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Abstract 
 
Background: Demand for head and neck cancer (HNC) radiotherapy data in algorithmic 
development has prompted increased image dataset sharing. Medical images must comply 
with data protection requirements so that re-use is enabled without disclosing patient 
identifiers. Defacing, i.e., the removal of facial features from images, is often considered a 
reasonable compromise between data protection and re-usability for neuroimaging data. 
While defacing tools have been developed by the neuroimaging community, their 
acceptability for radiotherapy applications have not been explored. Therefore, this study 
systematically investigated the impact of available defacing algorithms on HNC organs at 
risk (OARs).  
 
Methods: A publicly available dataset of magnetic resonance imaging scans for 55 HNC 
patients with eight segmented OARs (bilateral submandibular glands, parotid glands, level II 
neck lymph nodes, level III neck lymph nodes) was utilized. Eight publicly available defacing 
algorithms were investigated: afni_refacer, DeepDefacer, defacer, fsl_deface, mask_face, 
mri_deface, pydeface, and quickshear. Using a subset of scans where defacing succeeded 
(N=29), a 5-fold cross-validation 3D U-net based OAR auto-segmentation model was utilized 
to perform two main experiments: 1.) comparing original and defaced data for training when 
evaluated on original data; 2.) using original data for training and comparing the model 
evaluation on original and defaced data. Models were primarily assessed using the Dice 
similarity coefficient (DSC). 
 
Results: Most defacing methods were unable to produce any usable images for evaluation, 
while mask_face, fsl_deface, and pydeface were unable to remove the face for 29%, 18%, 
and 24% of subjects, respectively. When using the original data for evaluation, the 
composite OAR DSC was statistically higher (p ≤ 0.05) for the model trained with the original 
data with a DSC of 0.760 compared to the mask_face, fsl_deface, and pydeface models with 
DSCs of 0.742, 0.736, and 0.449, respectively. Moreover, the model trained with original 
data had decreased performance (p ≤ 0.05) when evaluated on the defaced data with DSCs 
of 0.673, 0.693, and 0.406 for mask_face, fsl_deface, and pydeface, respectively. 
 
Conclusion: Defacing algorithms may have a significant impact on HNC OAR auto-
segmentation model training and testing. This work highlights the need for further 
development of HNC-specific image anonymization methods. 

Introduction 
The landscape of data democratization is rapidly changing. The rise of open science 
practices, inspired by coalitions such as the Center for Open Science (1), and the FAIR 
(Findable, Accessible, Interoperable, and Reusable) guiding principles (2), has spurred 
interest in public data sharing. Subsequently, the medical imaging community has 
increasingly adopted these practices through initiatives such as The Cancer Imaging Archive 
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(3). Given the appropriate removal of protected health information through anonymization 
techniques, public repositories have democratized the access to medical imaging data such 
that the world at large can now help develop algorithmic approaches to improve clinical 
decision-making. Among the medical professions seeking to leverage these large datasets, 
radiation oncology has the potential to vastly benefit from these open science practices (4). 
Imaging is crucial to radiotherapy workflows, particularly for organ at risk (OAR) and tumor 
segmentation (5,6). Moreover, in recent years public data competitions, such as the Head 
and Neck Tumor Segmentation and Outcome Prediction in positron emission 
tomography/computed tomography (PET/CT) Images (HECKTOR) challenge (7–9), have 
been targeted to improve the radiotherapy workflow. However, there is a particular facet of 
medical image dissemination for radiotherapy applications that has spurred controversy, 
namely the anonymization of head and neck cancer (HNC) related images.  
 
