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Abstract 47 
 48 
Background: Major vascular injury resulting in uncontrolled bleeding is a catastrophic and often fatal 49 
complication of minimally invasive surgery. At the outset of these events, surgeons do not know how 50 
much blood will be lost or whether they will successfully control the hemorrhage (achieve 51 
hemostasis). We evaluate the ability of a deep learning neural network (DNN) to predict hemostasis 52 
control ability using the first minute of surgical video and compare model performance with human 53 
experts viewing the same video.  54 
 55 
Methods: The publicly available SOCAL dataset contains 147 videos of attending and resident 56 
surgeons managing hemorrhage in a validated, high-fidelity cadaveric simulator. Videos are labeled 57 
with outcome and blood loss (mL). The first minute of 20 videos was shown to four, blinded, 58 
fellowship trained skull-base neurosurgery instructors, and to SOCALNet (a DNN trained on 59 
SOCAL videos). SOCALNet architecture included a convolutional network (ResNet) identifying 60 
spatial features and a recurrent network identifying temporal features (LSTM). Experts independently 61 
assessed surgeon skill, predicted outcome and blood loss (mL). Outcome and blood loss predictions 62 
were compared with SOCALNet.  63 
 64 
Results: Expert inter-rater reliability was 0.95. Experts correctly predicted 14/20 trials (Sensitivity: 65 
82%, Specificity: 55%, Positive Predictive Value (PPV): 69%, Negative Predictive Value (NPV): 66 
71%). SOCALNet correctly predicted 17/20 trials (Sensitivity 100%, Specificity 66%, PPV 79%, 67 
NPV 100%) and correctly identified all successful attempts.  68 
 69 
Expert predictions of the highest and lowest skill surgeons and expert predictions reported with 70 
maximum confidence were more accurate. Experts systematically underestimated blood loss (mean 71 
error -131 mL, RMSE 350 mL, R2 0.70) and fewer than half of expert predictions identified blood 72 
loss > 500mL (47.5%, 19/40). SOCALNet had superior performance (mean error -57 mL, RMSE 73 
295mL, R2 0.74) and detected most episodes of blood loss > 500mL (80%, 8/10).  74 
 75 
In validation experiments, SOCALNet evaluation of a critical on-screen surgical maneuver and 76 
high/low-skill composite videos were concordant with expert evaluation.   77 
 78 
Conclusion: Using only the first minute of video, experts and SOCALNet can predict outcome and 79 
blood loss during surgical hemorrhage. Experts systematically underestimated blood loss, and 80 
SOCALNet had no false negatives. DNNs can provide accurate, meaningful assessments of surgical 81 
video. We call for the creation of datasets of surgical adverse events for quality improvement 82 
research. 83 
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Expert Surgeons and Deep Learning Models Can Predict the Outcome of Surgical Hemorrhage 85 
from One Minute of Video 86 

