesota 123 

Minneapolis, MN 55455 124 

Email: panko001@umn.edu 125 

 126 

Tianxiao Huan, PhD 127 

Framingham Heart Study 128 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted January 31, 2022. ; https://doi.org/10.1101/2022.01.24.22269611doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.24.22269611


4 

 

National Heart, Lung, and Blood Institute 129 

Framingham, MA 01702 130 

Email: tianxiao.huan@umassmed.edu 131 

 132 

Running title: Epigenetic prediction of mortality 133 

  134 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted January 31, 2022. ; https://doi.org/10.1101/2022.01.24.22269611doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.24.22269611


5 

 

Checklist:  135 

(1) total character count; 47,195 136 

(2) word count of the Summary; 247 137 

(3) the number of papers cited in the References; 52 138 

(4) a listing of all Tables (Table 1, Table 2, etc.);  139 

Table 1: Clinical characteristics the 15,013 study participants.  140 

Table 2: Trans-ethnic replicated all-cause mortality related CpGs. 141 

Table 3: Performance robustness comparison of mortality predictors in FHS and ARIC cohorts. 142 

(5) a listing of all Figures (Fig. 1, Fig. 2, etc.) including, (a) whether the Figure should be in colour, 143 

greyscale or black and white, (b) whether the Figure should appear in 1-column or 2-column format, 144 

(c) the size of the Figure at full scale (mm x mm), (d) the smallest font size used in the Figure at full 145 

scale. 146 

Figure No Color Greyscale Black 
and white 

Single Double Size Smallest 
font size 
used in 
the 
figure at 
full scale 

Figure 1   Yes  Yes 80 mm 12 
Figure 2   Yes Yes  80 mm 12 
Figure 3   Yes Yes  80 mm 12 
  147 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted January 31, 2022. ; https://doi.org/10.1101/2022.01.24.22269611doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.24.22269611


6 

 

Abstract  148 

DNA methylation (DNAm) has been reported to be associated with many diseases and mortality. We 149 

hypothesized that the integration of DNAm with clinical risk factors would improve mortality 150 

prediction.We performed an epigenome-wide association study of whole blood DNAm in relation to 151 

mortality in 15 cohorts (n=15,013). During a mean follow-up of 10 years, there were 4314 deaths 152 

from all-causes including 1235 cardiovascular disease (CVD) deaths and 868 cancer deaths. Ancestry-153 

stratified meta-analysis of all-cause mortality identified 163 CpGs in European ancestry (EA) and 17 154 

in African ancestry (AA) participants at P<1x10-7, of which 41 (EA) and 16 (AA) were also 155 

associated with CVD death, and 15 (EA) and 9 (AA) with cancer death. We built DNAm-based 156 

prediction models for all-cause mortality that predicted mortality risk independent of clinical risk 157 

factors. The mortality prediction model trained by integrating DNAm with clinical risk factors 158 

showed a substantial improvement in prediction of cancer death with 11% and 5% increase in the C-159 

index in internal and external replications, compared with the model trained by clinical risk factors 160 

alone. Mendelian randomization identified 15 CpGs in relation to longevity, CVD, or cancer risk. For 161 

example, cg06885782 (in KCNQ4) was positively associated with risk for prostate cancer (Beta=1.2, 162 

PMR=4.1x10-4), and negatively associated with longevity (Beta=-1.9, PMR=0.02). Pathway analysis 163 

revealed that genes associated with mortality-related CpGs are enriched for immune and cancer 164 

related pathways. We identified replicable DNAm signatures of mortality and demonstrated the 165 

potential utility of CpGs as informative biomarkers for prediction of mortality risk. 166 

 167 

Key words: DNA methylation; machine learning; mortality; cardiovascular disease; cancer 168 
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Introduction 170 

Despite substantial evidence of heritability of human longevity (h2 = 10-30%), genome-wide 171 

association studies (GWAS) have reported few loci associated with human longevity (Deelen et al., 172 

2019; Pilling et al., 2017; Timmers et al., 2019; van den Berg, Beekman, Smith, Janssens, & 173 

Slagboom, 2017). DNA methylation (DNAm), the covalent binding of a methyl group to the 5’ 174 

carbon of cytosine- phosphate-guanine (CpG) dinucleotide sequences, reflects a wide range of 175 

environmental exposures and genetic influences at the molecular level and altered DNAm has been 176 

shown to regulate gene expression (Jones & Takai, 2001). Recent studies have reported DNAm 177 

patterns associated with age in humans (Hannum et al., 2013; Horvath, 2013; Levine et al., 2018; Lu 178 

et al., 2019). Estimates of biological age based on DNAm, referred to as "epigenetic age" or "DNAm 179 

age" have been validated in numerous studies, although the functions of these age-associated CpGs 180 

are largely unknown (Horvath et al., 2015; Lu et al., 2019; Marioni, Shah, McRae, Chen, et al., 2015; 181 

Marioni, Shah, McRae, Ritchie, et al., 2015). DNAm age also has been shown to be predictive of 182 

many age-related diseases and of all-cause mortality (Chen et al., 2016; Dugué et al., 2018; Levine et 183 

al., 2018; Lu et al., 2019; Marioni, Shah, McRae, Chen, et al., 2015).  184 

Despite the association of DNAm age with a variety of age-associated outcomes, age-related CpGs 185 

are different from those that are most strongly associated with mortality. Relatively few DNAm 186 

studies have focused on mortality as the primary outcome (Colicino et al., 2020; Svane et al., 2018; 187 

Zhang et al., 2017). Moreover, due to sample size limitations, most DNAm mortality studies have not 188 

typically investigated cause-specific mortality such as death due to cardiovascular disease (CVD) and 189 

cancer. Additionally, little is known about the prediction performance of DNAm-based mortality 190 

models and whether or not such approaches improve mortality prediction above and beyond 191 

established clinical risk factors.  192 

We hypothesized that inter-individual variation in DNAm is associated with all-cause mortality risk 193 

and with cause-specific mortality, and that we could build models incorporating CpGs that would 194 

improve mortality prediction beyond established clinical risk factors. In this study, we report the 195 
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results of a meta-analysis of epigenome-wide association studies (EWAS) of all-cause mortality and 196 

cause-specific mortality including death from CVD and cancer in up to 15,013 individuals from 15 197 

prospective cohort studies in which DNAm was measured in whole blood. We built all-cause 198 

mortality risk prediction models using penalized regression and machine learning methods and 199 

integrated DNAm and established mortality clinical risk factors and validated the models’ 200 

performance. Additionally, using Mendelian randomization, we identified putatively causal CpGs for 201 

mortality. Last, we investigated the downstream gene expression and pathway changes of the 202 

mortality-related CpGs by testing associations between DNAm and gene expression. Fig. S1 203 

summarizes the multi-step study design.  204 

 205 

Results 206 

Study population 207 

Table 1 presents the major clinical characteristics of the 15,013 study participants including 11,684 208 

European ancestry (EA, mean age 65, 55% women) and 3329 African ancestry (AA, mean age 59, 70% 209 

women) participants from 15 cohorts (Table S1 summarizes additional clinical characteristics). Most 210 

studies had fewer than 15 years of mean follow-up (mean values ranged from 6.4 to 13.7 years), 211 

except ARIC (mean follow-up of 20.0 years in ARIC EA and 18.6 in ARIC AA participants, 212 

respectively). During follow-up of EA participants, 2907 died of any cause, 688 of CVD, and 546 of 213 

cancer; among AA participants, 1407 died of any cause, 547 of CVD, and 322 of cancer. 214 

Ancestry-stratified epigenome-wide meta-analysis of all-cause mortality 215 

At Bonferroni-corrected P<1x10-7 (~0.05/400,000), we identified 163 CpGs whose differential 216 

methylation in whole blood was associated with all-cause mortality in EA participants, and 17 CpGs 217 

in AA participants, after adjustment of age, sex, lifestyle factors, clinical risk factors, white blood cell 218 

types, and technical covariates. Tables S2-S3 present the results for all CpGs at P<1x10-5. Overall 219 

genomic inflation in meta-analysis (λ) was estimated at 1.15 or less, indicating low inflation and low 220 
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risk of false-positive findings. Even though cohort-specific analysis showed slightly higher genomic 221 

inflation in some cohorts (λ >1.5 in two cohorts, Table S4), forest plots show that the results were not 222 

driven by results from one or several cohorts (Fig. S2). Sensitivity analysis results including meta-223 

analysis after correcting for λ in each cohort, meta-analysis after excluding results from two cohorts 224 

with λ >1.5 and meta-analysis after excluding RS cohort are included in Table S5-S6. Results of the 225 

sensitivity analysis remained consistent with the main results in terms of direction and effect estimates 226 

with Pearson’s correlation r= 0.99 (in EA, corrected for λ in each cohorts), r= 1.00 (in EA, after 227 

removing two cohorts with λ >1.5), r= 1.00 (in EA, after removing RS) and r= 1.00 (in AA, corrected 228 

for λ in each cohorts). 229 

Among the 177 all-cause mortality-related CpGs (union set of EA and AA results at P<1x10-7), the 230 

vast majority of significant CpGs (151, 85%) were inversely associated with mortality, with hazards 231 

ratios (HRs) <1 (range 0.72 to 0.89 per standard deviation [SD]). Methylation at the remaining 26 232 

