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Highlights 27 

• The performance of five metagenomic classifiers was assessed using datasets obtained from 28 

respiratory samples from a clinical cohort of patients 29 

• 88 samples were characterized by means of 1,144 respiratory virus PCR results 30 

• Using PCR as gold standard, sensitivity and specificity ranged from 83-100% and 90-99% 31 

respectively, with the overall highest scores resulting from amino-acid based classification 32 

by Kaiju classifier. Performance was dependent on classification level and exclusion of 33 

human reads prior to classification.  34 

• Normalization of assigned read counts for corresponding genome lengths generally had 35 

minor effect on performance, but negatively affected the detection of target viruses with 36 

read counts around detection level.  37 

• Correlation between sequence read counts and PCR Ct-values varied per classifier (12.1-38 

62.7% at species level), per data pre-processing, and per virus. Outliers were detected of up 39 

to 3 log10 reads the predicted read counts for viruses with high sequence diversity. 40 

• Sensitivity and specificity of the classifiers were within the range of use for diagnostic 41 

practice when combined with a determined cut-off for defining a positive result.     42 
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Abstract 43 

Viral metagenomics is increasingly being applied in clinical diagnostic settings for detection of 44 

pathogenic viruses. While a number of benchmarking studies have been published on the use of 45 

metagenomic classifiers for abundance and diversity profiling of bacterial populations, studies on 46 

the comparative performance of the classifiers for virus pathogen detection are scarce. 47 

In this study, metagenomic data sets (N=88) from a clinical cohort of patients with respiratory 48 

complaints were used for comparison of the performance of five taxonomic classifiers: Centrifuge, 49 

Clark, Kaiju, Kraken2, and Genome Detective. A total of 1,144 positive and negative PCR results for a 50 

total of 13 respiratory viruses were used as gold standard. Sensitivity and specificity of these 51 

classifiers ranged from 83-100% and 90-99% respectively, and was dependent on the classification 52 

level and data pre-processing. Exclusion of human reads generally resulted in increased specificity. 53 

Normalization of read counts for genome length resulted in minor overall performance, however  54 

negatively affected the detection of targets with read counts around detection level. Correlation of 55 

sequence read counts with PCR Ct-values varied per classifier, data pre-processing (R2 range 15.1-56 

63.4%), and per virus, with outliers up to 3 log10 reads magnitude beyond the predicted read count 57 

for viruses with high sequence diversity. 58 

In this benchmarking study, sensitivity and specificity were within the ranges of use for diagnostic 59 

practice when the cut-off for defining a positive result was considered per classifier.     60 
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Introduction 61 

In the era of next-generation sequencing (NGS), clinical metagenomics, analysis of all microbial 62 

genetic material in clinical samples, is being introduced in diagnostic laboratories, revolutionizing 63 

diagnostics of infectious diseases [1]–[4]. As opposed to running a series of pathogen targeted 64 

diagnostic PCR assays to identify suspected pathogens, one single metagenomic run enables the 65 

detection of all potential pathogens in a clinical sample [5][6]. The use of this method, also known as 66 

shotgun high-throughput sequencing, has resulted in the detection of several pathogens missed by 67 

current routine diagnostic procedures [1][7]. The clinical application of metagenomic sequencing for 68 

pathogen detection has for a large part focused on patients with encephalitis [1], [8]–[12]. However, 69 

patients with clinical syndromes suspected for an infectious disease but negative conventional test 70 

results are increasingly considered as candidates for metagenomic testing. With sequencing costs 71 

decreasing and the significance of detection of unexpected, novel viruses being underscored by the 72 

currently pandemic SARS-CoV-2 [13], metagenomics is increasingly moving towards implementation 73 

in diagnostic laboratories.  74 

Performance testing is typically part of the implementation procedure in diagnostic laboratories to 75 

ensure the quality of diagnostic test results. Accurate bioinformatic identification of viral pathogens 76 

depends on both the classification algorithm and the database [14][15][16]. Metagenomic 77 

