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Abstract 20 
Multiomic profiling can reveal population heterogeneity for both health and disease states. Obesity 21 
drives a myriad of metabolic perturbations in individuals and is a risk factor for multiple chronic 22 
diseases. Here, we report a global atlas of cross-sectional and longitudinal changes in 1,111 blood 23 
analytes associated with variation in Body Mass Index (BMI), as well as the multiomic associations 24 
with host polygenic risk scores and gut microbiome composition, from a cohort of 1,277 individuals 25 
enrolled in a wellness program. Machine learning model predictions of BMI from blood multiomics 26 
captured heterogeneous phenotypic states of host metabolism and gut microbiome composition, better 27 
than classically-measured BMI. Moreover, longitudinal analyses identified variable BMI trajectories 28 
for different omics measures in response to a healthy lifestyle intervention; metabolomics-inferred 29 
BMI decreased to a greater extent than actual BMI, while proteomics-inferred BMI exhibited greater 30 
resistance to change. Our analyses further revealed blood analyte–analyte associations that were 31 
significantly modified by metabolomics-inferred BMI and partially reversed in the metabolically 32 
obese population during the intervention. Taken together, our findings provide a blood atlas of the 33 
molecular perturbations associated with changes in obesity status, serving as a valuable resource to 34 
robustly quantify metabolic health for predictive and preventive medicine. 35 

  36 
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Introduction 37 

Obesity has been increasing in prevalence over the past four decades in adults, adolescents, and 38 
children around most of the world1,2. Many studies have demonstrated that obesity is a major risk 39 
factor for multiple chronic diseases such as type 2 diabetes mellitus (T2DM), metabolic syndrome 40 
(MetS), cardiovascular disease (CVD), and certain types of cancer3–6. In individuals with obesity, even 41 
a 5% loss in body weight can improve metabolic and cardiovascular health7, and weight loss through 42 
lifestyle interventions can reduce the risk for obesity-related chronic diseases8. Nevertheless, obesity 43 
and its physiological manifestations can vary widely across individuals, necessitating additional 44 
research to better understand this prevalent health condition. 45 

Most commonly, obesity is quantified using the anthropometric Body Mass Index (BMI), 46 
defined as the body weight divided by body height squared [kg m−2]. While BMI does not directly 47 
measure body composition, BMI correlates well at the population level with direct measurements of 48 
body fat percentage using computed tomography (CT), magnetic resonance imaging (MRI), or dual-49 
energy X-ray absorptiometry (DXA) (partial Pearson’s r = 0.74–0.84)9. As an easily calculated and 50 
commonly understood measure among researchers, clinicians, and the general public, BMI is widely 51 
used for the primary diagnosis of obesity, and changes in BMI are often used to assess the efficacy of 52 
lifestyle interventions. 53 

At the same time, there are considerable limitations to BMI as a surrogate measure of health 54 
state; e.g., differences in body composition can lead to misclassification of people with a high muscle-55 
to-fat ratio (e.g., athletes) as the individual with obesity, and can undervalue metabolic improvements 56 
in health following exercise10. A meta-analysis showed that the common obesity diagnoses based on 57 
BMI cutoffs had high specificity but low sensitivity in identifying individuals with excess body fat11. 58 
The misclassification is likely due, in part, to the differences in BMI thresholds for obesity across 59 
different ethnic populations12, as well as the existence of a metabolically unhealthy, normal-weight 60 
(MUNW) group within the normal BMI class13,14. Likewise, there are health-heterogeneous groups 61 
among the individuals with obesity: metabolically healthy obese (MHO) and metabolically unhealthy 62 
obese (MUO). While most individuals in the MHO group are not necessarily healthy but simply 63 
healthier than individuals in the MUO group15, the transition from MHO to MUO phenotype may be a 64 
preceding step to the development of obesity-related chronic diseases16. Moreover, this transition is 65 
potentially preventable through lifestyle interventions17. Altogether, BMI is unequivocally useful at 66 
the population level, but too crude to capture a variety of heterogeneous metabolic health states. 67 

Recent omics studies have demonstrated how blood omic profiles contain information 68 
relevant to a wide range of human health conditions; e.g., blood proteomics captured 11 health 69 
indicators such as the liver fat measured by ultrasound and the body composition measured by DXA18, 70 
while blood metabolomics tended to reflect dietary intake, lifestyle patterns, and gut microbiome 71 
profiles19,20. Intriguingly, a machine learning model that was trained to predict BMI using 49 BMI-72 
associated blood metabolites captured obesity-related clinical measurements (e.g., insulin resistance, 73 
visceral fat percentage) better than observed BMI or genetic predisposition for high BMI21. Moreover, 74 
in a recent study on coronary artery disease, another blood metabolomics-based model of BMI 75 
efficiently reflected differences between individuals with or without acute coronary syndrome 76 
(ACS)22. Thus, while a single targeted metric (e.g., body composition) or a specific biomarker (e.g., 77 
leptin, adiponectin23) provides useful information, multiomic blood profiling has the potential to 78 
comprehensively bridge the multifaceted gaps between BMI and heterogeneous physiological states. 79 

In this study, we report heterogeneous molecular signatures of obesity by leveraging a cohort 80 
of 1,277 individuals with a wealth of phenotypic data, including human genomes and longitudinal 81 
measurements of metabolomics, proteomics, clinical laboratory tests, gut microbiomes, physical 82 
activity (i.e., wearables), and health/lifestyle questionnaires, and by employing machine learning to 83 
predict BMI. Blood-based analytes across all studied omics platforms exhibit strong performance in 84 
predicting measured BMI, explaining 48–78% of the variance in our main study cohort. We further 85 
show that multiomic phenotyping captures more refined levels of heterogeneity in metabolic states 86 
accompanying obesity, which is not apparent when using measured BMI. Moreover, longitudinal 87 
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analyses demonstrate variable changes in blood analytes across the studied omics platforms during a 88 
healthy lifestyle intervention; i.e., plasma metabolomics exhibited a stronger response to the 89 
intervention than measured BMI, while plasma proteomics exhibited a weaker response within a one-90 
year span. Our findings highlight the utility and translational potential of blood multiomic profiling for 91 
investigating the complex molecular phenotypes underlying obesity and weight loss. 92 

 93 

Results 94 

Plasma multiomics captured 48–78% of the variance in BMI 95 

To investigate the molecular phenotypic perturbations associated with obesity, we selected a study 96 
cohort of 1,277 adults who participated in a scientific wellness program (Arivale)20,24–29 and whose 97 
datasets included coupled measurements of plasma metabolomics, proteomics, and clinical laboratory 98 
tests from the same blood draw (Fig. 1a; see Methods). This study design allowed us to directly 99 
investigate the similarities and differences between omics platforms with regards to how they reflected 100 
the physiological health state of each individual across the BMI spectrum. This cohort was 101 
characteristically female (64.3%), middle-aged (mean ± s.d.: 46.6 ± 10.8 years), and white (69.7%) 102 
(Supplementary Fig. 1a–c, Supplementary Data 1). Based on the World Health Organization (WHO) 103 
international standards for BMI cutoffs (underweight: <18.5 kg m−2, normal: 18.5–25 kg m−2, 104 
overweight: 25–30 kg m−2, obese: ≥30 kg m−2)12, the baseline BMI prevalence was similar among 105 
normal, overweight, and obese classes, while only 0.8% of participants were in the underweight class 106 
(underweight: 10 participants (0.8%), normal: 426 participants (33.4%), overweight: 391 participants 107 
(30.6%), obese: 450 participants (35.2%)). 108 

Leveraging the baseline measurements of plasma molecular analytes (766 metabolites, 274 109 
proteins, and 71 clinical laboratory tests; Supplementary Data 2), we trained machine learning models 110 
to predict baseline BMI (i.e., not forecast a future outcome but calculate an out-of-sample outcome) 111 
for each of the omics platforms (metabolomics, proteomics, and clinical labs) or in combination 112 
(combined omics of all metabolomics, proteomics, and clinical labs): metabolomics-based, 113 
proteomics-based, clinical labs (chemistries)-based, and combined omics-based BMI (MetBMI, 114 
ProtBMI, ChemBMI, and CombiBMI, respectively) models. To address multicollinearity among the 115 
analytes (Supplementary Fig. 2a) and to obtain predictions for all participants, we applied a tenfold 116 
iteration scheme of the least absolute shrinkage and selection operator (LASSO) algorithm with 117 
tenfold cross-validation (CV) (Fig. 1a; see Methods). This approach generated ten fitted sparse models 118 
for each omics category (Supplementary Data 3) and one single testing (hold-out) set-derived 119 
prediction from each omics category for each participant. The resulting models retained (i.e., assigned 120 
non-zero β-coefficient to) 62 metabolites, 30 proteins, 20 clinical laboratory tests, and 132 analytes 121 
across all ten MetBMI, ProtBMI, ChemBMI, and CombiBMI models, respectively, which exhibited 122 
low collinearity (Supplementary Fig. 2b, c) as expected from the LASSO algorithm30. In contrast to a 123 
model including obesity-related standard clinical measures (i.e., ordinary least squares (OLS) linear 124 
regression model with sex, age, triglycerides, high-density lipoprotein (HDL)-cholesterol, low-density 125 
lipoprotein (LDL)-cholesterol, glucose, insulin, and homeostatic model assessment for insulin 126 
resistance (HOMA-IR) as regressors; StandBMI model), each omics-based model demonstrated 127 
significantly higher performance in BMI prediction, ranging from out-of-sample R2 = 0.48 128 
(ChemBMI) to 0.70 (ProtBMI) compared to 0.37 (StandBMI) (Fig. 1b, c). The CombiBMI model 129 
exhibited the best performance in BMI prediction (out-of-sample R2 = 0.78; Fig. 1c), but the variances 130 
explained were not completely additive, suggesting that, although there is a considerable overlap in 131 
the signal detected by each omics platform, different omic measurements still contain non-redundant 132 
information regarding BMI. Additionally, these results were consistent in sex-stratified models, with 133 
the exception of male ChemBMI model that tended to exhibit higher performance than StandBMI 134 
model without statistical significance (Supplementary Fig. 2d). 135 