While the public dissemination of HNC image data is invaluable to improve the radiotherapy 
workflow, concerns have been raised regarding readily identifiable facial features on medical 
imaging. Importantly, the U.S. Health Insurance Portability and Accountability Act references 
“full-face photographs and any comparable images” as a part of protected health information 
(10). This policy introduces some uncertainty in the dissemination of high-resolution images, 
where the intricacies of facial features can be reconstructed to generate similar or 
“comparable” visualizations with relative ease. Several studies have shown the potential 
danger in releasing unaltered medical images containing facial features, as they can often 
be easily recognized by humans and/or machines (11–15). For example, using facial 
recognition software paired with image-derived facial reconstructions, one study found up to 
83% of research participants could be identified from their magnetic resonance imaging 
(MRI) scans (13). Similar alarming results have been demonstrated for CT images (14). 
While brain images are often processed such that obvious facial features are removed (i.e., 
skull stripping), these crude techniques remove large anatomic regions necessary for 
building predictive models with HNC imaging data. “Defacing” tools, where voxels that 
correspond to the areas of the patient’s facial features are either removed or altered, offer 
one solution. However, they may still engender the potential loss of voxel-level information 
needed for predictive modeling or treatment planning, thereby prohibiting their use in data 
resharing strategies for radiotherapy applications. While several studies have investigated 
the effects of defacing for neuroimaging (16–21), there have not yet been any systematic 
studies on the effects of defacing tools for radiotherapy applications.  
 
Inspired by the increasing demand for public HNC imaging datasets and the importance of 
protecting the privacy of patients, a systematic analysis of a number of existing methods for 
facial anonymization on HNC MRI images was performed. Through qualitative and 
quantitative analysis using open-source datasets and tools, the efficacies of defacing 
approaches on whole images and structures relevant to radiation treatment planning were 
determined. Moreover, the effects of these approaches on auto-segmentation, a specific 
domain application that is increasingly relevant for HNC public datasets, were also 
examined. This study is an important first step towards the development of robust 
approaches for the safe and trusted democratization of HNC imaging data.  
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Methods 

Dataset 
For this analysis, a publicly available dataset hosted on the TCIA, the American Association 
of Physicists in Medicine RT-MAC Grand Challenge 2019 (AAPM) dataset (22), was utilized. 
The AAPM dataset consists of T2-weighted MRI scans of 55 HNC patients that are labeled 
for OAR segmentations of bilateral: i) submandibular glands, ii) level II neck lymph nodes, iii) 
level III neck lymph nodes, and iv) parotid glands. Structures were annotated as being on the 
right or left side of the patient anatomy. The spatial resolution of the scans is 0.5 mm × 0.5 
mm with 2.0 mm spacing. Additional technical details on the AAPM images and 
segmentations can be found in the corresponding data descriptor (22). Defacing 
experiments were also attempted using the HECKTOR 2021 training dataset (8) containing 
224 HNC patients with CT scans. Additional technical details on the HECKTOR dataset can 
be found in the corresponding overview papers (8,9). 

Defacing methods 
For defacing the images, the same methods as taken into consideration by Schwartz et al. 
(16), as well as novel tools that benefit from recent advances in deep learning were used. 
The most popular tools use a co-registration to a template in order to identify face and ears 
and then identify those structures in the original image, which should be removed or blurred. 
The following 6 co-registration based methods: afni_refacer, fsl_deface (23), mask_face 
(24), mri_deface (18), pydeface (25), and quickshear were implemented. Two more recent 
methods using deep learning technology were also included: defacer (26) and DeepDefacer 
(27). These methods utilize pre-trained deep learning models using data from public 
neuroimaging datasets to identify facial features to be removed. An automated pipeline for 
applying all these defacing methods is available at 
https://github.com/eglerean/faceai_testingdefacing. Each defacing method was tested with 
all subjects such that, for each subject, a defaced volume was produced as well as a 
volumetric mask of which voxels were affected by defacing. All methods were run with the 
default parameters and standard reference images.  
 