sequencing in the past has been mainly oriented at profiling of bacterial genomes in the context of 78 

microbiome comparisons in research settings, and most bioinformatic tools currently available have 79 

been designed for that specific purpose [17][18]. Some of the previously bacterial oriented classifiers 80 

are now being used for other domains, including viruses. However, viral metagenomics for pathogen 81 

detection has specific challenges such as the low abundancy of viral sequences for some targets, and 82 

incomplete or inaccurate reference sequences. The high diversity of viral sequences due to the high 83 

mutation rate of RNA viruses further complicates accurate detection and identification [19]. While 84 

an increasing number of benchmarking studies is being published on the use of metagenomic 85 

classifiers for bacterial abundancy profiling, studies on the performance of classifiers for virus 86 
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pathogen detection are scarce. Publications on the performance of the computational analysis of 87 

viral metagenomics are usually limited to in silico analysis of artificial sequence data [14][20][21] or 88 

mock samples [22][23]. Though both sensitivity and specificity can be deducted when using 89 

simulated datasets, they usually do not represent the complexity of data sets from clinical samples 90 

which typically contain sequences from wet lab reagents that have been referred to as the ‘kitome’ 91 

[22][24][25]. These factors can affect the sensitivity and specificity of the overall procedure, and may 92 

result in incorrect diagnoses. In contrast, performance studies that use real-world samples are 93 

usually hindered by the huge number of negative metagenomic findings in the absence of gold 94 

standard results for validation. Therefore, the performance parameters typically reported are recall 95 

(sensitivity), precision (positive predictive value), and F1 (the harmonic mean of recall and 96 

precision); while specificity is usually not assessed because negative findings by metagenomics are 97 

poorly defined. 98 

Here, we perform a comparison of five taxonomic classifiers: Centrifuge [26], Clark [18], Kaiju [27], 99 

Kraken 2 [28] and Genome Detective [29]. The classifiers were tested using metagenomic shotgun 100 

sequencing data obtained from a cohort of chronic obstructive pulmonary disease patients (COPD) 101 

with a clinical exacerbation and therefore suspected of a respiratory infection. For these samples, 102 

1,144 PCR test results were used as gold standard to infer both sensitivity and specificity of the 103 

classifiers. For each classifier, we present appropriate benchmark scores for virus classification in the 104 

diagnostic setting.  105 

  106 
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Materials and Methods  107 

Clinical samples and PCR results 108 

Clinical respiratory samples were used to obtain metagenomic data sets. In total 88 nasal washings 109 

were taken from 63 patients with COPD suspected for respiratory infection as described previously 110 

[30]. Each sample was tested using a respiratory PCR panel resulting in 1,144 real-time positive and 111 

negative PCR results for 13 viral respiratory targets as described previously [30]. The respiratory 112 

viruses addressed by this respiratory panel and cohort prevalence are shown in Table 1. 113 

 114 

Ethical approval 115 

Ethical approval for metagenomic sequencing of the cohorts was obtained from the medical ethics 116 

review committee of the Leiden University Medical Center, the Netherlands, (CME number 117 

B16.004). 118 

 119 

Metagenomic next-generation sequencing (mNGS) 120 

The metagenomic datasets used for comparison were generated as described before [30]. In short, 121 

clinical samples were spiked with equine arteritis virus (EAV) and phocine herpesvirus 1 (PhHV-1), as 122 

positive controls for RNA and DNA detection. Subsequently, extraction of nucleic acids was 123 

performed using the Magnapure 96 DNA and Viral NA Small volume extraction kit on the MagnaPure 124 

96 system (Roche, Basel, Switzerland). Library preparation was performed utilizing the NEBNext 125 

Ultra II Directional RNA Library prep kit for Illumina (New England Biolabs, Ipswich, MA, USA) using 126 

single, unique adaptors and a protocol optimized for processing RNA and DNA simultaneously in a 127 

single tube [25]. Sequencing was performed on an Illumina NextSeq 500 sequencing system 128 