 87 
Introduction:  88 
Major bleeding complications during minimal access, endoscopic or robotic-assisted surgery can impair 89 
visualization and requires immediate action to control.1,2 Despite maximal efforts, including the 90 
conversion from minimally invasive to ‘open’ surgery, 13-60% of major vascular injuries result in 91 
patient death.2–6 Surgeon assessments of the likelihood of achieving hemostasis and the need for blood 92 
transfusion should be made immediately; however, inexperience, inability 7–11and stress 1,3,12,13 impair 93 
decision-making, and surgeon self-assessments of the likelihood of controlling an unexpected vascular 94 
complication are uncorrelated with their actual performance.14 Inaccurate predictions of blood loss and 95 
task outcome risk patient harm by delaying changes in technique, aid from surgical colleagues, or 96 
transfusion of blood products. Rather than waiting for a patient’s clinical deterioration, early prediction 97 
of difficulty at achieving hemostasis and high-volume blood loss using computer vision (CV) 98 
techniques could optimize patient outcomes.  99 
 100 
We created SOCAL (Simulated Outcomes following Carotid Artery Laceration), a video dataset of 101 
attending and resident surgeons (otorhinolaryngologists and neurosurgeons) controlling life-threatening 102 
internal carotid artery injury (ICAI) in a validated, high-fidelity bleeding cadaveric simulator.14–18 103 
Carotid injury is a catastrophic complication of endonasal surgery and results in up to 30% mortality, 104 
similar to vascular injuries during minimally-invasive abdominal and thoracic surgery.5,19,20 In prior 105 
work, we applied artificial intelligence (AI) methods to SOCAL video and developed tools that quantify 106 
blood loss and measure surgeon performance metrics from video.21,22 Using these tools, we showed that 107 
video contains signals of surgical task outcome, but we do not know whether the model can detect 108 
predictive signals early in a bleeding episode, nor its performance compared to gold-standard human 109 
experts 110 
 111 
We provided human experts (fellowship trained skull-base neurosurgeons) with the first minute of 20 112 
videos from SOCAL (‘Test Set’) and collected predictions of blood loss and task success over the entire 113 
unseen task. Experts’ predictions of outcome and blood loss established a benchmark of human 114 
performance. We then built a deep learning neural network (DNN) trained on the SOCAL video dataset 115 
(excluding the Test Set), called SOCALNet, and compared model performance on the Test Set to expert 116 
benchmarks. We validated SOCALNet predictions in subsequent experiments. To the authors 117 
knowledge this is the first comparison of DNN-derived surgical video outcome prediction to human 118 
experts viewing the same video.  119 
 120 
 121 
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Methods:  122 
Experimental Design: 123 
Experimental setup, data collection, consent and implementation parameters for the dataset are found 124 
in Appendix 1. Seventy-five surgeons ranging from junior trainees to world experts on endoscopic 125 
endonasal approaches (EEA) were recorded in a nationwide, validated, high-fidelity training exercise. 126 
Surgeons attempted to control an ICAI in a cadaveric head perfused with blood substitute. Performance 127 
data and intraoperative video was used to develop the SOCAL database.14–18,23 The SOCAL database 128 
was developed in concordance with previously published methods, and is publicly available.23–25 The 129 
SQUIRE reporting guidelines were followed.26 The study was approved by the IRB of the University 130 
of Southern California. All research was performed in accordance with relevant regulations/guidelines. 131 
No patient data was utilized therefore patient-level informed consent was waived. Participating 132 
surgeons’ consent was obtained for intraoperative video recording. Surgeon-expert consent was 133 
obtained.   134 
 135 
Datasets:  136 
The 147 videos in SOCAL were divided into a training set of 127 videos and a separate test set of 20 137 
videos. Ten videos depicting successes and 10 of failure were initially chosen at random for the test set; 138 
ultimately, 11 success videos (and 9 failures) were used due to ease of video formatting. Videos were 139 
truncated after 60 seconds. Only videos in the test set were shown to experts for grading.  140 
  141 
SOCALNet Model Development:  142 
See eSupp1 for model code. Video was sampled at 1 frame-per-second (fps) and input into two layers, 143 
a feature generating layer and a temporal analysis algorithm (Figure 1). The output of the model was a 144 
binary prediction of surgical ability (trial success or failure) and estimated blood loss over the entire 145 
trial (in milliliters).  146 