To confirm the generalizability of our results, we investigated an external cohort of 1,834 136 
adults from the TwinsUK registry31, whose datasets included serum metabolomics32 and the 137 
aforementioned standard clinical measures (Fig. 1a; see Methods). This external cohort was 138 
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demographically distinct from the Arivale cohort (Supplementary Fig. 1d–f, Supplementary Data 1); 139 
the TwinsUK cohort was overwhelmingly female (96.7%), senior (mean ± s.d.: 61.4 ± 9.0 years), and 140 
white (99.2%), and consisted of 15 (0.8%), 779 (42.5%), 706 (38.5%), and 334 (18.2%) participants in 141 
the underweight, normal, overweight, and obese BMI classes, respectively. To manage the differences 142 
in the metabolomics panels, we regenerated MetBMI models in the Arivale cohort, while restricting 143 
the metabolomic features to an overlapping set of 489 metabolites between the Arivale and TwinsUK 144 
panels (called restricted model). Although 25 of the retained metabolites in the original MetBMI 145 
models were replaced with other metabolites due to their absences in the restricted panel, 35 of the 146 
remaining 37 metabolites were consistently retained across the restricted MetBMI models 147 
(Supplementary Fig. 3a). Moreover, β-coefficients for the retained metabolites and MetBMI 148 
predictions for the Arivale cohort were consistent between the original and restricted models 149 
(Supplementary Fig. 3b, c). We then calculated BMI predictions for the TwinsUK cohort using the 150 
StandBMI and restricted MetBMI models that were fitted to the Arivale datasets. The restricted 151 
MetBMI model exhibited a lower absolute performance on the TwinsUK cohort compared to the 152 
Arivale cohort, but a significantly higher performance than StandBMI model (out-of-sample R2 = 0.30 153 
(MetBMI), −0.13 (StandBMI); Fig. 1d, Supplementary Fig. 3d), confirming that blood metabolomics 154 
generally captures BMI better than the standard clinical measures. 155 

BMI has been reported to be associated with multiple anthropometric and clinical measures, 156 
such as waist circumference (WC), blood pressure, sleep quality, and several polygenic risk scores 157 
(PRSs)3,4,15,27,33. Thus, we examined the association between the omics-inferred BMI and each of the 158 
available numeric physiological measures (see Methods; Supplementary Data 4). Among the 51 159 
assessed features, measured BMI was significantly associated with 27 features (false discovery rate 160 
(FDR) < 0.05) including daily physical activity measures from wearable devices, waist-to-height ratio 161 
(WHtR), blood pressure, and BMI PRS (Fig. 1e). With minor differences in effect sizes, these BMI-162 
associated features were concordantly associated with each omics-inferred BMI (Fig. 1e), indicating 163 
that the omics-inferred BMIs primarily maintain the characteristics of classical BMI in terms of 164 
anthropometric, genetic, lifestyle, and physiological associations. 165 
 166 

Omics-based BMI estimates captured the variation in BMI better than any single analyte 167 

Because our LASSO linear regression model showed comparable performance to elastic net (EN) and 168 
ridge linear regression models and a non-linear random forest (RF) regression model (Supplementary 169 
Fig. 4a, b) and because LASSO model β-coefficients are generally easier to be interpreted, we chose 170 
to focus on the LASSO models. However, the LASSO algorithm randomly retains variables from 171 
highly collinear groups, and sets β-coefficients of the other variables to zero. To confirm the 172 
robustness of the variable selection process, we iterated the LASSO modeling while removing the 173 
strongest analyte (i.e., the analyte that had the highest absolute value for the mean of the ten β-174 
coefficients) from the input omic dataset at the end of each iteration. If a variable is indispensable for 175 
a model, the performance should largely decrease after removing it. In all omics categories, a steep 176 
decay in the out-of-sample R2 was observed in the first 5–9 iterations (Supplementary Fig. 2e–h), 177 
suggesting that, at least, the top 5–9 variables that had the highest absolute β-coefficient values in the 178 
original LASSO models were indispensable for predicting BMI. Interestingly, the overall slope of R2 179 
in MetBMI model decayed more gradually compared to ProtBMI and ChemBMI models 180 
(Supplementary Fig. 2e–g), implying that metabolomics data contain more redundant information 181 
about BMI than the other omics data. Although larger number of metabolites in the input dataset 182 
might be a plausible explanation, the proportion of the variables that were robustly retained across all 183 
ten LASSO models (Supplementary Fig. 5) to the variables that were retained in at least one of the ten 184 
LASSO models was lower in MetBMI model compared to ProtBMI and ChemBMI models (MetBMI: 185 
62/209 metabolites ≈ 30%, ProtBMI: 30/74 proteins ≈ 41%, ChemBMI: 20/41 clinical laboratory tests 186 
≈ 49%), confirming the higher level of redundancy within metabolomics data. Nevertheless, 187 
metabolites still constituted 58% of the 132 analytes that were retained across all ten CombiBMI 188 
models (77 metabolites, 51 proteins, 4 clinical laboratory tests; Fig. 2a), suggesting that each of the 189 
omics categories possesses unique information about BMI. The strongest predictors in CombiBMI 190 
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model were primarily proteins; e.g., analytes having the mean absolute β-coefficient > 0.02 (i.e., 191 
affecting more than ~2% BMI in prediction per 1 s.d. of its change, according to the Taylor/Maclaurin 192 
series: eβ ≈ 1 + β when β << 1) were leptin (LEP), adrenomedullin (ADM), and fatty acid-binding 193 
protein 4 (FABP4) as the positive predictors and insulin-like growth factor-binding protein 1 194 
(IGFBP1) and advanced glycosylation end-product specific receptor (AGER; also described as 195 
receptor of AGE, RAGE) as the negative predictors. Note that these strongest proteins were consistent 196 
in the EN models (Supplementary Fig. 4c–f) and had high importance in the ridge and RF models 197 
(Supplementary Fig. 4g, h). 198 

At the same time, the existence of these strong and consistently-retained predictors in the 199 
omics-based BMI models implied that a single analyte might be a suitable biomarker to predict BMI. 200 
To address this possibility, we regressed BMI independently on each of the analytes that were retained 201 
in at least one of the ten LASSO models (MetBMI: 209 metabolites, ProtBMI: 74 proteins, 202 
ChemBMI: 41 clinical laboratory tests; Supplementary Data 5). Among the analytes that were 203 
significantly associated with BMI (180 metabolites, 63 proteins, 30 clinical laboratory tests), only 204 
LEP, FABP4, and interleukin 1 receptor antagonist (IL1RN) exhibited over 30% of the explained 205 
variance in BMI by themselves (Fig. 2b–d), with a maximum of 37.9% variance explained (LEP). In 206 
contrast, MetBMI, ProtBMI, and ChemBMI models explained 68.9%, 70.6%, and 48.8% of the 207 
variance in BMI, respectively. Moreover, even upon eliminating several strong predictor analytes such 208 
as LEP and FABP4 from the omic datasets, the models still explained more variance in BMI than any 209 
single analyte (Supplementary Fig. 2e–h). These results indicate that the multiomic BMI prediction 210 
models explain a larger portion of the variation in BMI than any single analyte, and highlight the 211 
multivariate perturbation of blood analytes across all platforms with increasing BMI. 212 
 213 

Metabolic heterogeneity was responsible for the high rate of misclassification within the 214 
standard BMI classes 215 