(15%) CpGs was positively associated with mortality, with HRs >1 (range 1.13 to 1.32). The 177 233 

CpGs are annotated to 121 genes and 43 intergenic regions.  234 

Transethnic replication and sensitivity analysis 235 

Of the 163 all-cause mortality related CpGs in EA participants, 18 (11%) had P< 0.0003 (0.05/163) in 236 

AA participants; of the 17 CpGs in AA participants, 12 (71%) had P< 0.004 (0.05/17) in EA 237 

participants. Table 2 displays the transethnic replicated CpGs including 27 unique CpGs. The top 3 238 

transethnic replicated CpGs in EA participants remained the top 3 in AA participants, including 239 

cg16743273 for MOBKL2A, cg18181703 for SOCS3, and cg21393163 at an intergenic region (Chr.1: 240 

12217629).  241 

Because ARIC had longer follow-up than the other cohorts, in sensitivity analysis, we truncated ARIC 242 

follow up at 15 years. The HRs for the significant CpGs (at P<1x10-5) remained consistent with the 243 

main results in terms of direction and effect estimates with Pearson’s correlation r= 1.00 and r= 0.99 244 

in EA and AA participants, respectively (Table S2-S3 and Fig. S3).  245 

Associations of DNAm with CVD death and cancer death 246 
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In comparison with results for all-cause mortality, fewer CpGs were associated with CVD death (at 247 

P<1x10-7, n=4 in EA, and n=15 in AA) and cancer death (n=0 in EA, and n=1 in AA) Tables S7-S8 248 

report the corresponding results at P<1x10-5. Among the 163 all-cause mortality-related CpGs 249 

identified in EA participants at P<1x10-7, 41 CpGs were associated with CVD death, 16 with cancer 250 

death, and 5 with both (at P<0.05/163, Table S2). Among the 17 CpGs identified in AA participants 251 

at P<1x10-7, 15 were associated with CVD death, 9 with cancer death, and 8 with both (at P<0.05/17, 252 

Table S3). Fig. 1 shows the effect sizes and direction of effect for the top CpGs associated with all-253 

cause mortality, and their consistency with the results of analyses of CVD death and cancer death. We 254 

found that if a CpG was positively correlated with all-cause mortality, then it also was positively 255 

correlated with CVD death and cancer death, and vice versa. 256 

Mortality prediction model 257 

To investigate if DNAm can be used to predict mortality risk, we constructed prediction models for 258 

all-cause mortality, and evaluated their prediction of all-cause mortality, CVD death, and cancer death. 259 

To ensure unbiased validation, we split the EA cohorts into separate discovery and replication sets 260 

(Fig. S1 shows the analysis flowchart). The discovery cohorts consisted of 8288 participants 261 

(including 2173 deaths from all-causes) from 10 cohorts, excluding FHS (n=2427) and ARIC (n=969), 262 

which were used as replication cohorts. The meta-analysis of the discovery set identified 74 CpGs at 263 

P<1x10-7, 158 CpGs at P<1x10-6, 357 CpGs at P<1x10-5, 931 CpGs at P<1x10-4, 2717 CpGs at 264 

P<1x10-3, and 28,323 CpGs at P<0.05. We evaluated three types of input features: a) clinical risk 265 

factors only (i.e., clinical risk factor models); b) CpGs identified in the meta-analysis of the discovery 266 

set (i.e., CpG models); and c) the input features including both CpGs and clinical risk factors (i.e., 267 

integrative models). We also compared four prediction methods including Elastic net - Cox 268 

proportional hazards (Elastic-coxph) (Friedman, Hastie, & Tibshirani, 2010), Random survival forest 269 

(RSF) (Ishwaran, Kogalur, Blackstone, & Lauer, 2008), Cox-nnet (Ching, Zhu, & Garmire, 2018), 270 

and DeepSurv (Katzman et al., 2018) (see Methods for details). In general, the four prediction 271 

methods did not show major differences in predicting mortality outcomes as assessed by multiple 272 
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evaluation metrics (Table S9 lists the evaluation metrics across all four methods). To simplify the 273 

presentation of results, we focused on the Elastic-coxph method.  274 

Clinical risk factors strongly predict all-cause mortality and CVD death: The C-index of the clinical 275 

risk factor models (age, sex, and 12 clinical risk factors) was 0.80 for all-cause mortality, 0.81 for 276 

CVD death, and 0.77 for cancer death in FHS (reflecting the average values of 10-fold cross-277 

validation). Among the 12 clinical risk factors, prevalent cancer status was the major contributor to 278 

predicting cancer death. After excluding individuals with prevalent cancer at the time of blood draw 279 

for DNAm measurements (i.e., the start of follow up), the C-index of the clinical risk factor model 280 

was 0.57 for cancer death. Finally, two clinical risk models were built using the optimum parameters 281 

selecting by cross-validation (see Methods). The first one was trained using all FHS participants and 282 

included 10 risk factors selected by the Elastic-coxph method (to predict all-cause mortality and CVD 283 

death, Table S10), and the second was trained using FHS participants excluding those with prevalent 284 

cancer cases and including 10 risk factors (to predict cancer death, Table S11). The corresponding C-285 

index of the clinical risk factor model was 0.75 for all-cause mortality (HR=2.64 per SD in the risk 286 

score, 95% CI [2.21, 3.15], P=4.4x10-27), 0.81 for CVD death (HR=3.51, 95% CI [2.58, 4.79], P=2.1 287 

x10-15), and 0.71 for cancer death (excluding prevalent cancer samples, HR=2.35, 95% CI [1.74, 3.18], 288 

P=2.3 x10-8) in ARIC EA participants with follow up truncated at 15 years (Table 3).  289 

DNAm predicts mortality independently of age and clinical risk factors: The models using all-cause 290 

mortality-related CpGs identified in the discovery cohorts as the sole input feature (the CpG model) 291 

were predictive of all-cause mortality, CVD death, and cancer death in the replication set. As shown 292 

in Fig. S4, when more discovery CpGs were added to the model, the prediction performance metrics 293 

did not always improve. In FHS, the models with discovery CpGs at P<1x10-3 showed the best 294 

predictive performance for all-cause mortality (C-index =0.77) and CVD death (C-index =0.82), but 295 

the model with discovery CpGs at P< 1x10-5 showed the best predictive performance for cancer death 296 

(excluding prevalent cancer cases, [C-index =0.65]). The final CpG models that were trained using all 297 

FHS participants are provided in Table S12 including 76 CpGs to predict all-cause mortality and 298 

CVD death, and in Table S13 including 56 CpGs to predict cancer death (excluding prevalent cancer 299 
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cases). The C-index of the CpG models with the best predictive performance in ARIC were 0.72 for 300 

all-cause mortality (HR=2.21, 95% CI [1.86, 2.62], P=2.0x10-20), 0.77 for CVD death (HR=2.62, 95% 301 

CI [1.96, 3.51], P=9.9x10-11) and 0.73 for cancer death (HR=2.22, 95% CI [1.67, 2.95], P=3.2 x10-8, 302 

Table 3). The association of the mortality risk scores calculated by the CpG models with mortality 303 

outcomes remained significant after adjusting for age, sex, and clinical risk factors; for all-cause 304 

mortality (HR=1.68, 95% CI [1.37, 2.07], P=9.8 x10-7), CVD death (HR=1.81, 95% CI [1.24, 2.64], 305 

P=0.002), and cancer death (HR=2.04, 95% CI [1.46, 2.86], P=3.0x10-5).  306 

The integrative model (trained by CpGs and clinical risk factors) moderately improved upon the 307 

clinical risk factor model for all-cause mortality and CVD death, and greatly improved the prediction 308 

of cancer death: As shown in Table 3, the integrative models demonstrated robustness for predicting 309 

mortality outcomes, with a good C-index, HR, and low brier error rate. The final integrative models 310 

trained using data from all FHS participants are provided in Table S14 including nine clinical risk 311 

factors and 36 CpGs to predict all-cause mortality and CVD death, and in Table S15 including seven 312 

clinical risk factors and 42 CpGs to predict cancer death (excluding prevalent cancer cases). The C-313 

index values of the integrative models were 0.80 (FHS, reflecting the average values of 10-fold cross-314 

validation) and 0.77 (ARIC) for all-cause mortality; 0.83 (FHS) and 0.80 (ARIC) for CVD death; and 315 

0.69 (FHS) and 0.76 (ARIC) for cancer death. Kaplan-Meier survival curves for the mortality risk 316 

scores (split into high, middle, and low risk groups) in the ARIC EA cohort (computed by the 317 

integrative models using clinical risk factors and CpGs at discovery P<1x10-6, Table S14-S15) 318 

illustrates the higher death rate for those with a higher mortality risk score (log-rank P<1x10-6, Fig. 3). 319 