For the feature generator, we utilized a Residual Learning Neural Network (ResNet) model pretrained 147 
on the ImageNet 2012 classification dataset.27,28 ResNet is a single-stage convolutional neural network 148 
(CNN) which uses skip connections to allow for large networks with many layers to skip layers that 149 
hurt overall performance. ResNet has become ubiquitous for object detection and classification in 150 
computer vision (CV).28 The final three layers of the ResNet were retrained on SOCAL images to detect 151 
features indicative of blood loss or task success. Features from the penultimate layer of the ResNet and 152 
manual instrument annotations were passed into a bi-layer Long Short-Term Memory (LSTM) recurrent 153 
neural network.29 LSTM cells contain an input, output and forget gate, allowing the network to regulate 154 
the flow of information across cells. Instrument annotations alone are inadequate for outcome 155 
prediction; successful detectors incorporate instrument data and image features.21  156 
 157 
Expert Assessment:  158 
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Experts were four skull base fellowship-trained neurosurgeon instructors in ICAI management. Experts 159 
watched the 20, one-minute test videos and provided: blood loss estimates (in mL), outcome predictions 160 
(success/failure), and surgeon grades (1-5 Likert scale, 1 represents novice and 5 represents master). 161 
Experts also reported self-confidence in their outcome prediction (1-5 Likert scale; 5 represents most 162 
confident). Prior to grading, experts watched anchoring videos of novice, average, and master 163 
performances with respective outcomes data. Anchoring videos were not contained in the Test-Set, and 164 
were chosen as representative videos of each skill level by adjudication by the study team. Grading 165 
sessions were conducted in double-blinded fashion by the lead author (DJP) and individual experts (BS, 166 
MR, GZ, DAD, referred to as S1-S4). Given high concordance, mean and mode are reported for experts 167 
(‘S’).  168 
 169 
Validation Analysis: 170 
We conducted two experiments to evaluate model and expert concordance. In experiment one, two 171 
videos were identified in the Test-Set which where a critical error occurred shortly after the 1-minute 172 
video sample concluded (i.e., not shown to the model or surgeons). The model and all surgeons 173 
predicted, incorrectly, that both videos were successes. A new, one minute clip was generated showing 174 
the critical error and its aftermath. These new clips were evaluated by one of the human experts and 175 
SOCALNet. 176 
 177 
In a second experiment, the three best (least blood loss, successes) and worst (most blood loss, failures) 178 
videos were identified from within the Test-Set. Composite ‘best’ and ‘worst’ videos were constructed 179 
by combining the first 20 seconds of each of the three best and worst trials in each possible order 180 
permutation (6 ‘best’, 6 ‘worst’ videos). The twelve composite videos were then presented to 181 
SOCALNet.  182 
 183 
Statistical Analysis:  184 
Blood loss prediction was reported using mean error, root mean square error (RMSE), and Pearson’s 185 
correlation coefficients. Categorical inter-rater reliability was calculated using Cohen’s Kappa and 186 
Krippendorff’s alpha for more than two raters. Continuous inter-rater reliability was calculated using 187 
Pearson’s correlation coefficient and an inter-rater correlation coefficient (ICC) (>2 groups; using a 188 
two-way random effects ICC model ).30 We used Fisher’s exact test for categorical comparisons. We 189 
performed analysis in Python with SciPy.31 190 
 191 
 192 
Results:  193 
Table 1 lists predictions and ground truth data. There were 11 successful trials and 9 failed trials in the 194 
Test Set, with mean blood loss of 568mL (range 20-1640 mL, mean success=323 mL, mean failure=868 195 
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mL). Experts correctly predicted outcome in 55/80 predictions (69%, Sensitivity: 79%, Specificity: 196 
56%). Expert predictions were concordant, with one dissent in 80 ratings (Fleiss’ kappa = 0.95). The 197 
average root mean square error (RMSE) for blood loss prediction of surgeons was 351 mL (mean 198 
error=-131mL, average R2 = .70). Expert ICC was high at 0.72.  199 
 200 
Figure 2, and Supplemental Table 1 demonstrates the relationship between prediction confidence, 201 
surgeon skill and prediction accuracy. Experts were most accurate when maximally confident (5/5 202 
confidence, accuracy 88%) or viewing a surgeon they rated as having minimal (Likert scale 1, accuracy 203 
92%) or maximal skill (Likert scale 5, accuracy 79%). Predictions with non-maximal confidence (levels 204 