While the omics-inferred BMIs showed the similar phenotypic associations as the measured BMI (Fig. 216 
1e), we observed that the difference of the predicted BMI from the measured BMI (ΔBMI) was highly 217 
correlated among the omics-based BMI models, ranging from Pearson’s r = 0.64 (ChemBMI vs. 218 
CombiBMI) to 0.83 (ProtBMI vs. CombiBMI) (Fig. 3a). In other words, the different omics 219 
consistently detected deviation of the omics-inferred BMI from the measured BMI per individual, 220 
implying that this deviation stemmed from a true biological signal of a perturbed physiological state 221 
rather than from noise or modeling artifacts. Actually, when individuals in the normal and obese BMI 222 
classes (defined by the WHO international standards) were subdivided by a clinical definition of 223 
metabolic health (i.e., defining metabolically unhealthy if having two or more MetS risks of the 224 
National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III) guidelines; see 225 
Methods)34,35, ΔBMI was significantly higher in MUNW and MUO groups compared to metabolically 226 
healthy, normal-weight (MHNW) and MHO groups, respectively, for all omics categories (Fig. 3b), 227 
suggesting that the deviations of model predictions are related to metabolic health. 228 

Nevertheless, there has been no universally accepted definition of metabolic health14,15,34,35. 229 
Thus, given the high interpretability and intuitiveness of the omics-inferred BMI, we further explored 230 
a potential application: using the omics-inferred BMI (instead of the measured BMI) for improved 231 
classification of both obesity and metabolic health with the WHO international standards. Each 232 
participant was classified using each of the measured and omics-inferred BMIs based on the standard 233 
BMI cutoffs, and categorized into either Matched or Mismatched group when the measured BMI class 234 
was matched or mismatched to each omics-inferred BMI class, respectively. The misclassification rate 235 
against the omics-inferred BMI class was ~30% across all omics categories and BMI classes (Fig. 3c), 236 
consistent with the previously reported misclassification rates about the cardiometabolic health 237 
classification36,37. We then examined relationships between this omics-based misclassification within 238 
normal or obese BMI class and the obesity-related clinical blood markers (Supplementary Data 6), 239 
including triglycerides, HDL-cholesterol, LDL-cholesterol, high-sensitivity C-reactive protein (hs-240 
CRP), glucose, insulin, HOMA-IR, glycated hemoglobin A1c (HbA1c), adiponectin, and vitamin 241 
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D3,15,23,38,39. Because ChemBMI and CombiBMI models were not independent of these markers, only 242 
the misclassification against MetBMI or ProtBMI class was examined in this analysis. The 243 
Mismatched group of normal BMI class exhibited significantly higher values of the markers that are 244 
positively associated with BMI (+BMI), such as triglycerides, hs-CRP, glucose, and HOMA-IR, and 245 
significantly lower values of the markers that are negatively associated with BMI (−BMI), such as 246 
HDL-cholesterol and adiponectin, compared to the Matched group of normal BMI class (FDR < 0.05; 247 
Fig. 3d). These patterns suggest that the participant misclassified into the normal BMI class possesses 248 
less healthy molecular profiles as similarly as the individual with overweight or obesity, 249 
corresponding to the individual with MUNW phenotype. Conversely, the Mismatched group of obese 250 
BMI class exhibited significantly lower and higher values of the positively and negatively BMI-251 
associated markers, respectively, compared to the Matched group of obese BMI class (FDR < 0.05; 252 
Fig. 3d), suggesting that the participant misclassified as obese BMI class has healthier blood 253 
signatures, more similarly to the individual with overweight or normal-weight, corresponding to the 254 
individual with MHO phenotype. Likewise, we re-examined the 27 BMI-associated numeric 255 
physiological features (Fig. 1e, Supplementary Data 6), and found the concordant pattern of 256 
significant phenotypic differences between Matched and Mismatched groups in WHtR (+BMI), heart 257 
rate (+BMI), blood pressure (+BMI), and daily physical activity measures (−BMI) (FDR < 0.05; Fig. 3e). 258 
Importantly, there was no difference in BMI PRS (+BMI) between Matched and Mismatched groups 259 
(Fig. 3e), implying that lifestyle or environmental factors, rather than genetic risk, is likely involved in 260 
the discordance between the measured and omics-inferred BMIs. Furthermore, we validated and 261 
expanded these findings in the TwinsUK cohort: ΔMetBMI was significantly higher in the 262 
metabolically unhealthy group compared to the metabolically healthy group within the normal BMI 263 
class (Supplementary Fig. 6a); the misclassification rate against MetBMI class was much higher 264 
(>60%) in the normal BMI class but ~30% in the others (Supplementary Fig. 6b); the concordant 265 
phenotypic differences between Matched and Mismatched groups were significantly observed in 266 
triglycerides (+BMI), HDL-cholesterol (−BMI), LDL-cholesterol (+BMI), hs-CRP (+BMI), and HOMA-IR 267 
(+BMI) (FDR < 0.05; Supplementary Fig. 6c). Remarkably, while DXA measurements were not 268 
performed in the Arivale cohort, the percentage of total fat in whole body (+BMI) and the ratio of fat in 269 
android region to fat in gynoid region (+BMI) were significantly higher in Mismatched group compared 270 
to Matched group within the normal BMI class of the TwinsUK cohort (FDR < 0.05; Supplementary 271 
Fig. 6c). Taken together, these results suggest that the omics-based BMI models can identify 272 
heterogeneous metabolic health states which are not captured by the measured BMI with the standard 273 
BMI cutoffs. 274 
 275 

Metabolomics-inferred BMI reflected gut microbiome profiles better than BMI 276 

The gut microbiome has been shown to causally affect host obesity phenotypes in a mouse model40, 277 
and humans with obesity generally exhibit lower bacterial α-diversity (i.e., the species richness and/or 278 
evenness of an ecological community)41,42. However, certain meta-analyses of human case-control 279 
studies suggest an inconsistent relationship between the gut microbiome and obesity43,44. Given our 280 
previous finding that the association between blood metabolites and bacterial diversity is dependent on 281 
BMI20 and the current finding that the omics-based BMI models capture heterogeneous metabolic 282 
health states (Fig. 3), we hypothesized that MetBMI represents gut microbiome α-diversity better than 283 
the measured BMI. For the 702 Arivale participants who had both stool-derived gut microbiome and 284 
blood omic datasets (Fig. 4a; see Methods), we examined relationships between gut microbiome α-285 
diversity (the number of observed species, Shannon’s index, and Chao1 index) and the omics-based 286 
BMI misclassification. Matched and Mismatched groups against MetBMI class showed significant 287 
differences in all α-diversity metrics within both normal and obese BMI classes (Fig. 4b), with the 288 
concordant pattern to the clinical markers and BMI-associated features (−BMI; e.g., HDL-cholesterol; 289 
Fig. 3d, e), implying that the MetBMI class reflects bacterial diversity better than BMI class. 290 
Interestingly, the misclassification against the other omics categories did not show these significant 291 
differences for all α-diversity metrics and both BMI classes (Fig. 4b), consistent with our previous 292 
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observation that plasma metabolomics showed a much stronger correspondence to gut microbiome 293 
structure than either proteomics or clinical labs20. 294 

We further examined the predictive power of gut microbiome profiles for MetBMI. For each 295 
of the measured BMI and MetBMI classes, we generated models classifying individuals into normal 296 
class versus obese class based on gut microbiome 16S rRNA gene amplicon sequencing data, using a 297 
fivefold iteration scheme of the RF algorithm with fivefold CV (Fig. 4a; see Methods). Compared to 298 
the classifier for the measured BMI class, the classifier for MetBMI class showed significantly larger 299 
area under curve (AUC) in the receiver operator characteristic (ROC) curve in the Arivale cohort 300 
(AUC = 0.66 (BMI), 0.75 (MetBMI); Fig. 4c), with significantly higher sensitivity and precision (Fig. 301 
4d). Moreover, by applying the same scheme to the stool-derived whole metagenomic shotgun 302 
sequencing (WMGS) data of the 329 TwinsUK participants45 (Fig. 4a; see Methods), we validated that 303 
the gut microbiome-based obesity classifier for MetBMI class significantly outperformed the classifier 304 
for the measured BMI class in the TwinsUK cohort (AUC = 0.57 (BMI), 0.75 (MetBMI); Fig. 4e, f). 305 
Note that these classifiers were regenerated for the TwinsUK cohort (instead of using the classifiers 306 
that were fitted to the Arivale dataset; Fig. 4a) due to the difference in sequencing methods (amplicon 307 
sequencing vs. WMGS), while considering that the TwinsUK participants’ MetBMIs were predicted 308 
from the Arivale-fitted MetBMI models (Fig. 1a). Altogether, these findings suggest that, although 309 
other factors (e.g., dietary intake19) may be involved, MetBMI has a stronger correspondence to gut 310 
microbiome features than the standard BMI. 311 
 312 

Metabolic health of the metabolically obese group was substantially improved following a 313 
healthy lifestyle intervention 314 