In comparison to the clinical risk factor models, the integrative models moderately improved 320 

prediction of all-cause mortality (0.7% increase in C-index with addition of CpGs in FHS and 2% 321 

increase in ARIC), and of CVD death (2% increase in C-index in FHS, but no increase in ARIC). We 322 

speculate that the reason for this minor increase is because the mortality-related CpGs capture the 323 

contributions of clinical risk factors for CVD death. For cancer death, the C-index of the integrative 324 

model revealed an 11% increase in FHS above and beyond the clinical risk factor model and a 325 

corresponding 5% increase in ARIC. 326 
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We also tested the mortality prediction models’ performance using the entire ARIC EA data (without 327 

truncation, Table S16). Due to the long follow-up time in this older cohort (mean age 59.8 at baseline, 328 

with 20 ± 5.5 years follow-up), the integrative model exhibits very similar performance features as the 329 

model using age and sex as the sole input features for predicting all-cause mortality and CVD death. 330 

The integrative model improved prediction of cancer death with 2% increase in the C-index versus the 331 

clinical risk factor model.  332 

We further tested all-cause mortality prediction models in the CARDIA study (baseline age 45 ± 3 333 

years). The CARDIA study has 12 years of follow-up, during which there were 27 deaths from all 334 

causes in 905 participants with DNA methylation. As shown in Table S17, the clinical risk factor 335 

model, the CpG model, and the integrative model each predicted all-cause mortality, and each 336 

outperformed the DNAm age models. 337 

Comparing the mortality prediction model with DNAm age 338 

We compared four DNAm age models (i.e., PhenoAge (Levine et al., 2018), Horvath Age (Horvath, 339 

2013), Hannum Age (Hannum et al., 2013), and GrimAge (Lu et al., 2019)) with our mortality 340 

prediction models (CpG only models and integrative CpG plus 12 risk factor models) for all-cause 341 

mortality, CVD death, and cancer death in ARIC participants. The associations of mortality risk 342 

scores calculated by mortality prediction models with mortality outcomes were statistically significant, 343 

and the associations remained significant after adjusting for age and sex, and after additionally 344 

adjusting for the clinical risk factors. The four DNAm age models were significantly associated with 345 

mortality outcomes. After adjusting for age, sex and clinical risk factors, however, only GrimAge 346 

remained associated with all-cause mortality, CVD death, and cancer death. None of the other three 347 

DNAm age predictors was associated with mortality outcomes after additionally adjusting for clinical 348 

risk factors (Fig. 3). The mortality prediction models (both the CpG only model and the integrative 349 

model that included the clinical risk factors and CpGs) outperformed the GrimAge model in 350 

prediction of mortality outcomes in terms of HRs and P values. The associations of mortality risk 351 

scores with mortality outcomes remain significant after adjusting for the four DNAm age (Table S18). 352 
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Associations of DNAm with genetic variants and Mendelian randomization analysis 353 

Among the 177 all-cause mortality-related CpGs (union of EA and AA results at P<1x10-7), 123 354 

CpGs had significant associations with genetic variants (i.e. cis- or trans-meQTL variants). meQTL 355 

variants for 80 CpGs could be linked to 618 GWAS Catalog(Buniello et al., 2019) index SNPs 356 

associated with 432 complex traits or diseases (Table S18).  357 

We further performed multiple instrumental variable (IV) MR analysis for the 17 CpGs having ≥3 358 

independent cis-meQTL SNPs (pruned by LD r2< 0.01, as IVs, to model the causal relations of 359 

differential methylation at these CpGs (as the exposure) on the various outcomes, including longevity 360 

(Deelen et al., 2019), CVD, CVD risk factors, and cancer (Evangelou et al., 2018; Locke et al., 2015; 361 

Michailidou et al., 2017; Phelan et al., 2017; Schumacher et al., 2018; Scott et al., 2017; Wang et al., 362 

2014; Willer et al., 2013). At PMR <0.05, MR supported causal effects of 15 CpGs on one or more 363 

outcome (Table S19), and 4 CpGs were statistically significant at PMR <0.05/17, including 364 

cg06885782 (within 1500 bases upstream of transcription start site [TSS1500] of KCNQ4) and 365 

cg04907244 (TSS1500 of SNORD93) in relation to prostate cancer (Schumacher et al., 2018) 366 

(Beta=1.2 and 2.1; and PMR= 4.1x10-4 and 0.003 , respectively), cg07094298  (in the gene body of 367 

TNIP2) in relation to lung cancer (Wang et al., 2014) (Beta =2.2, and PMR=0.003), and cg18241337 368 

(in the gene body of SSR3) in relation to total cholesterol (Willer et al., 2013) (Beta=0.5, and 369 

PMR=0.003). cg06885782 (KCNQ4) also was associated with longevity (Deelen et al., 2019) (Beta=-370 

1.9, PMR=0.02).  371 

Associations of DNAm with gene expression, and pathway analysis 372 

For the 177 all-cause mortality-related CpGs at P<1x10-7, we assessed associations of CpGs with 373 

nearby gene expression (i.e. cis gene expression; within +/- 1 Mb) and identified 15 cis- DNAm-374 

mRNA associated pairs (13 CpGs and 15 mRNAs) at P<3x10-10. The genes located at these CpGs or 375 

cis-eQTM mRNAs were not enriched for any biological processes or pathways. For the 719 all-cause 376 

mortality-related CpGs at P<1x10-5, 495 genes located at CpG sites were enriched for positive 377 

regulation of transcription from RNA polymerase II promoter (Gene Ontology [GO] (Ashburner et al., 378 
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2000), fold change = 1.9, FDR=0.05),  and pathways for cancer (Kyoto Encyclopedia of Genes and 379 

Genomes [KEGG] pathway (Kanehisa & Goto, 2000), fold change =2.2, FDR=0.13, Table S20). 380 

There were 79 cis-DNAm-mRNA pairs (63 CpGs and 67 mRNAs, Table S21). The 67 cis-eQTM 381 

mRNAs were enriched for multiple immune functions including immune response (GO, fold change = 382 

6.3, FDR=0.01).  383 

 384 

Discussion 385 

By performing EWAS using whole blood derived DNA from 15,013 individuals from 15 cohorts with 386 

the accrual of 4314 deaths during a mean follow up of more than 10 years, we identified robust 387 

DNAm signatures of all-cause and cause-specific mortality. We developed replicable mortality 388 

predictors by integrating mortality-related CpGs with traditional clinical risk factors. The integrative 389 

models that included clinical risk factors and CpGs showed modest improvement in prediction of all-390 

cause mortality and CVD death, and a substantial improvement in prediction of cancer death 391 

compared to the traditional risk factor model in the FHS (internal cross-replication) and ARIC 392 

(external independent replication) cohorts. 393 

Our study is one of the largest EWAS of mortality to date (Colicino et al., 2020; Svane et al., 2018; 394 

Zhang et al., 2017) and it revealed many replicable DNAm signatures for all-cause mortality. Our 395 

results are consistent with those from previous EWAS of all-cause mortality; the vast majority of 396 

CpGs (85% in our study, 84% in (Zhang et al., 2017), and 67 % in (Colicino et al., 2020)) were 397 

inversely associated with mortality suggesting a greater mortality risk with lower CpG methylation. 398 

Our study identified more CpGs in EA cohorts (n=163) than in AA cohorts (n=17). As shown in 399 

Table 2, the effect sizes (i.e., HR) of mortality-related CpGs in EA and AA participants were quite 400 

similar. We speculate that our study identified many more CpGs in EA participants than AA 401 

participants due the greater statistical power of the larger EA sample size. Using different DNAm data 402 

normalization methods (such as Noob (Triche Jr, Weisenberger, Van Den Berg, Laird, & Siegmund, 403 

2013), SWAN (Maksimovic, Gordon, & Oshlack, 2012), BMIQ(Teschendorff et al., 2013), and 404 
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Dasen (Pidsley et al., 2013), see Additional File 1) in different cohorts may also affect the 405 

reproducibility of the results. Among the top mortality-associated CpGs, many were associated with 406 

common traits associated with diseases in prior EWAS including BMI (e.g., cg03725309 in SARS) 407 

(Mendelson et al., 2017), smoking (e.g., cg05575921 in AHRR) (Joehanes et al., 2016), blood pressure 408 

(e.g., cg03068497 and cg21429551 in GARS) (Richard et al., 2017), alcohol consumption (e.g., 409 

cg02583484 in HNRNPA1) (Liu et al., 2018), and diet (e.g., cg18181703 in SOCS3 ) (Ma et al., 2020). 410 

Among the 177 all-cause mortality-related CpGs (union of EA and AA results at P<1x10-7), 123 411 

CpGs had significant associations with genetic variants (i.e., cis- or trans-meQTL variants identified 412 

previously (Huan et al., 2019)). For the remaining 44 CpGs, however, this does not mean that their 413 

methylation levels have nothing to do with genetic variation. It is possible that the previous meQTL 414 

study lacked sufficient statistical power to identify meQTLs for those CpGs. The mortality-related 415 