2-4,) were only marginally better than chance (53%, p=0.02 compared to maximal confidence). 205 
Predictions of intermediate skill surgeons were also less accurate (levels 2-4, 63%, p=0.04 compared to 206 
composite 1/5 and 5/5 skill).  207 
 208 
 SOCALNet correctly predicted outcome in 17/20 trials (85%, Sensitivity: 100%, Specificity: 66%), 209 
noninferior to surgeons (p=0.12). The model predicted blood loss with a RMSE of 295 mL (mean 210 
error=-57mL, R2=.74) (Figure 3). The model and experts all predicted outcome correctly in 13/20 trials. 211 
In four trials, the model was correct and all experts incorrect, in one trial the model was incorrect, and 212 
all experts correct, and two trials all were incorrect (Figure 4). Correlation (R2) between blood loss 213 
estimates for the model, experts and ground truth are shown in Supplemental Figure 1, and range from 214 
0.53-0.93. Correlation between the model and the average surgeon blood loss estimate was 0.73, 215 
ranging from 0.53 to 0.74 for individual surgeons (Table 1).  216 
 217 
We then evaluated trials above the 50th percentile for blood loss, where blood loss exceeded 500mL and 218 
transfusion might be needed. The model predicted a blood loss estimate above 500 mL in 80% (8/10) 219 
compared to experts 47.5% (19/40); this difference was not statistically significant (p=0.09). 220 
 221 
Exploratory Model-Validation:  222 
Supplemental Table 2 reports model-validation experiments. In two trials, experts and SOCALNet 223 
predicted success, but the surgeon failed due to a critical error shortly after the end of the one-minute 224 
clip (therefore unseen by experts and SOCALNet). When we included the critical error, the model 225 
accurately predicted ‘failure’, as did an expert. In a second experiment, SOCALNet viewed six 226 
composite ‘Best’ trials and uniformly predicted success with low blood loss (328-473 mL); conversely, 227 
in six composite ‘Worst’ videos the model uniformly predicted failure with high blood loss (792-228 
794mL). 229 
 230 
 231 
 232 
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Discussion:  233 
To address the need for datasets depicting surgical adverse events we created SOCAL, a public video 234 
dataset of 147 attempts to control carotid injury in high-fidelity perfused cadavers. In this work we 235 
compared human expert predictions of outcome using one minute of video from 20 trials in the dataset 236 
to those of a DNN (SOCALNet). Compared to expert benchmarks, SOCALNet met or surpassed expert 237 
prediction performance, despite its relatively primitive architecture and small training data size relative 238 
to CV tasks. We synthesized counterfactual videos of excellent and poor surgeon performance to 239 
challenge SOCALNet, and it correctly predicted the outcomes in these challenges. SOCALNet and 240 
other CV methods can aid surgeons by quantifying and predicting outcome during surgical events, and 241 
in automatic video review. The absence of video datasets containing adverse events is a critical unmet 242 
need preventing the development of predictive models to improve surgical care. 243 
 244 
Benchmark Performance of Human Experts: 245 
Expert predictions were highly concordant, indicating that experts detected similar signals of blood loss 246 
and outcome (cross-correlation: R2 = 0.74 -0.93, Kappa for success prediction=0.95). Experts had 247 
uniform definitions of success (hemostasis) and were familiar with the stepwise progression of a well-248 
described technique.18,32 Thus, it is reasonable to conclude that using the first minute of video of a 249 
bleeding event, human experts detect signals predictive of blood loss and task outcome. 250 
 251 
Although experts had reasonably accurate outcome and blood loss predictions (69% accuracy, R2 =0.7), 252 
experts systematically overestimate surgeon success and underestimate bleeding: 4/6 of expert errors 253 
were false ‘success’ predictions, experts systematically underestimated blood loss by 131 mL and 254 
experts failed to identify 52% of high blood loss (above 500 mL) events. This post-hoc cutoff of 500mL 255 
represents a potential clinical marker of need for transfusion. The tendency for human experts to 256 
underestimate blood loss is well documented,33–36 corroborated by our findings, and may result in 257 
delayed recognition of life-threatening hemorrhage.  258 
 259 
To validate individual ratings, we asked experts to provide their confidence in each prediction, and 260 
perceived skill rating of the participating surgeon. Maximally confident predictions were more likely to 261 
be correct, as expected from prior work.33,34,37 Similarly, predictions were most accurate when 262 
evaluating highest and lowest-skilled surgeons (skill rating 1 or 5), but scarcely better than chance when 263 