In the Arivale program, healthy lifestyle coaching was provided to all participants, resulting in clinical 315 
improvement across multiple measures of health25. This coaching intervention was personalized for 316 
each participant to improve the participant’s health based on the combination of clinical laboratory 317 
tests, genetic predispositions, and published scientific evidence, and administered via telephone by 318 
registered dietitians, certified nutritionists, or registered nurses (see Methods and a previous report25). 319 
To investigate the longitudinal changes in omic profiles during the program, we defined a sub-cohort 320 
of 608 participants based on the available longitudinal measurements (Fig. 5a; see Methods). Given 321 
the participant-dependent variability in both count and time point of data collections, we estimated the 322 
average trajectory of each measured or omics-inferred BMI in the Arivale sub-cohort using a linear 323 
mixed model (LMM) with random effects for each participant (see Methods). Consistent with the 324 
previous analysis25,46, the mean BMI estimate for the overall cohort decreased during the program 325 
(Fig. 5b). The decrease of MetBMI was larger than that of measured BMI, while the decrease of 326 
ProtBMI was minimal and even smaller than that of measured BMI (Fig. 5b), suggesting that plasma 327 
metabolomics is highly responsive to the lifestyle intervention in the short term, while proteomics 328 
(measured from the same blood draw) is more resistant to change during the same intervention period. 329 
Subsequently, we generated LMMs with the baseline BMI class stratification, and confirmed that a 330 
significant decrease in the mean BMI estimate was observed in the overweight and obese BMI classes, 331 
but not in the normal BMI class (Fig. 5c). Concordantly, the mean estimates of ProtBMI and 332 
ChemBMI exhibited negative changes over time in the overweight and obese BMI classes, but not in 333 
the normal BMI class (Fig. 5c). In contrast, the mean estimate of MetBMI exhibited a significant 334 
decrease across all BMI classes (Fig. 5c), suggesting that metabolomics data captures information 335 
about the metabolic health response to the lifestyle intervention, beyond the baseline BMI class and 336 
the changes in BMI and other omic profiles. 337 

Given the existence of multiple metabolic health sub-states within the standard BMI classes 338 
(Fig. 3), we further investigated the difference between misclassification strata against the baseline 339 
MetBMI class. In the (baseline) normal BMI class, while the mean estimate of the measured BMI 340 
remained constant in both Matched and Mismatched groups, the mean MetBMI estimate exhibited 341 
larger reduction in Mismatched group than Matched group (Fig. 5d), suggesting that the participants 342 
with MUNW phenotype improved their metabolic health to a greater extent than the participants with 343 



Page 8 of 36 

MHNW phenotype. Likewise, in the (baseline) obese BMI class, while the decrease in the mean 344 
estimate of the measured BMI was not significantly different between Matched and Mismatched 345 
groups at one year after the enrollment, the decrease in the mean MetBMI estimate was larger in 346 
Matched group than in Mismatched group (Fig. 5e), suggesting that the participants with MUO 347 
phenotype improved their metabolic health to a greater extent than the participants with MHO 348 
phenotype. Altogether, these results suggest that metabolic health was substantially improved during 349 
the program, in accordance with an individual’s baseline metabolomic state, rather than with the 350 
individual’s baseline BMI class. 351 
 352 

Plasma analyte correlation network in the metabolically obese group shifted toward a structure 353 
observed in metabolically healthier state following a healthy lifestyle intervention 354 

We explored longitudinal changes in plasma analyte correlation networks, focusing on the 355 
metabolically obese group. Based on the importance of the baseline metabolomic state (Fig. 5d, e), we 356 
first assessed relationships between each plasma analyte–analyte correlation and the baseline MetBMI 357 
within the Arivale sub-cohort (Fig. 5a; 608 participants), using their interaction term in a generalized 358 
linear model (GLM; see Methods) of each analyte–analyte pair. In this type of model, the statistical 359 
test assesses whether the relationship between any two analytes is dependent on a third variable (in 360 
this case, the baseline MetBMI). Among 608,856 pairwise relationships of plasma analytes, 100 361 
analyte–analyte correlation pairs, comprising 82 metabolites, 33 proteins, and 16 clinical laboratory 362 
tests, were significantly modified by the baseline MetBMI (FDR < 0.05; Supplementary Data 7). 363 
Subsequently, we assessed longitudinal changes of these 100 pairs within the metabolically obese 364 
group (i.e., the baseline obese MetBMI class; 182 participants), using the interaction term (i.e., 365 
interaction with days in the program) in a generalized estimating equation (GEE; see Methods) of each 366 
analyte–analyte pair. Among the 100 pairs, 27 analyte–analyte correlation pairs were significantly 367 
modified by days in the program (FDR < 0.05; Fig. 6a, Supplementary Data 7). These 27 pairs were 368 
mainly derived from metabolites (21 metabolites, 3 proteins, 3 clinical laboratory tests). One of these 369 
time-varying pairs was homoarginine and phenyllactate (PLA). Homoarginine was recently found to 370 
be a biomarker for CVD47 and was a robustly retained positive predictor in MetBMI and CombiBMI 371 
models (Fig. 2a, Supplementary Fig. 5a). PLA is a gut microbiome-derived phenylalanine derivative 372 
known to have antimicrobial activity and antioxidant activity48,49. The positive correlation between 373 
homoarginine and PLA was observed in the metabolically obese group at baseline (Fig. 6b) and 374 
became weaker in this group during the course of the intervention (Fig. 6c), implying that metabolic 375 
dysregulation specific to the metabolically obese group was somewhat improved during the program. 376 
Collectively, these findings indicate that metabolic improvement was not limited to changes in 377 
specific blood analyte concentrations but also changes in the association structure among analytes. 378 

 379 

Discussion 380 

Obesity is a significant risk factor for many chronic diseases3–6. The heterogeneous nature of human 381 
health conditions, with variable manifestation ranging from metabolic abnormalities to cardiovascular 382 
symptoms, calls for deeper molecular characterizations in order to optimize wellness and reduce the 383 
current global epidemic of chronic diseases. In this study, we have demonstrated that obesity 384 
profoundly perturbs human physiology, as reflected across all the studied omics modalities. The key 385 
findings of this study are: (1) machine learning-based multiomic BMI estimates were better suited to 386 
identifying heterogeneous metabolic health than the classically-measured BMI, while maintaining a 387 
high level of interpretability and intuitiveness attributed to the original metric (Fig. 1–3); (2) among 388 
all omics studied, metabolomic reflection of obesity exhibited the strongest correspondence to gut 389 
microbiome community structure (Fig. 4); (3) plasma metabolomics exhibited the strongest (and/or 390 
earliest) response to lifestyle coaching, while plasma proteomics exhibited a weaker (and/or more 391 
delayed) response than the measured BMI (Fig. 5b, c); (4) compared to the participants with 392 
metabolically healthy phenotype (i.e., BMI class = MetBMI class), the participants with metabolically 393 
unhealthy phenotype (i.e., BMI class < MetBMI class) exhibited a greater improvement in their 394 
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metabolic health (but not in weight loss per se) in response to the healthy lifestyle coaching (Fig. 5d, 395 
e); (5) dozens of analyte–analyte associations were modified in the participants of the metabolically 396 
obese group (i.e., obese MetBMI class), following the healthy lifestyle intervention (Fig. 6). 397 

Although BMI is used as a measure of obesity, fat distribution in the body is an important 398 
factor for understanding the heterogeneous nature of obesity. In particular, abdominal obesity, which 399 
is characterized by excessive visceral fat (rather than subcutaneous fat) around the abdominal region, 400 
is known to be associated with chronic diseases such as MetS50. Thus, we addressed abdominal 401 
obesity by analyzing the anthropometric WHtR51,52, which was highly correlated with BMI in the 402 
Arivale sub-cohort (Pearson’s r = 0.86; Supplementary Fig. 7a–c). We generated omics-based WHtR 403 
models (Supplementary Fig. 7a, Supplementary Data 8), and obtained consistent findings to the 404 
omics-based BMI models (Supplementary Fig. 7d–m). Interestingly, the majority of the retained 405 
analytes in each omics-based WHtR model was also retained in its corresponding omics-based BMI 406 
model with the similar feature importance (Supplementary Fig. 8a–d). In addition, ΔWHtR was highly 407 
correlated with ΔBMI across all omics categories (Supplementary Fig. 8e). Moreover, although the 408 
WC measurements were not available for the defined TwinsUK cohort, direct fat measurements of the 409 
android region by DXA were associated with MetBMI class in the TwinsUK cohort (Supplementary 410 
Fig. 6c). Therefore, although BMI requires complementary information of the WC-related 411 
measurements for the diagnosis of abdominal obesity, the omics-based BMI model likely captures the 412 
obesity characteristics including abdominal obesity. 413 