(Illumina, San Diego, CA, USA) at GenomeScan BV (Leiden, Netherlands), obtaining approximately 10 129 

million 150 bp paired-end reads per sample. 130 

 131 
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Pre-processing of data 132 

Illumina 150 bp paired-end sequence reads were demultiplexed by standard Illumina software 133 

followed by trimming, adapter clipping, and filtering of low-complexity reads using Trimmomatic [v. 134 

0.36] [31]. Human reads were excluded after mapping them to the human genome GRCh38 [32] 135 

using Bowtie2 [33]. 136 

 137 

Metagenomic classifiers  138 

Bioinformatic metagenomics tools designed for taxonomic classification were selected for 139 

benchmarking based on the following criteria: applicable for viral metagenomics for pathogen 140 

detection; available either as download or webserver; and it is either widely used or showed 141 

potential of being adopted for diagnostics in the future. Some tools considered were excluded due 142 

to lack of support or details on how to use the tool, or non-functioning webservers. An overview of 143 

characteristics of the selected classifiers can be found in Table 2. 144 

 145 

Reference database 146 

For comparison of classification performance, a single database was used as starting point for the 147 

classifiers Centrifuge, Clark, Kaiju, and Kraken 2: viral genomes from NCBI/RefSeq [34] (downloaded 148 

on 2020-12-27). Genome Detective was used as a service, it uses its own database generated on 3 149 

March 2020 (version 1.130) by Genome Detective. 150 

 151 

Metagenomic classifiers and characteristics 152 

Centrifuge 153 

Classification with Centrifuge (version 1.0.4) [26] is based on exact matches of at least 22 base pair 154 

nucleotide sequences with the reference index, using k-mers of user-defined length. Centrifuge by 155 

default allows five classification labels per sequence read. For a realistic comparison, in the current 156 

study, this setting was adapted to maximum one label per sequence (the lowest common ancestor) 157 
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to mimic results of Kraken2 and other classifiers where only one label per sequence read is given. 158 

Preceding classification, Centrifuge builds small reference indexes based on adapted versions of the 159 

Burrows-Wheeler transform (BWT) [35] and the Ferragina-Manzini (FM) index [36] resulting in a 160 

compressed index of only unique genomic sequences. 161 

 162 

Clark 163 

Clark (version 1.2.6.1) [18] is a taxonomic classifier based on reduced k-mers using nucleotide-level 164 

classification. It uses a compressed index database containing unique target specific k-spectrum of 165 

target sequences. For the current comparison the default execution mode was used. 166 

 167 

Kaiju 168 

Kaiju (version 1.7.3)[27] is a taxonomic classifier that assigns sequence reads using amino acid-level 169 

classification. Sequence reads are translated into six possible open reading frames and split into 170 

fragments according to the detected stop codons. Classification with Kaiju can be performed using 171 

two settings, both based on an adjusted backward alignment search algorithm of BWT [35]. For the 172 

current comparison study, the greedy mode was used providing high sensitivity because it allows up 173 

to five mismatches to further increase the highest scoring matches. In this mode Kaiju assesses six 174 

possible ORF’s using the amino acid scores of Blosum62 [37] to obtain the highest scoring match.  175 

 176 

Kraken 2 177 

Kraken 2 (version 2.0.8-beta) [28] is a classifier designed to improve the large memory requirements 178 

of the former version of Kraken [17], resulting in a reduction of in general 85% of the size of the 179 

index database. Kraken 2 uses a probabilistic, compact hash table to map minimizers to the lowest 180 

common ancestors (LCA), and stores only minimizers from the reference sequence library in its index 181 

reference [28].  182 

 183 
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Genome Detective 184 

Genome Detective [29] is a commercially-available bioinformatic pipeline that includes the entire 185 

workflow from automated quality control, de novo assembly of reads and classification of viruses. 186 

After adapter trimming and filtering low-quality reads using Trimmomatic [31], viral reads are 187 

selected based on Diamond [38] protein alignment using as reference protein sequences from 188 