evaluating intermediate surgeons. Intermediate skill surgeons comprised half of all surgeons and may 264 
benefit greatly from performance assessments.  265 
 266 
During a real vascular injury, estimation ability of the average surgeon is likely to be inferior to our 267 
experts calmly rating a single stereotyped task after training with videos of known blood loss. Experts’ 268 
systematic underestimation of blood loss and struggle to assess performance of intermediate surgeons 269 
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represents a chasm in surgeon-assessment proficiency. Surgical patients may benefit from novel 270 
methods that improve on these benchmarks.  271 
 272 
SOCALNet Performance Compared to Experts: 273 
We designed a primitive deep-learning architecture containing a standard CNN and a recurrent neural 274 
network, which we call SOCALNet. We provided SOCALNet with short videos from a much smaller 275 
training dataset than is customary in CV. Despite these disadvantages, SOCALNet made statistically 276 
non-inferior (and numerically superior) outcome predictions and superior blood loss predictions 277 
compared to human experts. SOCALNet’s predictions of blood loss had a smaller mean underestimation 278 
and standard error. Unlike experts, SOCALNet predictions were accurate for intermediate-skill 279 
surgeons.  280 
 281 
The advantages of SOCALNet support the development of computer vision tools for surgical video 282 
review and as potential teammates for surgeons.38 SOCALNet demonstrates that CV models can 283 
provide accurate, clinically meaningful analyses of surgical outcome from video. Future models could 284 
leverage the vast but largely untapped collections of surgical videos. Workflows developed in building 285 
SOCALNet can guide model deployment for other surgical adverse events. Human-AI teaming is a 286 
validated concept in other domains.39–41 A SOCALNet-and-expert combined team (with model as a 287 
tiebreaker, particularly when expert confidence was low) would have generated 18/20 correct 288 
predictions. Furthermore, the only two inaccurate predictions from this teaming occurred when a critical 289 
error was made after the video ceased, and these errors were detected by the model and experts. If 290 
utilized at scale, AI-driven video analysis may quantify comparisons of surgical technique, provide real-291 
time feedback for trainees, or provide guidance during rare scenarios a surgeon may not have 292 
encountered (e.g. vascular injury) but the model has been trained on.38 293 
 294 
SOCALNet has room for improvement. For adverse events, the 1) accurate estimation of high-volume 295 
blood-loss and 2) detection of task failures may be prioritized as exsanguination is life-threatening. 296 
SOCALNet blood loss predictions exhibited more robust central tendency than experts, resulting in 297 
better predictions for typical performances. However, when grading edge cases of the two worst 298 
surgeons in the Test Set, SOCALNet underestimated blood loss (absolute error of 790-800 mL on 299 
videos exceeding 1.5L of blood loss). In predicting failure (specificity), both experts and SOCALNet 300 
showed limitations (Specificity= 0.56, 0.66 respectively); however, improving expert predictions are 301 
challenging, and most surgeons are non-experts. Accordingly, applying CV optimization techniques to 302 
AI models (e.g. cost-sensitive classification, oversampling) may be preferred.42,43  303 
 304 
Surgical Adverse Event Video Datasets: An Unmet Need in Surgical Safety:  305 
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A growing body of evidence supports the quantitative analysis of surgical video.22,44–47 One fundamental 306 
discovery has been the detection of signals in surgical video that predict patient outcome: surgeons have 307 
heterogeneous skill resulting in heterogeneous outcomes.14,44,45,48 Although low-skill surgeons are more 308 
likely to have adverse intraoperative events, video of these events has not been systematically studied. 309 
Instead of studying surgical video, studies describe adverse events using textual medical records, 310 
radiography, and laboratory results. Analysis of these extra-operative records and correlations with pre-311 
operative risk factors and post-operative management can be useful.49–53 However, this research omits 312 
a crucial determinant of the outcome of the surgical patient: the surgical event itself. This omission 313 
limits root-cause analysis to only the extra-operative universe and prevents evaluation of the technical 314 
maneuvers and patient anatomic conditions that make adverse events more likely. Unlike textual 315 
records, surgical video depicts all visualized surgeon movements and patient anatomy, making video 316 