Defacing performance 
After applying the defacing methods, the success or failure of a defacing method was 
determined by visually inspecting all the defaced volumes (i.e., performing scanwise quality 
control). Specifically, a binary categorization of each scan was implemented: “1” if the eyes, 
nose, and mouth were removed (i.e., defacing succeeded), “0” if the eyes, nose, or mouth 
were not removed (i.e., defacing failed). Subsequently, the amount of voxels present in the 
structures after application of the defacing algorithm were quantitatively measured.  
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Deep learning model for OAR segmentation reliability 
To evaluate the OAR segmentation performance under different defacing schemes from 
volumetric MRI data, a convolutional neural network architecture, 3D U-net, which has found 
wide success in HNC-related segmentation tasks (28–33), was utilized. Both contractive and 
expansive pathways include four blocks, where each block consists of two convolutional 
layers with a kernel size of 3, and each convolution is followed by an instance normalization 
layer and a LeakyReLU activation with 0.1 negative slope. The max-pooling and transpose 
convolutional layers have a kernel size and stride of 2. The last convolutional layer has a 
kernel size and stride of 1 with 9 output channels and a softmax activation. The model 
architecture is shown in Figure 1. Experiments were developed in Python v. 3.6.10 (34) 
using Pytorch 1.8.1 (35) with a U-net model from Project MONAI 0.7.0 (36) and data 
preprocessing and augmentation with TorchIO 0.18.61 (37). 
 
 

 
Figure 1. U-net network architecture with blocks on the contractive path colored in red and 
blocks on the expanding path colored in green. Each block includes two convolutions, each 
followed by instance normalization and Leaky ReLU activation, subsequently followed by a 
max-pool layer (red arrow) or transpose convolution layer (green arrow) on contractive and 
expanding paths, respectively. The number shown in each block indicates the number of 
channels of the feature map. Arrows with the letter C indicate concatenation. 
 
A subset of patients for which defacing was deemed successful were used for building the 
segmentation models. The subset was randomly split with 5-fold cross validation: for each 
cross-validation iteration one fold was used for model testing, one fold was used for model 
validation, and the remaining three folds were used for model training. The reported 
segmentation performance was based on the test fold that was not used for model 
development. The same random splits were used for training and evaluating the models 
trained on original or defaced data. 
 
Data preprocessing after the defacing included linear resampling to 2 mm isotropic 
resolution with the intensity scaled into a range of [-1,1]. The training data was augmented 
with random transforms that were applied with a probability (p), independently of each other. 
The used transforms were random elastic deformations (p=10%) for all axes, random flips 
for inferior-superior and anterior-posterior axes (p=50%), random rotation (-10° to 10°) of all 
axes (p=50%), random bias field (p=50%), and random gamma (p=50%). The model was 
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trained using the cross-entropy loss for the 8 OAR classes and background with parameter 
updates computed using the Adam optimizer with (0.001 learning rate, 0.9 β1, 0.999 β2, and 
AMSGrad). The model training was stopped early after 60 epochs for non-improvement of 
the validation loss. 
 
 

Segmentation evaluation 
Two experiments to evaluate the impact of defacing on the resulting segmentations were 
performed. In order to determine the impact of defacing on algorithmic development, models 
were trained on original or defaced data using the original target data for evaluation. 
Subsequently, in order to determine the impact of defacing on algorithms not originally 
developed for defaced data, a model was trained using the original data and its performance 
was evaluated by using the original data or the defaced data. 
 
For both experiments, the performance of the models were quantified primarily with the Dice 
similarity coefficient (DSC) and the mean surface distance (MSD), defined as follows:  
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where TP denotes true positives, FP false positives, FN false negatives, P the set of 
segmentation surface voxels of the model output, and T the set of segmentation surface 
voxels of the annotation. The distance from the surface metric is defined as: 𝑑(𝑎, 𝐵) =
𝑚𝑖𝑛2∈3{||𝑎 − 𝑏||!}. These metrics were selected because of their ubiquity in literature and 
ability to capture both volumetric overlap and boundary distances (38,39). The model output 
was resampled into the original resolution with the nearest-neighbor sampling and evaluated 
against the original resolution segmentations. MSD was measured in millimeters. When 
comparing the performance measures between the segmentation models, Wilcoxon signed 
rank tests (40) were implemented, with p-values less than or equal to 0.05 considered as 
significant. To correct for multiple hypotheses, a Benjamini-Hochberg false discovery rate 
procedure (41) was implemented by taking into account all the OARs and models compared. 
Statistical comparisons were performed using the statannotations 0.4.4 Python package 
(https://github.com/trevismd/statannotations). Notably, any ROI metrics that yielded empty 
outputs were omitted from the comparisons. Additional surface metric values (mean 
Hausdorff distance at 95% and Hausdorff distance at 95%) were also calculated as part of 
the supplementary analysis (details in Appendix A). 