Swissprot Uniref 90 [39]. Viral reads are sorted in buckets, after which all sequences in one bucket 189 

are de novo assembled into contigs using SPAdes [40] or metaSPAdes [41]. Subsequently, contigs are 190 

processed by BLASTx and BLASTn [42] against a databases containing NCBI Refseq [34] sequences 191 

and some additional virus sequences. Potential hits represented by the contigs are assigned to 192 

individual species using the Advanced Genome Aligner [43], and coverage the viral genomes is 193 

calculated. 194 

 195 

Performance, statistical analysis and ROC 196 

Sensitivity and specificity were calculated for the classifiers based on application of PCRs (designed 197 

for detection of 13 targets) for 88 samples with 24 PCR positive and 1,120 PCR negative results. 198 

Receiver Operating Characteristic (ROC) curves were generated for results of classification at 199 

species, genus, and family levels, by varying the number of sequence read counts used as cut-off for 200 

defining a positive result (resolution: 1,000 steps from 1 read to the maximum number of sequence 201 

reads for each PCR target per sample). Area under the curve (AUC), the ROC distance to the closest 202 

error- free point (0,1, informedness) curve, positive and negative predictive values were calculated. 203 

Furthermore, correlation (R2) of sequence read counts with PCR cycle threshold (Ct) value were 204 

analysed. 205 

  206 
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Results 207 

 208 

Performance: sensitivity, specificity, and ROC  209 

The performance of the selected taxonomic classifiers Centrifuge, Clark, Kaiju, Kraken 2, and 210 

Genome Detective for metagenomic virus pathogen detection was assessed using datasets from 88 211 

respiratory samples with 24 positive and 1,120 negative PCR results available as gold standard. To 212 

exclude variability based on different default databases provided with the classifiers, a single 213 

database of reference genome sequences was used in combination with a standardized dataset for 214 

all classifiers. Raw NGS reads were filtered and classified, both prior and after the exclusion of 215 

human sequence reads, and after exclusion of human reads combined with normalization of reads 216 

based on the target viral genome length. ROC curves are shown for all classifiers, for assignments at 217 

species, genus and family level for the NGS data in Figure 1, and Supplementary Table 1. Detection 218 

parameters (ROC distance to the upper left corner of the graph, sensitivity and selectivity, and AUC) 219 

at three taxonomic levels calculated for the NGS data, before and after exclusion of human reads, 220 

with or without normalization of assigned reads by corresponding genome sequence lengths are 221 

additionally shown in Figure 2. Overall, sensitivity, specificity, and AUC ranged 83-100%, 90-99%, 91-222 

98%, respectively, and varied per level of taxonomic classification, per classifier, and with the 223 

exclusion of human reads prior to classification. Classification at species and genus levels tended to 224 

result in lower sensitivity and higher ROC distances, but higher selectivity when compared with 225 

family level classification, for most of the classifiers evaluated. Extraction of human sequence reads 226 

prior to classification resulted in comparable sensitivity at all levels of assignment for all classifiers 227 

except CLARK for which sensitivity plummeted at species and genus levels. Selectivity was mainly 228 

increased after extraction of human reads, for classification at all levels, except for Kaiju and 229 

Kraken2, for which decreased selectivity values at family level were observed. Extraction of human 230 

reads reduced the differences in selectivity between the classifiers that were observed at genus and 231 

family level prior to extraction. The ROC distances were overall smallest, and the AUC highest when 232 
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using amino-acid based classifier Kaiju, the latter at species and family levels and was comparable 233 

with Kraken2 at genus level. Normalization of assigned read counts by corresponding genome length 234 

resulted in minor changes in performance when considering 1 read as threshold for defining positive 235 

results. Sensitivity was dramatically reduced to 13-33% at species level after read normalization 236 

when a threshold of 10 reads was applied, while without read normalization in combination with a 237 

threshold of 10 reads, sensitivity was 75-88% (Supplementary Table 1). This indicates that 238 

normalization of reads can negatively affect the detection of targets with read counts around 239 

detection level.  240 

Overall, Kaiju outperformed all classifiers when ROC distance, AUC, and sensitivity were considered, 241 

but had consistent lower values of selectivity than Centrifuge and Genome Detective. 242 