Multiple observational studies have explored obesity biomarkers. The involvements of 414 
insulin/insulin-like growth factor (IGF) axis and chronic low-grade inflammation have been discussed 415 
in the context of obesity-related disease risks5,6, backed up by robust associations of obesity with 416 
IGFBP1/2 (−BMI), adipokines such as LEP (+BMI), adiponectin (−BMI), FABP4 (+BMI), and ADM 417 
(+BMI), and proinflammatory cytokines such as interleukin 6 (IL6; + BMI)23,53. Consistent with these 418 
well-known associations, we observed positive BMI associations with LEP, FABP4, IL1RN, IL6, 419 
ADM, and insulin and negative BMI associations with IGFBP1/2 and adiponectin (Fig. 2c, d). 420 
Importantly, all these known biomarkers were incorporated into our omics-based BMI models, and 421 
most of them were consistently retained as important features of these models (Fig. 2a; Supplementary 422 
Fig. 5b, c). At the same time, we observed that RAGE explained a relatively small proportion of the 423 
variance in BMI (Fig. 2c), while being a strong negative predictive feature in all ten models of 424 
ProtBMI and CombiBMI (Fig. 2a, Supplementary Fig. 5b). Soluble RAGE (sRAGE) has been 425 
gradually highlighted in the contexts of T2DM and CVD54, with several reports on the negative 426 
association between sRAGE and BMI55. Therefore, omics-inferred BMI may reflect not only obesity 427 
status but also the early transition towards clinical manifestations of obesity-related chronic diseases. 428 

Likewise, many epidemiological studies have revealed metabolomic biomarkers for 429 
obesity56,57. In line with these previous findings, we have confirmed positive BMI associations with 430 
mannose, uric acid (urate), and glutamate and negative BMI associations with asparagine and glycine 431 
(Fig. 2b). Furthermore, all of these metabolites were consistently incorporated into all ten models of 432 
MetBMI and CombiBMI (Fig. 2a, Supplementary Fig. 5a). In addition, many lipids emerged as strong 433 
predictors in MetBMI and CombiBMI models; in particular, glycerophosphocholines (GPCs) were 434 
negative predictors in these models, while sphingomyelins (SMs) were positive predictors (Fig. 2a, 435 
Supplementary Fig. 5a), even though both have a phosphocholine group in common. Although lipid 436 
has traditionally been regarded as a factor that is positively associated with obesity, recent 437 
metabolomics studies have revealed variable trends for different fatty acid species; e.g., plasma 438 
lysophosphatidylcholines (LPCs) are decreased in mice with obesity (high-fat diet model)58, which 439 
corresponded well with our results (e.g., LPC(18:1), described as 1-oleoyl-GPC(18:1) in Fig. 2b and 440 
Supplementary Fig. 5b). However, because there are many combinations of acyl residues in lipids and 441 
many potential confounding factors with obesity, systematic understanding of the species-level lipid 442 
biomarkers for obesity remains challenging56,57. Our approach, applying machine learning to 443 
metabolomics data, addresses this challenge by automatically and systematically providing a 444 
molecular signature of obesity, reflecting the versatile and complex metabolite species. Altogether, 445 
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omics-based BMI models can be regarded as multidimensional profiles of obesity, possessing detailed 446 
mechanistic information. 447 

Recently, Cirulli and colleagues have reported a machine learning model for estimating BMI 448 
from blood metabolomics, which captured obesity-related phenotypes21. Their main model explained 449 
39.1% of the variance in BMI, while our MetBMI model explained 68.9% of the variance in BMI 450 
(Fig. 2b). Other than the difference in cohorts, the performance gap is likely a result of differences in 451 
modeling strategies. Cirulli and colleagues stringently selected 49 metabolites, out of their 452 
metabolomics panel of 1,007 metabolites, based on a pre-screening for significant adjusted-453 
associations with BMI, and subsequently applied a tenfold CV implementation of ridge or LASSO 454 
method. In contrast, we used LASSO method for feature selection, applying it to our full 455 
metabolomics panel of 766 metabolites. In addition to the increased number of metabolites included in 456 
the model fitting, our higher performance may stem from the presence of metabolites which were 457 
critical for BMI prediction in a multivariate model, but not strongly associated with BMI on their own. 458 
Actually, similarly to the above example of RAGE in ProtBMI model, our MetBMI model contained 459 
multiple metabolites that were weakly associated with BMI but consistently retained across all ten 460 
models (Fig. 2b, Supplementary Fig. 5a). At the same time, the majority of the 49 metabolites reported 461 
by Cirulli and colleagues (14–20 metabolites among the 31–41 corresponding metabolites in our 462 
metabolomics panel) were retained in at least one of the ten MetBMI models. Therefore, our strategy 463 
of feature selection through machine learning, without a pre-filtering step, may be preferable for 464 
predicting BMI from metabolomics. 465 

A recent study investigating multiomic changes in response to weight perturbations 466 
demonstrated that some weight gain-associated blood signatures were reversed during subsequent 467 
weight loss, while others persisted59. Interestingly, we found that MetBMI was more responsive to the 468 
healthy lifestyle intervention than the measured BMI or ChemBMI, while ProtBMI was more resistant 469 
to the same intervention (Fig. 5b, c). Our analyses of the predictors in the omics-based BMI models 470 
(Fig. 2; Supplementary Fig. 2e–h, 5) suggested that the distribution of feature importance among 471 
metabolites was considerably wider, while only a small subset of measured proteins (~5 proteins) was 472 
predominantly reflective of obesity profiles. Therefore, the effect of lifestyle coaching may consist of 473 
small additive contributions in blood metabolites in the short term. However, a longer longitudinal 474 
analysis is needed to infer the physiological meaning of these omics-dependent dynamics. For 475 
instance, it is possible that ProtBMI shows a delayed response to weight loss (over a span greater than 476 
a year measured presently; Fig. 5b, c), indicating blood metabolites and proteins may be early and late 477 
responders to a lifestyle intervention, respectively, such as in the case of the changes in blood glucose 478 
compared to the changes in HbA1c when assessing glucose homeostasis60. If the difference between 479 
the measured and omics-inferred BMIs remains constant even after one year, we would conclude that 480 
blood metabolites and proteins are more and less sensitive to weight loss than the measured BMI, 481 
respectively. In either scenario, monitoring blood multiomics during weight loss programs could help 482 
participants maintain their motivation to stay engaged with persistent lifestyle changes, because they 483 
would receive rapid feedback on how lifestyle changes were impacting their health, even in the 484 
absence of weight loss. In addition, long-term maintenance of the improvement is an important 485 
challenge for lifestyle interventions; although there is variability between prior reports, one study 486 
estimated that only ~20% of the individuals with overweight successfully maintain their weight loss in 487 
post-intervention61. Despite this relatively low rate of long-term success, there is evidence that 488 
lifestyle interventions had benefits in preventing diabetes incidence as far as 20 years post-489 
intervention, even if weight was regained62,63. The observed larger improvement of MetBMI 490 
compared to the measured BMI could potentially contribute to this protective long-term effect, 491 
persisting even when weight is regained. Further investigation is required, especially with regard to 492 
the long-term dynamics of MetBMI and ProtBMI responses, which may provide a foothold in 493 
developing scientific strategies aimed at long-term maintenance of metabolic health. 494 

Despite a number of highly promising findings, there were several limitations to our study. 495 
For example, this study was not designed as a randomized control trial, and we cannot strictly evaluate 496 
the effectiveness of the lifestyle intervention (e.g., bigger improvements in the obese group compared 497 
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to the normal-weight group may be due to the regression-toward-the-mean effect46). In addition, we 498 
used time as the variable in longitudinal analyses under an assumption that the program enrollment 499 
itself affected participant’s BMI and omic profiles. However, if we had more detailed data on the 500 
intervention (e.g., magnitude, participants’ compliance), we would be able to improve the assessment 501 
of its effect. The generalizability of our findings may be limited, because this study was an 502 
observational study of largely Caucasian cohorts from the Pacific West of the U.S. and from the U.K. 503 
and because validation with an external cohort relied on the female-dominated cohort (96.7%) and its 504 
metabolomics data. Our measurements did not cover all biomolecules in blood; in particular, 505 
proteomics was based on three targeted Olink panels. Thus, our findings on metabolomic and 506 
proteomic states are restricted to the analytes that we could measure. Nevertheless, this study will 507 
serve as a valuable resource for robustly characterizing metabolic health from the blood and 508 
identifying actionable targets for health management. 509 