CpGs are linked to hundreds of human complex diseases/traits via their cis-meQTL SNPs, which 416 

coincide with 618 GWAS Catalog (Buniello et al., 2019) index SNPs. This leads us to hypothesize 417 

that many disease/phenotype associated SNPs may contribute to disease processes via effects on 418 

mortality-related CpGs. In this way, the mortality-related CpGs may contribute causally to disease. To 419 

test this hypothesis, we conducted MR analyses that confirmed several putatively causal associations 420 

of mortality-related CpGs with longevity (Deelen et al., 2019), CVD (Nikpay et al., 2015), CVD risk 421 

factors, and several types of cancer (Evangelou et al., 2018; Locke et al., 2015; Michailidou et al., 422 

2017; Phelan et al., 2017; Schumacher et al., 2018; Scott et al., 2017; Wang et al., 2014; Willer et al., 423 

2013) (Table S19). Among the four CpGs passing a Bonferroni-corrected threshold in MR analyses, 424 

cg06885782 in KCNQ4 was reported to be associated with risk for prostate cancer (beta=1.2, 425 

PMR=4.1x10-4), and negatively associated with longevity (beta=-1.9, PMR=0.02). KCNQ4 (potassium 426 

voltage-gated channel subfamily Q member 4) was previously reported to be associated with age-427 

related hearing impairment (Van Eyken et al., 2006), and it contains genetic variants associated with 428 

all-cause mortality and survival free of major diseases (Walter et al., 2011). cg07094298 in the gene 429 

body of TNIP2 was previously identified as causal for lung cancer. A recent study reported TNIP2-430 

ALK fusion in lung adenocarcinoma (Feng et al., 2019). cg04907244 (in TSS1500 of SNORD93) was 431 
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identified as causal for prostate cancer by MR. SNORD93 and its methylation was reported to be 432 

associated with several cancer types including uveal melanoma (Gong et al., 2017), breast cancer 433 

(Patterson et al., 2017), and renal clear cell carcinoma (Zhao et al., 2020). Pathway analysis further 434 

supported a role of mortality-related CpGs in relation to cancer risk. The intragenic CpGs were 435 

enriched for genes in cancer pathways, possibly as a consequence of the expression of nearby genes 436 

(cis-eQTMs analysis, Table S21) related to immune function.  437 

The 14 clinical risk factors for mortality were chosen based on prior knowledge. In contrast, there are 438 

far fewer established risk factors for cancer death other than age, sex, BMI, smoking, and alcohol 439 

consumption. It is not a surprise that the clinical risk factors themselves accurately predicted all-cause 440 

mortality (C-index = 0.80 in FHS, and 0.75 in ARIC) and CVD death (0.81 in FHS and 0.81 in ARIC), 441 

but not cancer death (0.57 in FHS and 0.71 in ARIC). Even though the clinical risk factors are 442 

important for stratifying CVD risk, clinical risk factors themselves are unable to reveal molecular 443 

mechanism and are thereby unable to highlight causal mechanisms or promising therapeutic targets. 444 

After integrating clinical risk factors with DNAm in the all-cause mortality prediction model, the C-445 

index only slightly increased (less than 2%) compared with the clinical risk factors model with regard 446 

to all-cause mortality and CVD death. As shown in Table S14, nine of the 14 clinical risk factors, 447 

including age, sex, physical activity, prevalent cancer, type II diabetes, hypertension, CHD, heart 448 

failure and stroke, as well as 36 CpGs that were selected as the representative features. Compared 449 

with clinical risk factors, the individual coefficients of the CpGs are much smaller. The small increase 450 

in the C-index and the small coefficients of the CpGs suggest that the contribution of CpGs to the 451 

prediction of death may overlap with these clinical risk factors. We also found that the mortality-452 

related CpGs as the sole input features were still able to predict mortality outcomes after adjusting for 453 

clinical risk factors. This suggests that mortality-related CpGs may identify novel molecular 454 

mechanisms contributing to CVD mortality that cannot be captured by existing clinical risk factors.  455 

In contrast to CVD and CVD mortality, for which established risk factors are highly predictive of risk, 456 

the prediction of cancer and cancer mortality has proved much more challenging. Owing to the lower 457 

prediction using clinical risk factors alone (0.57 in FHS and 0.71 in ARIC), the mortality-related 458 
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CpGs improved risk prediction of cancer death over and above the clinical risk factor model with an 459 

11% increase in the C-index in FHS and a 5% increase in ARIC. We further tested whether the all-460 

cause mortality prediction model can be used to predict mortality among all participants in the FHS 461 

with prevalent cancer (n=389). During a mean follow up of 9 years, there were 165 deaths in this 462 

group. The integrative mortality model predicted mortality risk among cancer cases (HR [95%CI]: 463 

4.23 [2.63-6.80], P = 2.9x10-9). These results in conjunction with MR and pathway analysis, show 464 

strong evidence of potential causal relations between mortality-related CpCs and pathways in cancer. 465 

Based on these results, we hypothesize that mortality-related CpGs can shed light on the epigenetic 466 

regulation of molecular interactions and help to identify novel therapeutic targets to reduce mortality 467 

risk for both CVD and cancer death. 468 

Recent studies have used DNAm of multiple CpG sites to predict chronological age (i.e. DNAm age), 469 

and showed that DNAm age was associated with all-cause mortality. We explored the prediction 470 

provided by these DNAm age models and show that PhenoAge (Levine et al., 2018), Horvath Age 471 

(Horvath, 2013), Hannum Age (Hannum et al., 2013), and GrimAge (Lu et al., 2019) were associated 472 

with mortality before accounting for risk factors. Only GrimAge, however, remained associated with 473 

mortality after adjusting for clinical risk factors. In contrast, the other three DNAm age models were 474 

no longer associated with mortality (Fig. 3). One possible explanation is that the three DNAm age 475 

predictors (i.e., PhenoAge, Horvath Age, and Hannum Age) identify CpGs associated with age, but 476 

are not specific for all-cause or cause-specific mortality risk. Of note, the CpGs that serve as DNAm 477 

mortality predictors and those that predict DNAm age in the three models do not overlap. Among the 478 

top CpGs (N=177) associated with all-cause mortality in our EWAS, only cg00687674 in TMEM84 is 479 

included in PhenoAge (Levine et al., 2018), and only cg19935065 in DNTT appears in Hannum Age 480 

(Hannum et al., 2013). GrimAge may have outperformed the other three DNAm age models in 481 

predicting mortality because the CpGs that it uses are associated with the levels of 80 CVD-related 482 

blood proteins, and with lifestyle and clinical risk factors (such as smoking), and mortality (Ho et al., 483 

2018; Shah et al., 2019; Yao et al., 2018). However, because the CpGs in the GrimAge model are not 484 

disclosed (i.e. they are proprietary), we were unable to determine if any of the mortality-related CpGs 485 
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in our study overlap with CpGs in the GrimAge model. Of note, our mortality prediction models (both 486 

the CpG only model and the integrative model that included CpGs and the clinical risk factors) 487 

outperformed GrimAge in prediction of mortality outcomes. 488 

We tested and compared four prediction methods including Elastic-coxph (Friedman et al., 2010), a 489 

regression based method, and three  machine learning methods (Ching et al., 2018; Ishwaran et al., 490 

2008; Katzman et al., 2018). The machine learning models did not outperform Elastic-coxph (Table 491 

S9 and Fig. S3). The clinical risk factor model trained by machine learning methods did not perform 492 

well in independent external replication. For example, the C-index of the clinical risk factor model for 493 

all-cause mortality was 0.67 using RSF17 versus 0.75 using Elastic-coxph in ARIC participants. Based 494 

on this metric, the machine learning methods did not outperform the regression-based methods when 495 

there were relatively few features as inputs.  496 

The primary outcome of our study was all-cause mortality. We did not train prediction models for 497 

CVD death or cancer death, but we tested the prediction ability of the all-cause mortality predictor on 498 

CVD death and cancer death. The CpGs in the model were restricted to all-cause mortality related 499 

CpGs. As shown in Fig. 1, the top DNAm signatures for all-cause mortality showed the same 500 

direction of effect for CVD death and cancer death. It is possible that some CpGs show opposite 501 

directions in relation to CVD death and cancer death, but we did not train separate models for these 502 

outcomes. Therefore, developing separate prediction models for CVD death and cancer death with a 503 

very large sample size would be an important next step. 504 

 505 

Conclusions 506 

In conclusion, the ancestry-stratified epigenome-wide meta-analyses in 15 population-based cohorts 507 

identified replicable DNAm signatures of all-cause and cause-specific mortality. The top mortality-508 

associated CpGs were linked with genes involved in immune and cancer related pathways, and were 509 

reported to be associated with human longevity, CVD risk factors, and several types of cancer. We 510 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted January 31, 2022. ; https://doi.org/10.1101/2022.01.24.22269611doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.24.22269611