In this patient cohort, with an incidence of 21% (24/88 samples) of respiratory viruses, the positive 243 

and negative predictive values at species levels were 42-67% and 99-100% respectively (see 244 

Supplementary Table 1).   245 

 246 

Correlation read counts and Ct-values 247 

The correlation between sequence read counts at and Ct-value for corresponding PCR target viruses 248 

for all classifiers is shown in Figure 3 and supplementary Table 2. Correlation (R2, %), linear 249 

regression slope and interception varied per virus species, per taxonomic classifier, and was 250 

dependent on the extraction of human reads. Correlation ranged from 15.1% for CLARK (no 251 

exclusion of human reads, species level) to 62.7% for Kaiju-based classification at species level (after 252 

exclusion of human reads with normalization of assigned reads by corresponding genome sequence 253 

lengths). The most consistent results (when comparing R2 prior and after human reads exclusion, 254 

and after normalization) were demonstrated by Kaiju and Genome Detective with overall 255 

outperformance of Kaiju classifier at all classification levels (61.8-62.7% versus 42.3-43.9% for 256 

Centrifuge). Reads assigned to Rhinoviruses were most common outliers in relation to Ct-value and 257 

varied up to 3 log10 reads difference from the predicted read count (LR), possibly resulting from their 258 
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high within species divergence. This was is in contrast to read counts of other viruses (for example 259 

Influenza virus), which were closer to the predicted correlation line. Extraction of human sequence 260 

reads resulted in an increase in R2 for CLARK classifier at species and family level, a decrease for 261 

Centrifuge and Kraken at all levels, and resulted in minor changes for amino acid-based classifiers 262 

Genome Detective and Kaiju at all levels. Decrease in absolute or relative number of total reads after 263 

pre-processing (extraction of human reads in combination with normalization of assigned reads by 264 

corresponding genome lengths) led to decrease in intercept values for all classifiers.  265 

These data support that a more accurate taxonomic classification assists semi-quantitative 266 

performance of metagenomic classification tools.  267 

 268 

  269 
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Discussion 270 

In this study, we compared the performance of five taxonomic classification tools for virus pathogen 271 

detection, using datasets from well-characterized clinical samples. In contrast to previously reported 272 

comparisons with datasets from real samples, both sensitivity and specificity could be assessed using 273 

a unique set of 1,144 PCR results as gold standard. A uniform database was created to exclude 274 

variability based on differences in availability of genomes in databases provided with the classifiers. 275 

In general, sensitivity and specificity were within ranges applicable to diagnostic practice. Exclusion 276 

of human reads generally resulted in increased specificity. Normalization of read counts for genome 277 

length negatively affected the detection of targets with read counts around detection level. The 278 

correlation of sequence read counts with PCR Ct-values was highest for viruses with relatively lower 279 

sequence diversity.   280 

Previous studies have benchmarked metagenomic profilers, mainly for use of bacterial profiling and 281 

DNA-to-DNA and DNA-to-protein classification methods were among the best-scoring methods in 282 

comparison with DNA-to-marker (16S) methods [22][27][44][45][46][47][48]. In a study with 283 

simulated bacterial datasets comparing the performance of CLARK, Kraken and Kaiju, sensitivity and 284 

precision were 75% and 95% and decreased when a lower number of reference genomes was 285 

available for the specific target [27]. Since in our study the same reference database was used by all 286 

classifiers, the only determining factors would be the index database built from the reference 287 

database and the classification algorithm. DNA-to-DNA methods have been applied in hundreds of 288 

published microbiome studies (e.g., Kraken: 1,438 citations; Kraken 2: 204 citations, by March 2021, 289 

according to their official websites [48]). Centrifuge was designed as a follow-up of Kraken with 290 

enhanced features, though misclassifications have also been reported in a comparison with 291 

simulated datasets [22]. DNA-to-protein methods are generally more sensitive to novel and highly 292 

variable sequences due to lower mutation rates of amino acid compared to nucleotide sequences 293 