  510 
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Methods 511 

Study cohort 512 

The main study cohort (Arivale cohort) was derived from 6,223 individuals who participated in a 513 
wellness program offered by a currently closed commercial company (Arivale Inc., Washington, 514 
USA) between 2015–2019. An individual was eligible for enrollment if the individual was over 18 515 
years old, not pregnant, and a resident of any U.S. state except New York; participants were primarily 516 
recruited from Washington, California, and Oregon. The participants were not screened for any 517 
particular disease. During the Arivale program, each participant was provided personalized lifestyle 518 
coaching via telephone by registered dietitians, certified nutritionists, or registered nurses. This 519 
coaching was designed to improve the participant’s health based on the combination of clinical 520 
laboratory tests, genetic predispositions, and published scientific evidence; e.g., reduction of sodium 521 
intake might be recommended to any participants with high blood pressure, but if they also had risk 522 
alleles indicating enhanced susceptibility to dietary sodium, this risk would be emphasized (see a 523 
previous report25 for more details). In the current study, to compare the associations between Body 524 
Mass Index (BMI) and host phenotypes across different omics, we limited the original cohort to the 525 
participants whose datasets contained (1) all main omic measurements (metabolomics, proteomics, 526 
clinical laboratory tests) from the same first blood draw, (2) a BMI measurement within ±1.5 month 527 
from the first blood draw, and (3) genetic information (for using as covariates). We also eliminated (1) 528 
outlier participants whose baseline BMI was beyond ±3 s.d. from the mean in the baseline BMI 529 
distribution and (2) participants whose any of omic datasets contained more than 10% missingness in 530 
the filtered analytes (see the next section). The final Arivale cohort consisted of 1,277 (821 female and 531 
456 male) participants (Fig. 1a), which exhibited consistent demographics (Supplementary Fig. 1a–c, 532 
Supplementary Data 1) with the study cohorts defined in the previous Arivale studies20,25–29. For the 533 
analyses of gut microbiome, sub-cohort was defined with the 702 (486 female and 216 male) 534 
participants from the Arivale cohort, who collected a stool sample within ±1.5 month from the first 535 
blood draw and did not use antibiotics in the last three months (Fig. 4a, Supplementary Data 1). For 536 
longitudinal analyses, sub-cohort was defined with the 608 (410 female and 198 male) participants 537 
from the Arivale cohort, whose datasets contained two or more time-series datasets for both BMI and 538 
omics during 18 months after enrollment (Fig. 5a, Supplementary Data 1). For the analyses of waist-539 
to-height ratio (WHtR), sub-cohort was defined with the 1,078 (689 female and 389 male) participants 540 
from the Arivale cohort, whose datasets contained the baseline WHtR measurement within ±1.5 541 
month from the first blood draw and within ±3 s.d. from the mean in the baseline WHtR distribution 542 
(Supplementary Fig. 7a, Supplementary Data 1). 543 

The external cohort (TwinsUK cohort) was derived from 17,630 individuals who participated 544 
in the TwinsUK Registry, a British national register of adult twins31. Twins were recruited as 545 
volunteers by media campaigns without screening for any particular disease. The participants had two 546 
or more clinical visits for biological sampling between 1992–2022. In the current study, to validate 547 
our findings in the Arivale cohort, we limited the original cohort to the participants whose datasets 548 
contained all measurements for metabolomics32, BMI, and the obesity-related standard clinical 549 
measures (i.e., defined by triglycerides, high-density lipoprotein (HDL)-cholesterol, low-density 550 
lipoprotein (LDL)-cholesterol, glucose, insulin, and homeostatic model assessment for insulin 551 
resistance (HOMA-IR) throughout the current study) from the same visit. We also eliminated (1) 552 
outlier participants whose BMI was beyond ±3 s.d. from the mean in the overall BMI distribution and 553 
(2) participants whose metabolomic dataset contained more than 10% missingness in the filtered 554 
metabolites (see the next section). The final TwinsUK cohort consisted of 1,834 (1,774 female and 60 555 
male) participants (Fig. 1a, Supplementary Fig. 1d–f, Supplementary Data 1). For the analyses of gut 556 
microbiome, sub-cohort was defined with the 329 (307 female and 22 male) participants from the 557 
TwinsUK cohort, who collected a stool sample within ±1.5 month from the clinical visit and did not 558 
use antibiotics at that time (Fig. 4a, Supplementary Data 1). 559 

The current study was conducted with de-identified data of the participants who had 560 
consented to the use of their anonymized data in research. All procedures were approved by the 561 
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Western Institutional Review Board (WIRB) with Institutional Review Board (IRB) (Study Number: 562 
20170658 at Institute for Systems Biology and 1178906 at Arivale) and by the TwinsUK Resource 563 
Executive Committee (TREC) (Project Number: E1192). 564 
 565 

Data collections and data cleaning 566 

Multiomics data for the Arivale participants included genomics and longitudinal measurements of 567 
metabolomics, proteomics, clinical laboratory tests, gut microbiomes, wearable devices, and 568 
health/lifestyle questionnaires. Peripheral venous blood draws for all measurements were performed 569 
by trained phlebotomists at LabCorp (Laboratory Corporation of America Holdings, North Carolina, 570 
USA) or Quest (Quest Diagnostics, New Jersey, USA) service centers. Saliva to measure analytes 571 
such as diurnal cortisol and dehydroepiandrosterone (DHEA) was sampled by participants at home 572 
using a standardized kit (ZRT Laboratory, Oregon, USA). Likewise, stool samples for gut microbiome 573 
measurements were obtained by participants at home using a standardized kit (DNA Genotek, Inc., 574 
Ottawa, Canada). 575 

– Genomics 576 

DNA was extracted from each whole blood sample and underwent whole genome sequencing 577 
(1,257 participants) or single-nucleotide polymorphisms (SNP) microarray genotyping (20 578 
participants). Genetic ancestry was calculated with principal components (PCs) using a set of 579 
~100,000 ancestry-informative SNP markers, as described previously25. Polygenic risk scores 580 
(PRSs) were constructed using publicly available summary statistics from published genome-581 
wide association studies (GWAS), as described previously27. 582 
 583 

– Blood-measured omics 584 

Metabolomics data was generated by Metabolon, Inc. (North Carolina, USA), using ultra-585 
high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for 586 
plasma derived from each whole blood sample. Proteomics data was generated using 587 
proximity extension assay (PEA) for plasma derived from each whole blood sample with 588 
several Olink Target panels (Olink Proteomics, Uppsala, Sweden), and only the 589 
measurements with the Cardiovascular II, Cardiovascular III, and Inflammation panels were 590 
used in the current study since the other panels were not necessarily applied to all samples. 591 
All clinical laboratory tests were performed by LabCorp or Quest in a Clinical Laboratory 592 
Improvement Amendments (CLIA)-certified lab, and only the measurements by LabCorp 593 
were selected in the current study to eliminate potential differences between vendors. In the 594 
current study, the batch-corrected datasets with in-house pipeline were used, and 595 
metabolomic dataset was loge-transformed. In addition, analytes missing in more than 10% of 596 
the baseline samples were removed from each omic dataset, and observations missing in more 597 
than 10% of the remaining analytes were further removed. The final filtered metabolomics, 598 
proteomics, and clinical labs consisted of 766 metabolites, 274 proteins, 71 clinical laboratory 599 
tests, respectively (Supplementary Data 2). 600 
 601 

– Gut microbiome 602 

Gut microbiome data was generated based on 16S amplicon sequencing of the V3+V4 region 603 
using a MiSeq sequencer (Illumina, Inc., California, USA) for DNA extracted from each stool 604 
sample, as previously described28. Briefly, the FASTQ files were processed using the mbtools 605 
workflow (https://github.com/Gibbons-Lab/mbtools) to remove noise, infer amplicon 606 
sequence variants (ASVs), and remove chimeras. Taxonomy assignment was performed using 607 
the SILVA ribosomal RNA gene database (version 132)64. In the current study, the final 608 
collapsed ASV table across the samples consisted of 394, 341, 85, 45, 26, and 16 taxa for 609 
species, genus, family, order, class, and phylum, respectively. Gut microbiome α-diversity 610 
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was calculated at the ASV level using Shannon’s index calculated by 𝐻 = −∑ 𝑝! ln 𝑝!"
!#$ , 611 

where 𝑝! is the proportion of a community i represented by ASVs, or using Chao1 diversity 612 

score calculated by 𝑆Chao1 = 𝑆obs +
,!"