Results 

Defacing performance 
Five of the methods tested (afni_refacer, quickshear, mri_deface, DeepDefacer, and 
defacer) failed for all subjects in the AAPM dataset. Therefore, for all subsequent analyses 
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only the mask_face, fsl_deface, and pydeface methods were considered. There was 
scanwise quality control to remove the defaced scans with poor quality from the analyses, 
which resulted in 16 (29%), 10 (18%), and 13 (24%) scans removed from mask_face, 
fsl_deface, and pydeface, respectively, with all these methods working on 29 patient scans. 
A barplot comparison of the ratio of remaining OAR voxels after defacing and quality control 
is depicted in Figure 2. In addition, the defacing methods removed some OARs completely, 
which were also omitted from the segmentation evaluation. After filtering unusable data, the 
total number of OARs available for use in segmentation experiments was 232 for the original 
data and mask_face, 231 for fsl_deface, and 169 for pydeface. A full comparison of omitted 
OARs is shown in Table 1.  
 
All of the tested defacing methods were unable to provide sufficient data for segmentation 
analysis in the HECKTOR CT dataset. Specifically, fsl_deface and pydeface methods 
successfully defaced 18 (8%) and 102 (46%) scans, respectively. All other methods 
(afni_refacer, quickshear, mri_deface, DeepDefacer, defacer, and mask_face) failed to 
correctly deface any of the scans. Although pydeface had the highest success rate on 
defacing, it only preserved the brain. Thus, no further analysis was performed for this 
dataset. 
 

 
Figure 2. Ratio of preserved voxels in comparison to the original segmentation mask after 
defacing (mask_face, fsl_deface, and pydeface) for each of the organs at risk, where 
defacing was successful for N=39, N=42, and N=45, respectively. The mean and standard 
deviation are represented as the center and extremes of the error bars, respectively. 
         
 
 
 
    
 Completely removed after 

successful defacing  
Unavailable for segmentation 

analysis* 

Organ at risk / Defacing method mask_face fsl_deface pydeface mask_face fsl_deface pydeface 

Left Submandibular Gland 0 (0%) 2 (4%) 6 (11%) 16 (29%) 14 (25%) 13 (24%) 
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Right Submandibular Gland  0 (0%) 1 (2%) 7 (13%) 16 (29%) 14 (25%) 14 (25%) 

Left Neck Lymph Node Level II  0 (0%) 0 (0%) 4 (7%) 16 (29%) 13 (24%) 11 (20%) 

Right Neck Lymph Node Level II  0 (0%) 0 (0%) 4 (7%) 16 (29%) 13 (24%) 11 (20%) 

Left Neck Lymph Node Level III  0 (0%) 0 (0%) 45 (82%) 16 (29%) 13 (24%) 51 (93%) 

Right Neck Lymph Node Level III  0 (0%) 1 (2%) 44 (80%) 16 (29%) 13 (24%) 50 (91%) 

Left Parotid  0 (0%) 0 (0%) 6 (11%) 16 (29%) 13 (24%) 11 (20%) 

Right Parotid  0 (0%) 0 (0%) 6 (11%) 16 (29%) 13 (24%) 11 (20%) 

Total omitted 0 (0%) 4 (1%) 122 (28%) 128 (29%) 106 (24%) 172 (39%) 

Table 1. Quantitative details on the number of organs at risk available after the defacing was 
applied for all 55 patient scans. Only the mask_face, fsl_deface, and pydeface methods 
yielded usable data. The first group of columns correspond to the organs at risk that were 
completely removed from the cases with successful defacing. The second group of columns 
correspond to all items in the first group of columns plus incorporating any of the cases 
where defacing failed. Defacing success or failure was counted from scanwise quality 
control. *Organs at risk in these columns were omitted for all the subsequent segmentation-
related experiments. 
 