[22], [27] as was seen in our study when classifying rhinoviruses by Kaiju. The difference was 294 

especially visible in genera with limited availability of genomes in reference databases [27].  295 
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Misclassification of human genomic sequence reads has been reported for most DNA classifiers [22]. 296 

Protein-based classifiers had higher misclassification ranges of human genome sequences (up to 297 

15%), partially due to the larger number of target sequences in their default databases [22]. 298 

Inclusion of the human genome in the reference database, which is by default the case for 299 

Centrifuge and KrakenUniq [49] reduced the rate of misclassification to negligible [22]. In line, in our 300 

study, exclusion of human sequence reads prior to classification reduced misclassifications for all 301 

classifiers. In general, reduction of false-positive hits can be achieved by assembly of sequences (for 302 

example, by Genome Detective) and thus reducing the number of hits based on short nucleotide 303 

sequences used by k-mer based methods. Inclusion of genome coverage of mapped reads, as 304 

adopted by Genome Detective and KrakenUniq [49], also can reduce false-positive hits.  305 

To our knowledge, a limited number of studies have published on the benchmarking of tools for viral 306 

metagenomics for pathogen detection. In a Swiss-wide ring trial based on spiked plasma samples, 307 

median F1 scores ranged from 70-100% for the different pipelines, though since the entire workflow 308 

was analysed, no conclusions on specific classifiers could be drawn [15]. A series of tools and 309 

programs were analysed in a COMPARE virus proficiency test using a single in silico dataset [14]. For 310 

Kraken discrepant classification results were observed, likely due to differences in the databases 311 

used by the participants. A recent European benchmark of thirteen bioinformatic pipelines currently 312 

in use for metagenomic virus diagnostics used datasets from clinical samples [16] Analyses using 313 

Centrifuge, and Genome Detective software resulted in sensitivities of 93% and 87% respectively.   314 

In conclusion, sensitivity and specificity of the classifiers evaluated in this study was within the 315 

ranges that may be applied in clinical diagnostic settings. Performance testing for viral 316 

metagenomics for pathogen detection is intrinsically different from benchmarking of bacterial 317 

profiling, and should incorporate parameters that are inherent to clinical diagnostic use such as 318 

specificity calculations, sensitivity for divergent viruses and variants, and importantly, a determined 319 

cut-off for defining a positive result for each workflow. Taking these factors into account during 320 
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validation and implementation of viral metagenomics for pathogen detection contributes to optimal 321 

performance and applicability in clinical diagnostic settings.    322 

 323 

Data access 324 

NGS data used in this study have been submitted (after removal of human reads) to the NCBI’s 325 

Sequence Read Archive (http://www.ncbi.nlm.nih.gov; accession number SRX6713943-SRX6714030). 326 

 327 
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Table 1. Overview of respiratory PCR panel targets and their test results. 467 

PCR  
target 
viruses 

Family Genus Species Alternative naming # PCR 
positive 
samples 

# PCR 
negative 
samples 

PCR Ct-
values 
(range) 