-,"
, where 𝑆obs is the number of observed ASVs, 𝑛$ is the 613 

number of singletons (ASVs captured once), and 𝑛- is the number of doubletons (ASVs 614 
captured twice). 615 
 616 

– Anthropometrics, saliva-measured analytes, and daily physical activity measures 617 

Anthropometrics including weight, height, and waist circumference (WC) and blood pressure 618 
were measured at the time of blood draw and also reported by participants, which generated 619 
diverse timing and number of observations depending on each participant. BMI and WHtR 620 
were simultaneously calculated from the measured anthropometrics with the weight divided 621 
by squared height [kg m−2] and the WC divided by height [unitless], respectively. 622 
Measurements of saliva samples were performed in the testing laboratory of ZRT Laboratory. 623 
Daily physical activity measures such as heart rate, moving distance, step count, burned 624 
calories, floors climbed, and sleep quality were tracked using the Fitbit wearable device 625 
(Fitbit, Inc., California, USA). To manage variations between days, monthly averaged data 626 
was used for these daily measures. In the current study, the baseline measurement for these 627 
longitudinal measures was defined with the closest observation to the first blood draw per 628 
participant and data type, and each dataset was eliminated from analyses when its baseline 629 
measurement was beyond ±1.5 month from the first blood draw. 630 

Data resource for the TwinsUK participants included longitudinal measurements of metabolomics, 631 
clinical laboratory tests, dual-energy X-ray absorptiometry (DXA), and health/lifestyle 632 
questionnaires31. The necessary datasets for the current study were provided by Department of Twin 633 
Research & Genetic Epidemiology (King’s College London). In the current study, after each provided 634 
dataset was cleaned as follows, the earliest visit among the visits from which all of metabolomics, 635 
BMI, and the standard clinical measures had been measured was defined as the baseline visit for each 636 
participant. As exception, the later visit among them was prioritized as the baseline visit, if the 637 
participant had gut microbiome data within ±1.5 month from the visit. Only the baseline visit 638 
measurements were analyzed. 639 

– Blood-measured metabolomics 640 

Metabolomics data was originally generated by Metabolon, Inc., using UHPLC-MS/MS for 641 
each serum sample32. In the current study, the provided median-normalized dataset was loge-642 
transformed. In addition, metabolites missing in more than 10% of the overall samples were 643 
removed from metabolomic dataset, and observations missing in more than 10% of the 644 
remaining metabolites were further removed. The final filtered metabolomics consisted of 645 
683 metabolites. 646 
 647 

– BMI 648 

In the current study, the BMI values that had been already calculated and included in the 649 
provided metabolomics data file were used. 650 
 651 

– Standard clinical measures and other phenotypic measures 652 

In the current study, because the provided phenotypic datasets contained multiple 653 
measurements for a phenotype even from a single visit of a participant (e.g., due to project 654 
difference, repeated measurements), multiple measurements were flattened into a single 655 
measurement for a phenotype per each participant’s visit by taking the mean value. During 656 
this flattening step, difference in unit was properly adjusted, and the value indicating below 657 
detection limit was regarded as zero. HOMA-IR was calculated from the datasets of glucose, 658 
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insulin, and fasting condition with the formula: HOMA-IR = fasting glucose [mmol L−1] × 659 
fasting insulin [mIU L−1] × 22.5−1. 660 
 661 

– Gut microbiome 662 

Gut microbiome data was originally generated based on whole metagenomic shotgun 663 
sequencing (WMGS) using a HiSeq 2500 sequencer (Illumina, Inc.) for DNA extracted from 664 
each stool sample45. In the current study, the raw sequencing data was obtained from the 665 
National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) 666 
project (PRJEB32731), and applied to a processing pipeline (https://github.com/Gibbons-667 
Lab/pipelines). Briefly, the obtained FASTQ files were processed using the fastp (version 668 
0.23.2) tool65 to filter and trim the reads, and taxonomic abundance was obtained using the 669 
Kraken 2 (version 2.1.2) and Bracken (version 2.6.0) tools66 with the Kraken 2 default 670 
database (based on NCBI RefSeq). The final collapsed taxonomic table across the samples 671 
consisted of 4,669, 1,225, 354, 167, 76, and 35 taxa for species, genus, family, order, class, 672 
and phylum, respectively. 673 

 674 

Blood omics-based BMI and WHtR models 675 

For each Arivale baseline omic dataset, missing values were first imputed with a random forest (RF) 676 
algorithm using Python missingpy (version 0.2.0) library (corresponding to R MissForrest package67). 677 
For sex-stratified models (Supplementary Fig. 2d), the datasets after imputation were divided into sex-678 
stratified datasets. Subsequently, the values in each omic dataset were standardized with Z-score using 679 
the mean and s.d. per analyte. Then, ten iterations of least absolute shrinkage and selection operator 680 
(LASSO) modeling with tenfold cross-validation (CV) (Fig. 1a, Supplementary Fig. 7a) were 681 
performed for the (unstandardized) loge-transformed BMI or WHtR and each processed omic dataset, 682 
using LassoCV application programming interface (API) of Python scikit-learn (version 1.0.1) library. 683 
Training and testing (hold-out) sets were generated by splitting participants into ten sets with one set 684 
as a testing (hold-out) set and the remaining nine sets as a training set, and iterating all combinations 685 
over those ten sets; i.e., overfitting was controlled using tenfold iteration with ten testing (hold-out) 686 
sets, and hyperparameter was decided using tenfold CV with internal training and validation sets from 687 
each training set. Consequently, this procedure generated ten fitted sparse models for each omics 688 
category (Supplementary Data 3) and one single testing (hold-out) set-derived prediction from each 689 
omics category for each participant. The same modeling scheme while replacing LASSO with elastic 690 
net (EN), ridge, or RF was performed using Python scikit-learn ElasticNetCV, RidgeCV, or 691 
RandomForestRegressor-implemented GridSearchCV API, respectively. In this RF-modeling, the 692 
number of trees in the forest and the number of features were set as the hyperparameters to be decided 693 
through CV. For the standard measures-based models, the above modeling scheme was applied to 694 
ordinary least squares (OLS) linear regression with sex, age, triglycerides, HDL-cholesterol, LDL-695 
cholesterol, glucose, insulin, and HOMA-IR as regressors, using Python scikit-learn LinearRegression 696 
API. Of note, ten split sets were fixed among the omics categories and the modeling methods, and no 697 
significant difference in BMI, WHtR, sex, age, and ancestry PC1–5 among those ten sets was 698 
confirmed, using Pearson’s χ2 test for categorical variable and Analysis of Variance (ANOVA) for 699 
numeric variable while adjusting multiple testing with the Benjamini–Hochberg method across the 700 
tested variables (Supplementary Data 1). 701 

For the TwinsUK cohort, metabolomic dataset was applied to RF imputation and then each 702 
dataset of metabolomics and the standard clinical measures was applied to Z-score standardization, as 703 
well as the Arivale datasets. Utilizing the ten LASSO or OLS linear regression models that were fitted 704 
by the Arivale dataset, one single prediction was calculated from each processed dataset for each 705 
participant by taking the mean of ten predicted values. For metabolomics, ten metabolomics-based 706 
BMI (MetBMI) models were regenerated while restricting the input Arivale metabolomics to the 707 
common 489 metabolites in the Arivale and TwinsUK panels (Supplementary Fig. 3). 708 
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For the LASSO-modeling iteration analysis (Supplementary Fig. 2e–h, 7f–i), ten LASSO 709 
models were repeatedly generated with the above modeling scheme. At the end of each iteration, the 710 
variable that was retained across ten models and that had the highest absolute value for the mean of 711 
ten β-coefficients was removed from the input omic dataset. 712 

For longitudinal predictions of the Arivale sub-cohort, one single prediction at a time point 713 
was calculated from each processed time-series omic dataset for each participant, utilizing the baseline 714 
LASSO model for which the participant was included in the baseline testing (hold-out) set. This was 715 
because (1) the baseline measurements were minimally affected by the personalized lifestyle 716 
coaching, (2) both count and time point of data collections were different among the participants, and 717 
(3) potential data leakage might be derived from the relationships between the baseline and following 718 
measurements for the same participant. For processing, each time-series omic dataset was applied to 719 
two-step RF imputation, where the baseline missingness was first imputed based on the baseline data 720 
structure and the remaining missingness was next imputed based on the overall data structure, and 721 
subsequently applied to Z-score standardization using the mean and s.d. in the baseline distribution. 722 

Model performance was conservatively evaluated by the out-of-sample R2 that was calculated 723 
from each corresponding hold-out testing set in the Arivale cohort or from the external testing set in 724 
the TwinsUK cohort. Pearson’s r between the measured and predicted values was calculated from the 725 
overall participants of the Arivale or TwinsUK cohort. Difference of the predicted value from the 726 
measured value (ΔMeasure; i.e., ΔBMI or ΔWHtR) was calculated with (the predicted value – the 727 
measured value) × (the measured value)−1 × 100 (i.e., the unit of ΔMeasure was [% Measure]). In the 728 
RF model, the importance of a feature was calculated as the normalized total reduction of the mean 729 
squared error that was brought by the feature. 730 
 731 

Health classification 732 

Each participant was classified using each of the measured and omics-inferred BMIs based on the 733 
World Health Organization (WHO) international standards for BMI cutoffs (underweight: <18.5 kg 734 
m−2, normal: 18.5–25 kg m−2, overweight: 25–30 kg m−2, obese: ≥30 kg m−2)12. For the 735 
misclassification of BMI class against the omics-inferred BMI class, each participant was categorized 736 
into either Matched or Mismatched group when the measured BMI class was matched or mismatched 737 
to each omics-inferred BMI class, respectively. 738 