uniquely suited for the study of operative events. The results of the present study begin to demonstrate 317 
the value of studying video of surgical adverse events.  318 
  319 
We propose the creation of large, multi-center datasets of surgical videos that includes adverse 320 
events.54,55 Video datasets of surgical adverse events can be leveraged using predictive models (e.g., 321 
SOCALNet) which can detect intraoperative events, evaluate performance and quantify technique. This 322 
study was supported the North American Skull Base Society, whose mission is to promote scientific 323 
advancement, share outcomes data for education and to advance outcomes research. Groups such as the 324 
Michigan Bariatric Surgery Collaborative and the Michigan Urologic Surgery Improvement 325 
Consortium have conducted similar work and we hope to call their attention to adverse events in 326 
addition to routine procedures.56,57 National organizations capable of soliciting large bodies of data 327 
should prioritize collecting adverse event videos and apply technical innovations adopted by other 328 
medical fields to ensure privacy and confidentiality.58–60 National organizations can also facilitate the 329 
scaling of expert labeling. Small groups face long delays in accruing sufficient cases and labeling video. 330 
In this study, despite a long term track record of collaboration amongst our team, it required two months 331 
for our experts to review 20 minutes of aggregated video.61 Collaborative efforts may be able to require 332 
video review as a condition of membership.  333 
 334 
Finally, high-fidelity simulation enables analysis of rare surgical events. Curating 150 videos of real 335 
carotid injuries would require tens of thousands of cases, an impossible task without streamlined data-336 
sharing mechanisms; using perfused cadavers and real instruments we collected hundreds of 337 
observations of this otherwise rare event. Videos in the simulated environment can complement surgical 338 
video datasets that otherwise depict thousands of uncomplicated cases and only a few rare 339 
events.14,15,17,18,62–65 As more surgical video datasets are developed, we can follow the ‘sim-to-real’ 340 
process where models are trained on virtual data and then fine-tuned and validated in the real 341 
environment.66–68  342 
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 343 
Limitations: 344 
Our study has several limitations. First, validation on clinical video is a clear next step, although 345 
accruing a corpus of carotid injury video would likely require substantial national efforts. Second, 346 
results from carotid injuries may not transfer to other vascular injuries, and vascular injuries differ from 347 
other adverse events. Rather than diminishing our results, these complementary challenges showcase 348 
the depth of unmet need within surgical-video data science. Separately from these study design 349 
limitations, SOCALNet ingests ground truth tool annotations as input, which requires pre-processing 350 
of data and is thus not fully automated.69–71 The lack of curated surgical video datasets remain a major 351 
limitation for future work. 352 
 353 
Conclusion: 354 
Experts and a neural network can predict the outcome of surgical hemorrhage from the first minute of 355 
video of the adverse event. Neural network-based architectures can already achieve human or supra-356 
human performance at predicting clinically relevant outcomes from video. To improve outcomes of 357 
surgical patients, advances in quantitative and predictive methods should be applied to newly collected 358 
video datasets containing adverse events. 359 
 360 
Data Availability: 361 
The datasets generated during and/or analyzed during the current study are available in the figshare 362 
repository, link: https://doi.org/10.6084/m9.figshare.15132468.v1 363 
 364 
 365 
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 556 
Figure 1. SOCALNet Architecture. Deep learning model used to predict blood loss and task success 557 
in critical hemorrhage control task. A) Video is snapshotted into individual frames. B) A pretrained 558 
ResNet convolutional neural network (CNN) is fine-tuned on SOCAL images from (A), to find 559 
features predictive of blood loss and task success in each individual frame. Output matrix from (B) 560 
and tool presence information (C) [e.g. Is suction (S) present? Yes (check); is Muscle (M) present? 561 
No (X), etc] is input into a temporal layer. D) Temporal layer: Long-short-term memory (LSTM) 562 
modified recurrent neural network allowing for temporal analysis across all frames. All LSTM 563 
predictions are consolidated in one dense layer and E) a final prediction of success/failure, and blood 564 
loss (in mL) is output  565 
  566 
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 567 