Segmentation performance 
The 29 patient scans for which the defacing was deemed successful were used to construct 
and evaluate segmentation models for the mask_face, fsl_deface, and pydeface methods. 
The model DSC performances pooled across all structures based on training input and valid 
evaluation target combinations are shown in Table 2. The models trained using the original, 
mask_face, and fsl_deface input data had the highest composite mean DSC when evaluated 
on the original target data with values of 0.760, 0.742, and 0.736, respectively, while the 
model trained on pydeface input data had the highest composite mean DSC of 0.653 when 
evaluated on pydeface target data. In contrast, the models trained using original mask_face, 
and fsl_deface input data had the lowest composite mean DSC when evaluated on pydeface 
target data with values of 0.406, 0.413, 0.465, respectively, while the model trained using 
pydeface input data had the lowest composite mean DSC of 0.395 when evaluated on 
fsl_deface target data. !""#$%&'()*+%,+#-*./*,#./0#+(&0#01("2(.*%,#3(.(#()0#+.(.*+.*$(""4#

3*550)0,.#5)%&#0($/#%./0)#6'#7#898:;#-*./#./0#0<$0'.*%,#%5#&(+=>5($0#(,3#5+">305($0#.)(*,03#

&%30"+#01("2(.03#%,#%)*?*,("#3(.(@#(,3#%)*?*,("#(+#-0""#(+#&(+=>5($0#.)(*,03#&%30"+#

01("2(.03#%,#'4305($0#3(.(9# 
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 Evaluated on 

original (N=232) 
Evaluated on 
mask_face 
(N=232) 

Evaluated on 
fsl_deface 
(N=231) 

Evaluated on 
pydeface 
(N=169) 

Trained on 
original 

0.760 (0.112) 0.673 (0.181) 0.693 (0.140) 0.406 (0.304) 

Trained on 
mask_face 

0.742 (0.115) 0.733 (0.120) 0.668 (0.143) 0.413 (0.312) 

Trained on 
fsl_deface 

0.736 (0.108) 0.643 (0.185) 0.733 (0.122) 0.465 (0.293) 

Trained on 
pydeface 

0.449 (0.333) 0.417 (0.325) 0.395 (0.301) 0.653 (0.258) 

            
Table 29##A%&'%+*.0#BCA#'0)5%)&(,$0#D#&0(,#6+.(,3()3#301*(.*%,;#D#%5#(""#+.)2$.2)0+#5%)#(""#

$%&E*,(.*%,+#%5#.)(*,*,?#3(.(#6)%-+;#(,3#01("2(.*%,#3(.(#6$%"2&,+;9#F/0#,2&E0)#%5#.%.("#

+0?&0,.(.*%,#&('+#01("2(.03#*+#+/%-,#*,#E)($=0.+#%,#./0#/0(30)9#!""#$%&'()*+%,+#-*./*,#

./0#+(&0#01("2(.*%,#3(.(#()0#+.(.*+.*$(""4#3*550)0,.#5)%&#0($/#%./0)#6'#7#898:;#with the 
exception of mask_face and fsl_deface trained models evaluated on original data, and 
original and mask_face trained models evaluated on pydeface data. Statistical significance 
was measured with Wilcoxon signed-rank tests corrected with Benjamini-Hochberg 
procedure comparisons within evaluation data. 
 

Defacing impact on model training  
 
The analysis was based on eight OAR structure segmentations from 29 patients totaling 232 
evaluations. The MSD of left and right level III neck lymph nodes for pydeface trained 
models were omitted from the analysis as all the model outputs were empty. Full 
comparisons of the model performance for each OAR are depicted in Figure 3. Additional 
surface distance metrics are shown in Appendix A (Figure A1). Overall, the model trained 
with the original data performed better than the models trained with the defaced data for the 
majority of structures and evaluation metrics. Both metrics were significantly better for the 
model trained with the original data compared to the model trained with mask_face data for 
the left submandibular gland and right level II neck lymph node, while only the DSC was 
significantly better for the right submandibular gland and right level III neck lymph node. 
Similarly, both metrics were significantly better for the model trained with the original data 
compared to the model trained with fsl_deface data for the right level II neck lymph node, left 
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parotid, and right parotid, while only the DSC was significantly better for the right level III 
neck lymph node. Moreover, both metrics were significantly better for the model trained with 
the original data compared to the model trained with pydeface data for all the structures.  
 