20 

 

constructed and validated DNAm-based prediction models that predicted mortality risk independent 511 

of established clinical risk factors. The prediction model trained by integrating DNAm with clinical 512 

risk factors showed modest improvement in prediction of all-cause mortality and CVD death, and a 513 

substantial improvement in prediction of cancer death, compared with the model trained by clinical 514 

risk factors alone. The mortality-related CpG sites, and the DNAm-based prediction models may 515 

serve as useful clinical tools for assessing all-cause and cause-specific mortality risk and for 516 

developing new therapeutic strategies. 517 

 518 

Methods 519 

Study population 520 

This study included 15,013 participants from 15 population-based cohorts. There were 11,684 521 

European ancestry (EA) participants from 12 cohorts, including the Atherosclerosis Risk in 522 

Communities (ARIC) Study, the Cardiovascular Health Study (CHS), the Danish Twin Register 523 

sample (DTR), the Epidemiologische Studie zu Chancen der Verhütung, Früherkennung und 524 

optimierten Therapie chronischer Erkrankungen in der älteren Bevölkerung (ESTHER), the 525 

Framingham Heart Study (FHS), the Invecchiare in Chianti (InCHIANTI) Study, the Cooperative 526 

Health Research in the Region of Augsburg (KORA F4), the Lothian Birth Cohorts of 1921 527 

(LBC1921) and 1936 (LBC1936), the Normative Aging Study (NAS), the Rotterdam Study (RS), and 528 

Women’s Health Initiative (WHI); and 3329 Africa ancestry (AA) participants from 3 cohorts, 529 

including ARIC, CHS, and WHI. For each participant, we calculated the follow-up time between the 530 

date of the blood draw for DNAm measurements and the date at death or last follow up. Mean follow 531 

up was less than 15 years (range 6.2 to 13.7) for most cohorts, except for ARIC (mean 20.0 for EA 532 

and 18.6 for AA). The protocol for each study was approved by the institutional review board of each 533 

cohort. Further details for each cohort were included in Additional file1. 534 

Mortality ascertainment and clinical phenotypes 535 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted January 31, 2022. ; https://doi.org/10.1101/2022.01.24.22269611doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.24.22269611


21 

 

Outcomes including death from all causes, deaths from CVD, and deaths from cancer, were 536 

prospectively ascertained in each cohort. Survival status and details of death were ascertained using 537 

multiple strategies, including routine contact with participants for health history updates, surveillance 538 

at the local hospital, review of obituaries in the local newspaper, and National Death Index queries. 539 

Death certificates, hospital and nursing home records prior to death, and autopsy reports were 540 

requested and reviewed. Date and cause of death were determined separately for each cohort 541 

following review of all available medical records and /or were register-based. 542 

The clinical and lifestyle risk factors (referred to as clinical risk factors for simplicity thereafter) used 543 

as covariates in this study included age, sex, body mass index (BMI), smoking, alcohol consumption, 544 

physical activity, educational attainment, and prevalent diseases including hypertension, coronary 545 

heart disease (CHD), heart failure, stroke, type-II diabetes, and cancer. Fourteen clinical risk factors 546 

were chosen based on prior knowledge; most of these are key CVD risk factors. The clinical risk 547 

factors were ascertained at the time of blood draw for DNAm measurements. BMI was calculated as 548 

weight (kg) divided by height squared (m2). Educational attainment (years of educational schooling), 549 

physical activity (frequency, intensity or the metabolic equivalent of task [MET] scores), smoking 550 

status (yes/no, or cigs/day), alcohol consumption (drinks per day) were self-reported or ascertained by 551 

an administered questionnaire at routine research clinic visits. Diabetes was defined as a measured 552 

fasting blood glucose level of >125 mg/dL or current use of glucose-lowering prescription medication. 553 

Hypertension was defined as a measured systolic blood pressure (BP) ≥140 mm Hg or diastolic BP 554 

≥90 mm Hg or use of antihypertensive prescription medication. Cancer was defined as the occurrence 555 

of any type of cancer excluding non-melanoma skin cancer.  556 

DNA methylation measurements and quality control 557 

For each cohort, DNA was extracted from whole blood and bisulfite-converted using a Zymo EZ 558 

DNA methylation kit. DNAm was measured using the Illumina Infinium HumanMethylation450 559 

(450K) BeadChip platform (Illumina Inc, San Diego, CA). Each cohort conducted independent 560 
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laboratory DNAm measurement, quality control (including sample-wise and probe-wise filtering, and 561 

probe intensity background correction; see Additional file1).  562 

Cohort-specific epigenome-wide association analysis 563 

The correction of methylation data for technical covariates was cohort specific. Each cohort 564 

performed an independent investigation to select an optimized set of technical covariates (e.g., batch, 565 

plate, chip, row and column), using measured or imputed blood cell type fractions, surrogate variables, 566 

and/or principal components. Most cohorts had previous publications using the same dataset for 567 

EWAS of different traits, such as EWAS of alcohol drinking and smoking (Mendelson et al., 2017; 568 

Michailidou et al., 2017). In this study, those cohorts used the same strategies as they did previously 569 

for correcting for technical variables including batch (see Additional file1). To avoid false positives 570 

driven by single CpG extreme values, in each cohort, we first performed rank-based inverse normal 571 

transformation (INT) of DNAm β-values (the ratio of methylated probe intensity divided by the sum 572 

of the methylation and unmethylated probe intensity). We then conducted time-to-event analyses 573 

using Cox proportional hazards models to test for associations between each CpG and mortality 574 

outcomes including all-cause mortality, CVD death, and cancer death using the coxph() function in 575 

the ‘survival’ R library, adjusting for clinical risk factors (see Mortality ascertainment and clinical 576 

risk factors), technical confounders, and familial relatedness. Because ARIC cohorts had much 577 

longer follow-up than the other cohorts, ARIC follow up was truncated at 15 years and results were 578 

compared to those before truncation to determine if results were impacted by duration of follow up.  579 

In this study, we performed INT of DNAm β-values to avoid false positives driven by extreme values 580 

of single CpGs. Using the FHS EWAS results as an example, Table S21 shows that the top CpGs 581 

associated with all-cause mortality (without INT) were no longer significant after performing INT. 582 

This finding suggests that if we directly use DNAm β-values, those extreme outlier values could lead 583 

to false positive results. Clearly, the distribution of DNA β-values is non-normal and for this reason, 584 

we believe that the conservative INT approach we took protected against false positive results. 585 

Meta-analysis 586 
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The meta-analysis was performed for all-cause mortality, CVD death, and cancer death in EA 587 

(n=11,684) and AA (n=3329) participants respectively, using inverse variance-weighted random-588 

effects models implemented in metagen() function R packages 589 

(https://rdrr.io/cran/meta/man/metagen.html). We chose a random-effects model because of the 590 

heterogeneity in follow-up length and population demographics in the different cohorts (Table S1). 591 

We excluded the EWAS results for a study with <20 deaths. We excluded probes mapping to multiple 592 

locations on the sex chromosomes or with an underlying SNP (MAF>5% in 1000 Genome Project 593 

data) at the CpG site or within 10bp of the single base extension. In addition, the meta-analysis was 594 

constrained to methylation probes passing filtering criteria in five or more cohorts (see Additional 595 

File1), which resulted in ~400,000 CpGs that were included in the final analyses. The statistical 596 

significance threshold was P<0.05/400,000 ≈ 1x10-7. 597 

Three types of sensitivity analyses were performed including 1) correcting for λ values in each 598 

cohorts (Devlin, Roeder, & Wasserman, 2001), 2) excluding two cohorts with λ >1.5 from the meta-599 

analysis, and 3) excluding results of RS, because the cohort-specific analysis in RS having a strange 600 

distribution of top hits. There were 157 CpGs identified at P<1e-7 in the RS cohort-specific analysis. 601 

The number is much more than the number of all-cause mortality associated CpGs identified in the 602 

other cohorts. 603 

Mortality prediction models 604 

Mortality prediction models based on clinical risk factors and with the addition of DNAm were built 605 

and tested in EA cohorts. The analysis flowchart is shown in Fig. S1. To ensure unbiased validation, 606 

we split the EA cohorts into discovery and replication sets. The discovery cohorts consisted of 8288 607 

participants from 10 cohorts, excluding FHS (n=2427) and ARIC (n=969), which were used as 608 

replication cohorts. To build and replicate a prediction model, the DNAm data were preprocessed 609 

utilizing the same strategy as in the EWAS analysis.  610 

Input features: To evaluate the prediction performance of clinical risk factors and DNAm 611 

comprehensively, we tested 13 sets of features, Feature set 1 (F1) included age (years), sex (male as 1 612 
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and female as 2), and 12 other clinical risk factors including BMI (kg/m2), smoking (current smoker 613 

as 1, and former and never smoker as 0), alcohol consumption (grams/day), physical activity (MET 614 

scores), educational attainment (education years), and prevalent diseases (yes as 1 and no as 0) 615 

including hypertension, CHD, heart failure, stroke, type-2 diabetes, and cancer. F2-F7 were mortality-616 

related CpGs selected by meta-analysis in the discovery cohorts by inverse-variance weighted 617 

random-effects models at a series of p value thresholds, including F2 CpGs at P<1e-7, F3 CpGs at 618 