HRV Picorna-
viridae 

Enterovirus Rhinovirus A, B, C, 
Enterovirus D 

 14 74 19-38 

PIV1, 
PIV3 

Paramyxo-
viridae 

Respiro-
virus 

Human 
respirovirus 1 

Human 
parainfluenza virus 1 

- 88 - 

   Human 
respirovirus 3 

Human 
parainfluenza virus 3 

2 86 26-36 

PIV2, 
PIV4 

Paramyxo-
viridae 

Ortho-
rubulavirus 

Human 
orthorubulavirus 
2 

Human 
parainfluenza virus 2 

- 88 - 

   Human 
orthorubulavirus 
4 

Human 
parainfluenza virus 4 

1 87 24 

INF Orthomyxo
viridae 

Alphainflue
nzavirus 

Influenza A virus 
Influenza B virus 

 3 
- 

85 
88 

29-36 
- 

ACoV Corona-
viridae 

Alpha-
coronavirus 

Human 
coronavirus NL63 
Human 
coronavirus 229E 

 2 
- 

86 
88 

32 
- 

BCoV Corona-
viridae 

Betacorona
virus 

Human 
coronavirus 
HKU1, 
Betacoronavirus 
1; Human 
coronavirus OC43 

 2 86 27 

HMPV Pneumo-
viridae 

Metapneu
movirus 

Human 
metapneumo-
virus 

 - 88 - 

RSV Pneumo-
viridae 

Orthopneu
movirus 

Human 
orthopneumo-
virus 

 - 88 - 

Total   Total PCR results: 
1,144 (13 targets 
tested in 88 
samples) 

 24 1,120 19-38 
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Table 2. Overview of characteristics of the classifiers evaluated. 469 

 
Centrifuge 
[26] 

Clark 
[18] 

Kaiju 
[27] 

Kraken 2 
[28] 

Genome 
Detective [29] 

License Open source Open source Open source Open source Commercial/fre
e to use web 
application 

Version 1.0.4 1.2.6.1 1.7.3 2.0.8-beta 1.126 

Sequencing 
technology 
compatibility 

Short/long 
reads 

Short/long 
reads 

Short/long 
reads 

Short/long 
reads 

Short reads 
(long reads 
experimentally) 

Pre-processing  No No No No Yes 

Type of alignment NT NT AA NT NT/AA 
(DIAMOND [38]) 
including de 
novo assembly 

Algorithm 
characteristics 

Exact matches 
of 22 bp with 
target with 
default 5 labels 
per sequence, 
LCA optional 

Exact matches 
of 31 bp with 
target with 
highest 
number of hits 

Maximum 
exact matches 
(MEM) of AA, 
up to 5 
mismatched 
optional*. LCA 
in case of 
multiple hits 

Exact matches 
of 35 bp. LCA 
in case of 
multiple hits 

Combined 
results of NT 
and AA hits 
based on 
scoring. LCA in 
case of multiple 
hits 

Database 
(compression) 

Compressed 
index NT 
database of  
only unique 
sequences 

Compressed 
index NT 
database of 
only unique 
sequences 

No 
compression, 
AA database 

Compressed 
index NT 
database 

No 
compression, 
viral subset of 
Swiss-Prot 
UniRef90 
protein 
database 

NT; nucleotide, AA; amino acid; LCA, lowest common ancestor 470 
*Greedy-5 mode was used in the current study 471 
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Figure 1. ROC curves calculated based on reads of taxonomic assignment at three  473 
taxonomic levels (species, genus, and family) by the five classifiers, based on PCR-targets, 474 
a. without extraction of human reads and b, after extraction of human reads, c, after extraction of 475 
human reads and normalization of reads by corresponding genome lengths (resolution of 1,000 476 
steps from 1 read to the maximum number of sequence reads for each PCR target per sample). 477 
 478 

 479 

 480 
481 

a incl. human reads 

Species      Genus      

b excl. human reads 

Family           

                             

 

   

   

   

   

   

   

   

   

   

 
          

  

     

       

     

                

              

               

 
 

 
  

  
  

  

c excl. human reads and normalized 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.21.22269647doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.21.22269647
http://creativecommons.org/licenses/by-nd/4.0/


22 

 

Figure 2. Sensitivity, selectivity, AUC, and ROC distance calculated based on assignment at three 482 
taxonomic levels (species, genus, and family) by the five classifiers for three type of pre-processing 483 
of the NGS datasets, a. without extraction of human reads and b, after extraction of human reads, c, 484 
after extraction of human reads and normalization of reads by corresponding genome lengths.  485 
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Figure 3. Correlation between the number of sequence reads assigned (species level) and Ct-values 488 
of virus-specific PCRs, for the five taxonomic classifiers evaluated, a. without extraction of human 489 
reads and b, after extraction of human reads, c, after normalization of reads by corresponding 490 
genome lengths. 491 
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