 568 
 569 
 570 
Figure 2. Association between expert confidence, surgeon skill level and accuracy of prediction. 571 
Experts are most accurate when viewing trials of surgeons with low or high skill, or where they 572 
(experts) are maximally confident. For those with moderate skill or when experts have moderate 573 
confidence, prediction accuracy is lower. Size of circle denotes number of trials. Color denotes 574 
accuracy. 575 
 576 
 577 
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 579 
 580 

 581 
Figure 3. Expert and SOCALNet Blood Loss Quantification. Predicted versus observed blood loss 582 
estimations by individual surgeons (grey), surgeon mean (blue), and model (green). Red points 583 
represent measured blood loss (ground truth).  584 
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 586 

 587 
 588 
Figure 4. Outcome Predictions of Experts and SOCALNet. Outcomes of experts (Blue) and model 589 
(Red) in predicting task success using one minute of video. Circle size denotes number of trials (N). 590 
Success (S) and failure (F) denoted underneath each N. When the union of successful predictions is 591 
taken, the model+expert grouping would successfully predict outcome in 18/20 cases. In the 2 592 
remaining cases (bottom left quadrant), a critical error took place following the cessation of the video 593 
and was evaluated in subsequent counterfactual experiments.  594 
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 597 
 598 
 599 
Table 1. Results comparing Deep Learning Model with Expert Surgeons. SN: Sensitivity, SP: 600 
Specificity, M-S: Model-Surgeon. *: Kappa coefficient; †:inter-class coefficient; ‡: Inter-Surgeon 601 
Agreement: Success/Failure= 0.95, Blood-Loss: 0.72   602 
 603 
 604 
  605 

 Accuracy 
(SN %, SP %) 

RMSE 
(R2) 

M-S Agreement:* 
Success/Failure 

M-S Agreement:† 
 Blood Loss 

Ground Truth 11 Success 
9 Failures - - Avg Blood Loss: 568 

 (Range:20-1640 ) 

Model 17/20 (85%) 
(100, 66) 

295 
(.74) - - 

Expert Cohort 55/80 (68.75) 
(79, 56) 

351 
(.70) .43‡ 0.73‡ 

Surgeon 1 13/20 (65%) 
(73, 55) 

306 
(.73) .34 .74 

Surgeon 2 14/20 (65%) 
(81, 55) 

335  
(.66) .43 .66 

Surgeon 3 14/20 (65%) 
(81, 55) 

423 
(.65) .43 .65 

Surgeon 4 14/20 (65%)  
(81, 55) 

329 
(.74) .43 .72 
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 608 
 609 
Supplemental Figure 1. Correlation (R2) between blood loss prediction from all 4 expert surgeon 610 
graders, model, and ground truth data.  611 
 612 
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 616 
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