P<1e-6, F4 CpGs at P<1e-5, F5 CpGs at P<1e-4, F6 CpGs at P<1e-3, and F7 CpGs at P<0.05. F8-619 

F13 are F1 (age, sex and 12 clinical phenotypes) plus F2-F7 respectively. In doing so, we were able 620 

to evaluate the prediction performance based on the clinical risk factors (F1) and the DNAm (F2-F7), 621 

and test if the combination of DNAm with clinical risk factors (F8-F13) could be able to improve the 622 

prediction performance by using clinical risk factors (F1) only and DNAm only (F2-F7).  623 

Model building: We compared four methods of building prediction models, including 1) Elastic net - 624 

Cox proportional hazards method  (Elastic-coxph, using glmnet, a R package) (Friedman et al., 2010); 625 

2) Random survival forest (RSF, using randomForestSRC, a R package) (Ishwaran et al., 2008); 3) 626 

Cox-nnet (https://github.com/lanagarmire/cox-nnet, a Python package) (Ching et al., 2018), and 4) 627 

DeepSurv (https://github.com/jaredleekatzman/DeepSurv, a Python package) (Katzman et al., 2018). 628 

The first method is a penalized linear regression method, while the other three are non-linear machine 629 

learning methods.  630 

Elastic-coxph is a Cox regression model regularized with elastic net penalty (Friedman et al., 2010). 631 

Performing this method requires to identify best values of two parameters, α and λ. We tuned each 632 

model by iterating over a number of α and λ values under cross-validation. α indicated linearly 633 

combined penalties of the lasso (α=0) and ridge (α=1) regression. λ is the shrinkage parameter, when 634 

λ =0 indicated no shrinkage, and as λ increases, the coefficients are shrunk ever more strongly. 635 

Effectively this will shrink some coefficients close to 0 for optimizing a set of features. The α value 636 

was set to 0.5, and the λ value was set to lambda.min when training models.  637 
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RSF is an ensemble tree model that is based on the random forest method for survival analysis 638 

(Ishwaran et al., 2008). The optimized values of parameters in RSF models, including the number of 639 

trees (nTrees=100) and nodeSize =15 were chosen by iterating over a number of values which 640 

maximized the accuracy of RSF models tested in the replication sets under cross-validation. RSF can 641 

compute feature importance scores for feature selection.  642 

Cox-nnet is an artificial neural network based method for survival analysis (Ching et al., 2018). Cox-643 

nnet includes two layer neural network: one hidden layer and one output layer. The output layer was 644 

used to perform Cox regression based on the activation levels of the hidden layer. Cox-nnet could also 645 

compute feature importance scores for feature selection. For each model training, the L2 646 

regularization parameter is optimized using the L2CVProfile Python function by iterating over a 647 

number of values under cross-validation. 648 

DeepSurv is a deep learning-based survival prediction method (Katzman et al., 2018). DeepSurv uses 649 

a multi-layer feed forward neural network, of which the hidden layers consist of a fully-connected 650 

layer of nodes, followed by a dropout layer, and the output is a single node with a linear activation 651 

which estimated the log-risk function in the Cox model, parameterized by the weight of the network. 652 

The values of hyperparameters when using DeepSurv were L2 regularization = 0.8, dropout = 0.4, 653 

learning rate = 0.02, hidden layer size (4 layers with nodes 500, 200, 100 and 50), lr_decay = 0.001, 654 

momentum = 0.9 and the activation method (using Scaled Exponential Linear Units),  which were 655 

optimized by iterating over a number of values each-by-each and under cross-validation. DeepSurv 656 

has not been used previously for selecting features.  657 

Cross-validation: The 2427 FHS participants were randomly split into 5 equal sets (n=485 or 486 in 658 

each set), and each set included approximately equal numbers of deaths. We then used 3 of the 5 sets 659 

(60%) for model training and the remaining 2 sets (40%) for model testing. In doing so, we obtained 660 

10 combinations. In each training / testing combination, we constructed a model using the training 661 

data, and then used the model to generate a mortality risk score based on the testing data. We assessed 662 

associations of the predicted mortality risk score (after inverse normal transformation) with all-cause 663 
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mortality, CVD death, and cancer death in the testing data using time-to-event proportional hazards 664 

models. This data partitioning and cross-validation strategy was only used to assess the robustness of 665 

prediction models when using different features and methods, and to select the optimized parameters 666 

for training models. The final models reported were built on all FHS participants using the optimized 667 

parameters. We also repeated the same analysis steps using FHS participants without cancer at 668 

baseline (n=2038; 238 deaths from all causes, 70 from CVD, and 42 from cancer). 669 

Independent external validation: The prediction models built using all FHS participants were further 670 

tested in ARIC EA participants for the prediction of mortality outcomes. We performed tests on all-671 

cause mortality and CVD death on all ARIC EA participants truncated at 15 years of follow up, and 672 

tests on cancer death after excluding prevalent cancer.  673 

Evaluation of model performance: We used four evaluation metrics to assess model performance, 674 

including the concordance index (C-index) (Harrell Jr, Lee, & Mark, 1996), hazards ratio of predicted 675 

risk score (inversely-transformed) for prediction of mortality, the integrated brier score (IBS) (Brier, 676 

1950), and Kaplan-Meier (KM) survival curves for high, medium and low risk groups (Kaplan & 677 

Meier, 1958). The C-index reflects the percentage of individuals whose predicted survival times are 678 

correctly ordered. A C-index of 0.50 reflects no improvement in prediction over chance. The brier 679 

score measures the mean of the difference between the observed and the estimated survival beyond a 680 

certain time. The brier score ranges between 0 and 1, and a larger score indicates higher inaccuracy. 681 

The integrated brier score is the brier score averaged over the entire time interval. 682 

DNAm Age 683 

We compared the prediction performance of DNAm age with our DNAm-based mortality prediction 684 

model in relation to all-cause mortality, CVD death, and cancer death in the ARIC EA cohort 685 

(truncating follow up at 15 years). Four measures of DNAm age were used in this study, including 686 

PhenoAge (Levine et al., 2018), Horvath age (Horvath, 2013), Hannum age (Hannum et al., 2013) and 687 

GrimAge (Lu et al., 2019). The Horvath Age is based on 353 CpGs, the Hannum age is based on 71 688 

CpGs, and PhenoAge is based on 513 CpGs. DNAm age was calculated as the sum of the beta values 689 
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multiplied by the reported effect size. Due to the GrimAge model was not publicly available, the 690 

GrimAge was calculated by uploading the DNAm data to the website 691 

(http://dnamage.genetics.ucla.edu/). Proportional hazards regression models were used to test the 692 

association between inversely-rank transformed DNAm age (all 3 approaches) and mortality 693 

outcomes, adjusting for age, sex, and clinical covariates (see Mortality ascertainment and clinical 694 

phenotypes).  695 

meQTLs 696 

meQTLs (SNPs associated with DNA methylation) were identified from 4170 FHS participants as 697 

reported previously, including 4.7 million cis-meQTLs and 630K trans-meQTLs at P<2x10-11 for cis 698 

and P<1.5x10-14 for trans (Huan et al., 2019). The genotypes were measured using Affymetrix SNP 699 

500K mapping and Affymetrix 50K gene-focused MIP arrays. Genotypes were imputed using the 700 

1000 Genomes Project panel phase 3 using MACH / Minimac software. SNPs with MAF >0.01 and 701 

imputation quality ratio >0.3 were retained. cis-meQTLs were defined as SNPs residing within 1 Mb 702 

upstream or downstream of a CpG site. The FHS meQTL data resource includes 3.5 times more cis-, 703 

and 10 times more trans-meQTL SNPs than the other published studies to date 704 

(https://ftp.ncbi.nlm.nih.gov/eqtl/original_submissions/FHS_meQTLs/).  705 

Mendelian randomization 706 

Two-sample Mendelian randomization (MR) was used to identify putatively causal CpGs for human 707 

longevity, CVD and CVD risk factors, and cancer types using a multi-step strategy. Estimated 708 

associations and effect sizes between SNPs and traits were based on the latest published GWAS meta-709 

analysis of human longevity (Deelen et al., 2019), coronary heart disease (CHD) (Nikpay et al., 2015); 710 

myocardial infarction (MI) (Nikpay et al., 2015); type-II diabetes (T2D) (Scott et al., 2017); body 711 

mass index (BMI) (Locke et al., 2015); lipids traits including high-density lipoprotein (HDL) 712 

cholesterol, low-density lipoprotein (LDL) cholesterol, total cholesterol (TC), and triglycerides (TG) 713 

(Willer et al., 2013); systolic blood pressure (SBP) and diastolic blood pressure (DBP) (Evangelou et 714 

al., 2018), and cancer types including breast cancer (Michailidou et al., 2017), prostate cancer 715 
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(Schumacher et al., 2018), lung cancer (Wang et al., 2014) and ovarian cancer (Phelan et al., 2017). 716 