 

Figure 3. Performance of the models trained on original or defaced data and evaluated on 
the original data. The mean and standard deviation for each metric are represented as the 
center and extremes of the error bars, respectively. Statistical significance was determined 
using Wilcoxon signed-rank tests corrected with Benjamini-Hochberg procedure for all OARs 
and models. Comparison symbols: ns 6'#G#898:;@#H#6'#7#898:;@#HH#6'#7#898I;@#HHH#6'#7#I0DJ;@#

HHHH#6'#7#I0D:;9 
 

Defacing impact on model testing  
 
In these results, only valid target data with successful defacing on all three methods using 
non-empty segmentation structures were included. This was obtained using results from 26 
left submandibular glands, 27 right submandibular glands, 1 left neck level III lymph nodes, 2 
right neck level III lymph nodes, and 28 of each of the remaining structures. Due to the low 
number of cases for the right and left level III lymph nodes, they were omitted from the 
comparison. In addition, for the MSD metric, empty model output segmentations were 
discarded resulting in evaluation of 1 left submandibular gland for fsl_deface and mask_face 
and 14 for pydeface, 1 and 6 right submandibular glands on fsl_deface and pydeface, 
respectively, 1 left level II lymph node for pydeface, and 2 left parotids for pydeface. The 
model evaluated on the original data performed significantly better than the models 
evaluated on the defaced data for all of the structures and both evaluation metrics except in 
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the case of left submandibular gland DSC for fsl_deface which exhibited a non-significant 
difference. The full comparison of the model performance for each of the OARs is shown in 
Figure 4. Additional surface distance metrics are shown in Appendix A (Figure A2).  

 
Figure 4. The performance of models trained on the original data when evaluated on the 
original, mask_face, fsl_deface, or pydeface data for the six organs at risk included in the 
analysis. Only cases that were available for all the methods were included: 28 
segmentations were used for all structures except in the case of the left and right 
submandibular glands where 26 and 27 segmentations were used, respectively. In addition, 
for the MSD metric, empty model output segmentations were discarded, which resulted in a 
smaller number of evaluated structures. The number of evaluated structures is shown on top 
of the barplot. The mean and standard deviation for each metric are represented as the 
center and extremes of the error bars, respectively. Statistical significance was measured 
with Wilcoxon signed-rank tests corrected with Benjamini-Hochberg procedure for all OARs 
and models9#A%&'()*+%,#+4&E%"+K#,+#6'#G#898:;@#H#6'#7#898:;@#HH#6'#7#898I;@#HHH#6'#7#I0DJ;@#