We were unable to include some other popular cancer types, because their GWAS data were not be 717 

accessible by us.  718 

Instrumental variables (IVs) for each CpG site consisted of independent cis-meQTLs pruned at 719 

linkage disequilibrium (LD) r2<0.01, retaining only one cis-meQTL variant with the lowest SNP-CpG 720 

P value in each LD block.  LD proxies were defined using 1000 genomes imputation in EA. Inverse 721 

variance weighted (IVW) MR tests were performed on CpGs with at least three independent cis-722 

meQTL variants, which is the minimum number of IVs needed to perform multiple instruments MR. 723 

The multiple instruments improved the precision of IV estimates, and allowed the examination of 724 

underlying IV assumption (Palmer et al., 2012). Among 177 all-cause mortality related CpGs at 725 

P<1x10-7, MR tests were performed on 17 CpGs having ≥3 independent cis-meQTL SNPs. To test the 726 

validity of IVW-MR results, we performed heterogeneity and MR-EGGER pleiotropy tests for all IVs. 727 

The statistical significance threshold for MR is PMR<0.05/17, and both Pheter and Ppleio were required to 728 

be >0.05. 729 

eQTMs 730 

Association tests of DNAm and gene expression were performed in 3684 FHS participants with 731 

available DNAm and gene expression data. mRNA was extracted from whole blood (collected in 732 

PAXgene tubes) and profiled using the Affymetrix Human Exon 1.0 ST GeneChip platform. Raw 733 

gene expression data were first normalized using the RMA (robust multi-array average) from 734 

Affymetrix Power Tools (APT, thermofisher.com/us/en/home/life-science/microarray-735 

analysis/affymetrix.html#1_2) with quantile normalization. Then, output expression values of 17,318 736 

genes were extracted by APT based on NetAffx annotation version 31.  737 

DNAm β values were adjusted for age, sex, predicted blood cell fraction, the two top PCs of DNAm, 738 

and 25 surrogate variables (SVs), with DNAm as a fixed effect, and batch as a random effect by 739 

fitting LME models. Residuals (DNAm_resid) were retained. The gene expression values were 740 

adjusted for age, sex, predicted blood cell fraction, a set of technical covariates, the two top PCs and 741 
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25 SVs, with gene expression as a fixed effect, and batch as a random effect by LME, and residuals 742 

(mRNA_resid) were retained. Then, linear regression models were used to assess pair-wise 743 

associations between DNAm_resid and mRNA_resid. SVs were calculated using the SVA package in 744 

R. A cis-CpG-mRNA pair was defined as a CpG residing ±1Mb of the TSS of the corresponding gene 745 

encoding the mRNA (cis-eQTM). The annotations of CpGs and transcripts were obtained from 746 

annotation files of the HumanMethylation450K BeadChip and the Affymetrix exon array S1.0 747 

platforms. We estimated that there were 1.6 x 108 potential cis- CpG-mRNA pairs. We only used cis-748 

eQTMs in this study because trans-eQTMs were not replicated in independent external studies. The 749 

statistical significance threshold was P<3x10-10 (0.05 /1.6x108) 750 

Gene ontology and pathway enrichment analysis 751 

Gene ontology and pathway enrichment analyses were performed on the genes annotated in relation to 752 

the 177 all-cause mortality related CpGs at P<1x10-7or P<1x10-5 as well as the cis-eQTM genes 753 

associated with those CpGs. Hypergeometric tests were used to investigate over-representations of 754 

genes from multiple biological process and pathways. To improve focus in this study, we only used 755 

results of KEGG and Gene Ontology – biological process (GO-BP) terms. Enrichment tests used the 756 

online DAVID Bioinformatics Resources 6.8 (https://david.ncifcrf.gov/). The P-value was further 757 

corrected by the number of unique GO-BP terms and pathways. A Benjamini-Hochberg corrected 758 

FDR<0.2 was considered significant. 759 

 760 

Data Availability 761 

The DNA methylation data and phenotype data are available in dbGaP for some of the cohorts in this 762 

study (https://www.ncbi.nlm.nih.gov/gap/) including FHS (accession number phs000724.v5.p10) and 763 

WHI (accession number phs000200.v12.p3). For LBC, data are available in the European Genome-764 

phenome Archive (https://www.ebi.ac.uk/ega/home), under accession number EGAS00001000910. 765 

For the other cohorts including ARIC, CHS, NAS, InCHIANTi, KORA, ESTHER, Danish, RS and 766 
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CARDIA, the data are available on request by contacting with the principal investigators of each 767 

cohort. 768 
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Table 1: Clinical characteristics the 15,013 study participants.  

 Prevalent Diseases 
Cohort Total 

N 
No. of 

all-cause 
death 

No. of 
CVD 
death 

No. of 
cancer 
death 

Time to death / 
last follow-up 
years, mean 

(SD) 

Age , mean 
(SD) 

Sex 
(F, %) 

BMI, mean 
(SD) 

Type 2 
Diabetes 

(n) 

Coronary 
Heart 

Disease (n) 

Heart 
Failure 

(n) 

Stroke 
(n) 

Hypertens
ion (n) 

Cancer 
(n) 

--  European Ancestry 
ARIC 969 331 95 94 20.0 (5.2) 59.8 (5.5) 59 26.2 (4.5) 86 44 29 16 233 102 
CHS 419 373 132  12.7 (6.1) 75.0 (4.9) 60 26.8 (4.9) 72 16 11 5 224 78 
DTR 870 298 74 40 9.3 (3.4) 69.4 (7.9) 52 25.9 (3.9) 46*   37 269 129 

ESTHER 1000 265 94 90 13.7 (3.5) 62.1 (6.5) 50 27.8 (4.3) 154 144 110 28 572 77 
FHS 2427 403 91 155 9.1 (2.2) 66.3 (9.0) 55 28.3 (5.3) 279 226 53 116 107 389 

InCHIANTi 488 104   10.0 (1.6) 62.4 (15.8) 52 27.0 (3.9) 42 31 9 10 232  
KORA F4 1727 89 31 35 6.4 (0.9) 61.0 (8.9) 51 28.1 (4.8) 158 105 41 47 789 154 
LBC 1921 418 366   9.8 (4.7) 79.1 (0.6) 60 28.2 (4.0) 19 70  33 170  
LBC 1936 900 192   10.2 (2.4) 69.6 (0.8) 50 27.7(4.4) 72 221  46 364  

NAS 640 221 123 72 10.5 (3.3) 72.8 (6.8) 0 28.1 (4.0) 117 181  42 447 316 
RS 731 73   6.8 (1.5) 59.9 (8.2) 54 27.4 (4.5) 74 45  30 385 76 

WHI 1095 192 48 60 11.5 (3.5) 62 (6.9) 100 28.8 (5.9) 60 20 5 11 469 14 
-- African Ancestry 

ARIC 2446 1069 424 322 18.6 (6.6) 56.5 (5.8) 64 30.1 (6.2) 643 120 163 75 1373 87 
CHS 325 264 96  12.9 (6.6) 73.1 (5.5) 62 28.6 (5.2) 68 2 0 2 235 36 
WHI 558 74 27  10.6 (3.7) 61 (6.8) 100 31.5 (6.1) 76 18 11 12 369 2 

 
*The diabetes cases in DTR included both type-I and type-II diabetes.  
The clinical risk factors were ascertained at the time of blood draw for DNAm measurements. BMI was calculated as weight (kg) divided by height squared (m2). Diabetes 
was defined as a measured fasting blood glucose level of >125 mg/dL or current use of glucose-lowering prescription medication. Hypertension was defined as a measured 
systolic blood pressure (BP) ≥140 mm Hg or diastolic BP ≥90 mm Hg or use of antihypertensive prescription medication. Cancer was defined as the occurrence of any type 
of cancer excluding non-melanoma skin cancer.  
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Table 2: Trans-ethnic replicated all-cause mortality related CpGs. 