HHHH#6'#7#I0D:;9 

Discussion 
 
This study has systematically investigated the impact of a variety of defacing algorithms on 
structures of interest used for radiotherapy treatment planning. This study demonstrated that 
the overall usability of segmentations is heavily dependent on the choice of the defacing 
algorithm. Moreover, the results indicate that several OARs have the potential to be 
negatively impacted by the defacing algorithms, which is shown by the decreased 
performance of auto-segmentation algorithms trained and evaluated on defaced data in 
comparison to algorithms trained and evaluated on non-defaced data.  
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Defacing for HNC applications should be deemed optimal if the method simultaneously 
removes all recognizable facial features from the image and no voxels from structures of 
interest are affected. In this study, eight commonly available defacing algorithms developed 
by the neuroimaging community were applied: afni_refacer, mri_deface, defacer, 
DeepDefacer, mask_face, fsl_deface, pydeface, and quickshear. Unfortunately, for the 
investigated CT data, no defacing method was able to yield successful removal of facial 
features while preserving the OARs. This is not necessarily surprising given that the 
methods investigated were developed primarily with MRI in mind; these results echo 
previous similar work using CT data (42). Importantly, even when applied to MRI data of 
HNC patients, many of these defacing methods outright failed for most if not all patients. 
Therefore, despite extant studies demonstrating the acceptability of these methods to 
remove facial features from neuroimaging scans (16–21), these tools may not necessarily be 
robust to HNC-related imaging. Moreover, for those defacing algorithms that were able to 
successfully remove facial information in the MRI data, i.e. mask_face, fsl_deface, and 
pydeface, it was shown that regardless of the choice of the method, there was a loss of 
voxel-level information for all the OAR structures investigated. Importantly, pydeface leads to 
a greater number of lost voxels than mask_face and fsl_deface for all the OAR structures, 
with the exception of the parotid glands. While mask_face and fsl_deface lead to relatively 
minimal reduction of available voxels in many cases, the loss of topographic information in a 
radiotherapy workflow cannot be underscored enough. It is well known that even minor 
variations in the delineation of tumors and OARs can drastically alter the resulting 
radiotherapy dose delivered to a patient, which can impact important clinical outcomes such 
as toxicity and overall survival (43–46). Therefore, the loss of voxel-level information of 
OARs caused by the defacing algorithms, while potentially visibly imperceptible, can still 
affect downstream clinical workflows.  
 
Relatively few studies have been conducted that determined the downstream analysis 
effects of defacing algorithms. For example, recent studies by Schwartz et al. (16) and 
Mikulan et al. (21) demonstrated that several defacing methods showed differences in 
specific neuroimaging applications, namely brain volume measurements and 
electroencephalography-related calculations. In this study, as a proxy for a clinically relevant 
task, an OAR auto-segmentation workflow was developed to investigate the impact of 
defacing-induced voxel-level information loss on downstream radiotherapy applications. As 
evident through both pooled analysis and investigation of individual OARs for auto-
segmentation model training and evaluation, performance is often modestly decreased for 
fsl_deface and mask_face but greatly decreased for pydeface; these results were consistent 
with the overall voxel-level information loss. While pydeface has been shown to have 
favorable results for use with neuroimaging data (19,21), its negative impact on HNC 
imaging is apparent. Therefore, in cases where defacing is unavoidable, mask_face or 
fsl_deface should likely be preferred for HNC image anonymization. Regardless, this study 
demonstrates existing approaches to anonymize facial data may not be sufficient for 
implementation on HNC-related datasets, particularly for deep learning model training and 
testing.  
 
This study has several limitations. Firstly, to examine defacing methods as they are currently 
distributed (“out-of-the-box”), modifications to the templates or models utilized in any 
methods were not performed. Further preprocessing either of the CT and MRI data as well 
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as subject specific settings could have helped some of the methods to better identify the 
face. In addition, more suitable templates for the HNC images (for both CT and MRI) would 
likely improve the defacing performance; for the registration-based algorithms, algorithms 
likely expected scans to cover the whole brain, while the field-of-view of the images for HNC 
mostly covered the neck and mouth, leaving the top of the brain excluded. Notably, 
additional deep learning model training schemes (i.e., transfer learning) may potentially allow 
for eventual implementation of existing deep learning methods on domain-specific datasets 
(i.e., HNC radiotherapy), but this negates the immediate interoperability of these tools. 
Furthermore, no additional image processing other than what was integrated into the 
defacing methods was implemented; it may be possible alternative processing could alter 
these results. Secondly, while a robust analysis utilizing multiple relevant metrics established 
in existing literature (38) was performed to evaluate OAR auto-segmentation, there is not 
always a perfect correlation between spatial similarity metrics and radiotherapy plan 
acceptability (39). This study has not tested the downstream effects of defacing on 
radiotherapy plan generation, which may lead to different results from what was observed for 
the OAR segmentation. Thirdly, this study was limited to public data with no modifications. 
Only structures that were already available in existing datasets were analyzed. Moreover, as 
an initial exploration of defacing methods for radiotherapy applications, only a single imaging 
modality on a relatively limited sample size, namely T2-weighted MRI, was investigated for 
auto-segmentation experiments, despite the HNC radiotherapy workflow commonly 
incorporating additional modalities (47). Thus, experiments on additional imaging modalities 
and larger diverse HNC patient populations should be the subject of future investigations. 
Fourthly, the current analysis does not thoroughly explore possible performance confounding 
related to phenotypical and individual variables such as sex, ethnicity, and age of the 
measured individuals. Finally, this study has focused on defacing methods as an avenue for 
public data sharing for training and evaluating machine learning models, but privacy-
preserving modeling approaches, e.g., through federated learning (48), may also act as a 
potential alternative solution.  
 

Conclusions 
In summary, by using publicly available data, the effects of eight established defacing 
algorithms, afni_refacer, mask_face, mri_deface, defacer, DeepDefacer, quickshear, 
fsl_deface, and pydeface, have been systematically investigated for radiotherapy 
applications. Specifically, the impact of defacing directly on ground-truth HNC OARs was 
determined and a deep learning based OAR auto-segmentation workflow to investigate the 
use of defaced data for algorithmic training and evaluation was developed. All methods 
failed to properly remove facial features on the CT dataset investigated. Moreover, it was 
observed that only fsl_deface, mask_face, and pydeface yielded usable images from the 
MRI dataset, but still decreased the total number of voxels in OARs and negatively impacted 
the performance of OAR auto-segmentation, with pydeface having more severe negative 
effects than mask_face or fsl_deface. This study is an important step towards ensuring 
widespread privacy-preserving dissemination of HNC imaging data without endangering data 
usability. Given that current defacing methods remove critical data, future larger studies 
should investigate alternative approaches for anonymizing facial data that preserve 
radiotherapy-related structures. Moreover, studies on the impact of these methods on 
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radiotherapy plan generation, the inclusion of a greater number of OARs and target 
structures, and the incorporation of additional imaging modalities are also warranted.  
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Appendix A: Supplementary Data 
 
For completeness, segmentation experiments were also quantified using additional surface 
distance metrics. These metrics were the mean Hausdorff distance at 95% (MHD95) and the 
Hausdorff distance at 95% (95HD): 
 

𝑀𝐻𝐷45 =
(
!
(𝑚𝑎𝑥$!"{𝑑(𝑡, 𝑃)	|	𝑡 ∈ 𝑇} 	+ 𝑚𝑎𝑥$!"{𝑑(𝑝, 𝑇))	|	𝑝 ∈ 𝑃}), 

95𝐻𝐷	 = 	𝑚𝑎𝑥{𝑚𝑎𝑥$!"{𝑑(𝑡, 𝑃)	|	𝑡 ∈ 𝑇},𝑚𝑎𝑥$!"{𝑑(𝑝, 𝑇)	|	𝑝 ∈ 𝑃}}, 
 
where P the set of segmentation surface voxels of the model output, and T the set of 
segmentation surface voxels of the annotation. The distance from the surface metric is 
defined as: 𝑑(𝑎, 𝐵) = 𝑚𝑖𝑛2∈3{||𝑎 − 𝑏||!}.  
 
Additional metrics for the model training and model testing experiments are shown in Figure 
A1 and Figure A2, respectively.  
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Figure A2. Additional surface metric values for performance of models trained on the 
original data when evaluated on the original, mask_face, fsl_deface, or pydeface data for the 
six organs at risk included in the analysis. Only cases that were available for all methods 
were included: 28 segmentations were used for all structures except in the case of the left 
and right submandibular glands where 26 and 27 segmentations were used, respectively. 
Empty model output segmentations were discarded, which resulted in a smaller number of 
evaluated structures. The number of evaluated structures is shown on top of the barplot. The 
mean and standard deviation for each metric are represented as the center and extremes of 
the error bars, respectively. Statistical significance was measured with Wilcoxon signed-rank 
tests corrected with Benjamini-Hochberg procedure for all OARs and models9#A%&'()*+%,#
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