    Meta-analysis EA cohorts Meta-analysis AA cohorts 
Transethnic 
replication 

CpG Chr Position Gene HR (95% CI) P-value HR (95% CI) P-value 
Bonferroni 
corrected P 

-- Discovered in EA, and then replicated in AA 

cg16743273 19 2076833 
MOBKL2

A 1.15 (1.1-1.21) 1.57E-09 1.24 (1.15-1.33) 1.28E-08 2.08E-06 

cg18181703 17 76354621 SOCS3 0.83 (0.8-0.87) 6.15E-16 0.82 (0.77-0.88) 3.71E-08 6.05E-06 

cg21393163 1 12217629 0.84 (0.8-0.88) 4.15E-12 0.84 (0.79-0.89) 7.48E-08 1.22E-05 

cg15310871 8 20077936 
ATP6V1B

2 1.18 (1.12-1.25) 1.42E-08 1.19 (1.11-1.26) 1.80E-07 2.94E-05 

cg25953130 10 63753550 ARID5B 0.87 (0.83-0.91) 4.67E-10 0.86 (0.81-0.91) 1.22E-06 1.98E-04 

cg05438378 15 67383736 SMAD3 0.88 (0.84-0.92) 1.52E-08 0.85 (0.79-0.91) 3.68E-06 6.00E-04 

cg26470501 19 45252955 BCL3 0.84 (0.79-0.88) 8.38E-12 0.81 (0.74-0.89) 1.48E-05 2.42E-03 

cg06126421 6 30720080 0.8 (0.75-0.86) 2.48E-10 0.84 (0.78-0.91) 1.69E-05 2.75E-03 

cg02003183 14 103415882 
CDC42BP

B 1.19 (1.13-1.26) 1.94E-11 1.16 (1.08-1.24) 2.00E-05 3.26E-03 

cg10950251 1 204466432 0.86 (0.82-0.91) 4.05E-08 0.86 (0.8-0.92) 2.34E-05 3.81E-03 

cg17501210 6 166970252 RPS6KA2 0.86 (0.81-0.9) 5.84E-09 0.87 (0.82-0.93) 2.71E-05 4.41E-03 

cg23598089 1 203652079 ATP2B4 1.13 (1.08-1.18) 2.36E-08 1.14 (1.07-1.22) 4.19E-05 6.84E-03 

cg21993290 2 233703120 GIGYF2 0.88 (0.84-0.92) 6.13E-08 0.87 (0.81-0.93) 4.94E-05 8.06E-03 

cg04987734 14 103415873 
CDC42BP

B 1.2 (1.15-1.26) 2.53E-14 1.15 (1.07-1.23) 5.77E-05 9.41E-03 

cg20813374 6 35657180 FKBP5 0.84 (0.78-0.89) 4.27E-08 0.84 (0.77-0.91) 7.19E-05 1.17E-02 

cg11927233 5 170816542 NPM1 0.84 (0.8-0.89) 2.43E-09 0.89 (0.84-0.95) 2.41E-04 3.92E-02 

cg24859433 6 30720203 0.85 (0.81-0.9) 7.15E-10 0.88 (0.82-0.94) 2.70E-04 4.40E-02 

cg01445100 16 88103339 BANP 1.23 (1.15-1.32) 1.88E-09 1.24 (1.1-1.39) 2.76E-04 4.49E-02 

-- Discovered in AA, and then replicated in EA 

cg18181703 17 76354621 SOCS3 0.83 (0.8-0.87) 6.15E-16 0.82 (0.77-0.88) 3.71E-08 1.04E-14 

cg21393163 1 12217629 0.84 (0.8-0.88) 4.15E-12 0.84 (0.79-0.89) 7.48E-08 7.05E-11 

cg16743273 19 2076833 
MOBKL2

A 1.15 (1.1-1.21) 1.57E-09 1.24 (1.15-1.33) 1.28E-08 2.67E-08 

cg25114611 6 35696870 FKBP5 0.86 (0.81-0.91) 7.50E-07 0.81 (0.75-0.87) 1.79E-08 1.28E-05 

cg16411857 16 57023191 NLRC5 0.88 (0.84-0.93) 4.40E-06 0.79 (0.74-0.85) 2.40E-11 7.47E-05 

cg16936953 17 57915665 TMEM49 0.91 (0.87-0.95) 7.05E-05 0.82 (0.77-0.88) 1.72E-08 1.20E-03 

cg23570810 11 315102 IFITM1 0.86 (0.8-0.93) 9.75E-05 0.77 (0.72-0.83) 2.35E-11 1.66E-03 

cg12054453 17 57915717 TMEM49 0.92 (0.88-0.96) 1.57E-04 0.84 (0.79-0.89) 2.93E-08 2.66E-03 

cg18942579 17 57915773 TMEM49 0.91 (0.87-0.96) 3.53E-04 0.8 (0.74-0.86) 2.58E-09 6.01E-03 

cg01041239 18 13222581 C18orf1 1.1 (1.04-1.16) 1.29E-03 1.22 (1.14-1.31) 1.04E-08 2.20E-02 

cg03038262 11 315262 IFITM1 0.88 (0.82-0.96) 1.85E-03 0.72 (0.66-0.79) 5.14E-13 3.15E-02 

cg24408769 6 15506085 JARID2 1.11 (1.04-1.18) 2.17E-03 1.27 (1.17-1.37) 1.29E-08 3.68E-02 

 

Abbreviation: HR, hazard ratio per standard deviation;  CI, confidence interval; EA, European ancestry; AA, African 
ancestry.
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Table 3: Performance robustness comparison of mortality predictors in FHS and ARIC cohorts. 

FHS* ARIC† 

Model HR C-index IBS HR ( 95% CI) C-index IBS 

-- All-cause mortality 

Clinical Risk Factor Model 3.37 0.80 0.07 2.64 (2.21-3.15) 0.75 0.04 

CpG Model 2.91 0.77 0.07 2.24 (1.89-2.66) 0.72 0.04 

Integrative Model 3.50 0.80 0.06 2.95 (2.45-3.55) 0.77 0.04 

-- CVD Death 

Clinical Risk Factor Model 3.74 0.81 0.02 3.51 (2.57-4.79) 0.81 0.02 

CpG Model 3.85 0.82 0.02 2.62 (1.56-3.91) 0.77 0.02 

Integrative Model 3.90 0.83 0.02 3.65 (2.63-5.05) 0.80 0.02 

-- Cancer Death (excluding prevalent cancer cases) 

Clinical Risk Factor Model 1.25 0.57 0.01 2.35 (1.74-3.18) 0.71 0.02 

CpG Model 1.71 0.65 0.01 2.22 (1.64-2.89) 0.73 0.02 

Integrative Model 1.78 0.68 0.01 2.58 (1.90-3.50) 0.76 0.02 
 

Abbreviation: HR, hazard ratio per standard deviation; IBS: Integrated brier score; 
* HR, C-index and IBS values in FHS reflect the average values of 10 times cross-validation.  
†The results were obtained from ARIC European ancestry participants with follow up truncated at 15 years.  
The clinical risk factor models were trained by using clinical risk factors as the sole input features. The CpG Models were 
trained by using CpGs selecting in the discovery meta-analysis. The integrative model was trained by using both clinical risk 
factors and CpGs selecting in the discovery meta-analysis.  
The Clinical Risk Factor Model used to predict all-cause mortality and CVD death was shown in Table S10, and to predict 
cancer death (trained in samples excluding prevalent cancer cases) was shown in Table S11. The CpG model used to predict 
all-cause mortality and CVD death was shown in Table S12, and to predict cancer death (trained in samples excluding 
prevalent cancer cases) was shown in Table S13. The integrative model used to predict all-cause mortality and CVD death 
was shown in Table S14, and to predict cancer death (trained in samples excluding prevalent cancer cases) was shown in 
Table S15.  
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Figure Legends 

Figure 1: The effect sizes (log hazards ratios) and 95% confidence intervals of CpGs related to 

mortality identified by meta-analysis, comparing the results for all-cause mortality, CVD death, and 

cancer death. A) Results of meta-analysis of European ancestry (EA); B) Results of meta-analysis of 

African ancestry (AA).  These figures showed the CpGs associated with all-cause mortality identified 

by the meta-analysis, which were also associated with either CVD death or cancer death passing 

Bonferroni corrected threshold. Figure 1A shows 51 CpGs in EA, including 41 CpGs associated with 

CVD death, 16 with cancer death, and 5 with both. Figure 1B shows 16 CpGs in AA, including 15 

CpGs associated with CVD death, 8 with cancer death, and 7 with both. 

Figure 2: Kaplan–Meier estimates of mortality risk scores with respect to mortality outcomes in 

ARIC study. A) survival curves with respect to all-cause mortality; B) survival curves with respect to 

CVD death; C) survival curves with respect to cancer death. The results were obtained from ARIC 

European ancestry participants with follow up truncated at 15 years. For cancer death, we excluded 

samples who had any type of cancer before blood drawn for DNA methylation measurements. The 

mortality risk scores for A) and B) were computed by the model (Table S10), and for C) was 

computed by the model (Table S11) 

Figure 3: Hazard ratios per standard deviation increment with 95% confidence intervals for 

mortality. A) with respect to all-cause mortality; B) with respect to CVD death; C) with respect to 

cancer death. The results were obtained from ARIC European ancestry participants with follow up 

truncated at 15 years. For cancer death, samples who had any type of cancer before blood drawn for 

DNA methylation measurements were excluded. Cox regression models were used to relate mortality 

outcomes to inversely-transformed mortality risk scores computed by Integrative models (Table S12-

S13) and CpG models (Table S10-S11), and inversely-transformed DNAm age including GrimAge 

(Lu et al., 2019), PhenoAge(Levine et al., 2018), Horvath Age(Horvath, 2013), and Hannum 

Age(Hannum et al., 2013). Adj age and sex indicated the association further adjusted for age and sex. 
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Adj age, sex and risk factors indicated the association further adjusted for age, sex and the other 

clinical risk factors. 

Figure 1 

A 

 

B 
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Figure 2 
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Figure 3 
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B 
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