For a clinically-defined metabolic health classification, the participants having two or more 739 
metabolic syndrome (MetS) risks of the National Cholesterol Education Program (NCEP) Adult 740 
Treatment Panel III (ATP III) guidelines were judged as the metabolically unhealthy group, while the 741 
other participants were judged as the metabolically healthy group34,35. Concretely, the MetS risk 742 
components were (1) systolic blood pressure ≥130 mm Hg, diastolic blood pressure ≥85 mm Hg, or 743 
using antihypertensive medication, (2) fasting triglyceride level ≥150 mg dL−1, (3) fasting HDL-744 
cholesterol level <50 mg dL−1 for female and <40 mg dL−1 for male or using lipid-lowering 745 
medication, and (4) fasting glucose level ≥100 mg dL−1 or using antidiabetic medication. Only the 746 
participants who had all these information were assessed in the corresponding analyses (Fig. 3b; 747 
Supplementary Fig. 6a, 7m). 748 
 749 

Gut microbiome-based models for classifying obesity 750 

For the Arivale gut microbiome dataset, the whole ASV table (907 taxa from species to phylum) was 751 
preprocessed (i.e., positively shifted by one, loge-transformed, and standardized with Z-score using the 752 
mean and s.d. per taxon) and then applied to dimensionality reduction using PCA API of Python 753 
scikit-learn (version 1.0.1) library; the projected values onto the first 50 PCs (0.4–5.1% variance 754 
explained) were supplied as the input gut microbiome features. Two types of classifiers were trained 755 
on these gut microbiome features: one predicting whether an individual is obese BMI class and the 756 
other predicting whether an individual is obese MetBMI class. Both models were independently 757 
constructed through a fivefold iteration scheme of RF with fivefold CV (Fig. 4a), using Python scikit-758 
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learn RandomForestClassifier-implemented GridSearchCV API. In this RF-modeling, the number of 759 
trees in the forest and the number of features were set as the hyperparameters to be decided through 760 
CV. Training and testing (hold-out) sets were generated by splitting the participants of the normal and 761 
obese classes into five sets with one set as a testing (hold-out) set and the remaining four sets as a 762 
training set, and iterating all combinations over those five sets; i.e., overfitting was controlled using 763 
fivefold iteration with five testing (hold-out) sets, and hyperparameters were decided using fivefold 764 
CV with internal training and validation sets from each training set. Consequently, this procedure 765 
generated five fitted classifiers for each BMI or MetBMI class and one single testing (hold-out) set-766 
derived prediction from each classifier type for each participant. Note that this prediction included two 767 
types: either normal or obese class by a vote of the trees (i.e., binary prediction) and the mean 768 
probability of obese class among the trees. 769 

For the TwinsUK gut microbiome dataset, the whole taxonomic table (6,526 taxa from 770 
species to phylum) was preprocessed and then applied to dimensionality reduction, as well as the 771 
Arivale dataset; the projected values onto the first 50 PCs (0.2–40.1% variance explained) were 772 
supplied as the input gut microbiome features. Then, the five obesity classifiers for each BMI or 773 
MetBMI class were generated as well as the above Arivale procedure, and one single testing (hold-774 
out) set-derived prediction from each classifier type was calculated for each participant (Fig. 4a). 775 

Model performance of each classifier was conservatively evaluated using each corresponding 776 
hold-out testing set. Area under curve (AUC) in the receiver operator characteristic (ROC) curve and 777 
the average precision were calculated using the probability predictions, while sensitivity and 778 
specificity were calculated from confusion matrix using the binary predictions. The overall ROC 779 
curve and its AUC was calculated from all the participant’s probability predictions, using R pROC 780 
(version 1.18.0) package68. 781 
 782 

Longitudinal changes in the measured and omics-inferred BMIs 783 

A linear mixed model (LMM) was generated for each loge-transformed measured or omics-inferred 784 
BMI in the Arivale sub-cohort, following the previous approach25. As fixed effects regarding time, 785 
linear regression splines with knots at 0, 6, 12, and 18 months were applied to days in program to fit 786 
time as a continuous variable rather than a categorical variable, because both count and time point of 787 
data collections were different among the participants. In addition to the linear regression splines of 788 
time as fixed effects, the LMM included sex, baseline age, ancestry PC1–5, and meteorological 789 
seasons as fixed effects (to adjust potential confounding effects) and random intercepts and random 790 
slopes of days in the program as random effects for each participant. Additionally, the same LMM for 791 
each measured or omics-inferred BMI was independently generated from each baseline BMI class-792 
stratified group. Of note, this stratified LMM was not generated from the underweight group because 793 
its sample size was too small for convergence. For comparing difference between the misclassification 794 
strata against the baseline MetBMI class, the above LMM while adding additional fixed effects, the 795 
categorical baseline misclassification of BMI class against MetBMI class (i.e., binary for Matched vs. 796 
Mismatched) and its interaction terms with the linear regression splines of time, was generated for 797 
each measured BMI or MetBMI from each baseline BMI class-stratified group. All LMMs were 798 
modeled using MixedLM API of Python statsmodels (version 0.13.0) library. 799 
 800 

Plasma analyte correlation network analysis 801 

Prior to the analysis, outlier values which were beyond ±3 s.d. from the mean in the Arivale sub-802 
cohort baseline distribution were eliminated from the dataset per analyte, and seven clinical laboratory 803 
tests which became almost invariant across the participants were eliminated from analyses, allowing 804 
convergence in the following modeling. Per each analyte, values were converted with a transformation 805 
pipeline producing the lowest skewness (e.g., no transformation, the logarithm transformation for right 806 
skewed distribution, the square root transformation with mirroring for left skewed distribution) and 807 
standardized with Z-score using the mean and s.d. 808 
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Against 608,856 pairwise combinations of the analytes (766 metabolites, 274 proteomics, 64 809 
clinical laboratory tests), generalized linear models (GLMs) for the baseline measurements of the 810 
Arivale sub-cohort (Fig. 5a; 608 participants) were independently generated with the Gaussian 811 
distribution and identity link function using glm API of Python statsmodels (version 0.13.0) library. 812 
Each GLM consisted of an analyte as dependent variable, another analyte and the baseline MetBMI as 813 
independent variables with their interaction term, and sex, baseline age, and ancestry PC1–5 as 814 
covariates. The analyte–analyte correlation pair that was significantly modified by the baseline 815 
MetBMI was obtained based on the β-coefficient (two-sided t-test) of the interaction term between the 816 
independent variables in GLM, while adjusting multiple testing with the Benjamini–Hochberg method 817 
(false discovery rate (FDR) < 0.05). 818 

Against the significant 100 pairs from the GLM analysis (82 metabolites, 33 proteins, and 16 819 
clinical laboratory tests; Supplementary Data 7), generalized estimating equations (GEEs) for the 820 
longitudinal measurements of the metabolically obese group (i.e., the baseline obese MetBMI class; 821 
182 participants) were independently generated with the exchangeable covariance structure using 822 
Python statsmodels GEE API. Each GEE consisted of an analyte as dependent variable, another 823 
analyte and days in the program as independent variables with their interaction term, and sex, baseline 824 
age, ancestry PC1–5, and meteorological seasons as covariates. The analyte–analyte correlation pair 825 
that was significantly modified by days in the program was obtained based on the β-coefficient (two-826 
sided t-test) of the interaction term between the independent variables in GEE, while adjusting 827 
multiple testing with the Benjamini–Hochberg method (FDR < 0.05). 828 
 829 

Statistical analysis 830 

All data preprocessing and statistical analyses were performed using Python NumPy (version 1.18.1 or 831 
1.21.3), pandas (version 1.0.3 or 1.3.4), SciPy (version 1.4.1 or 1.7.1) and statsmodels (version 0.11.1 832 
or 0.13.0) libraries, except for using R pROC (version 1.18.0) package68 for DeLong’s test69. All 833 
statistical tests were performed using a two-sided hypothesis. In all cases of multiple testing, P-value 834 
was adjusted with the Benjamini–Hochberg method. Of note, because some hypotheses were not 835 
completely independent (e.g., between combined omics and each individual omics; between glucose, 836 
insulin, and HOMA-IR), this simple P-value adjustment was regarded as a conservative approach. 837 
Significance was based on P < 0.05 for single testing and FDR < 0.05 for multiple testing. Test 838 
summaries (e.g., sample size, degrees of freedom, test statistic, exact P-value) are found in 839 
Supplementary Data 4, 5, 6, 9, and 10. 840 

Correlations (Fig. 1b, 3a; Supplementary Fig. 3b–d, 4b, 4f, 7c, 7d, 7l, 8d, 8e) were 841 
independently assessed using Pearson’s correlation test (Python SciPy pearsonr API), with the P-842 
value adjustment if multiple testing. Comparisons of model performance (Fig. 1c, 1d, 4d, 4f; 843 
Supplementary Fig. 2d, 4a, 7e) were independently assessed using Welch’s t-test (Python statsmodels 844 
ttest_ind API), with the P-value adjustment if multiple testing. Comparison of overall ROC curves 845 
(Fig. 4c, 4e) was assessed using unpaired DeLong’s test69. 846 

In all regression analyses, only the baseline datasets were used, and, unless otherwise 847 
specified, all numeric variables were centered and scaled in advance. For the Arivale datasets of 848 
anthropometrics, saliva-measured analytes, daily physical activity measures, and PRSs, (1) outlier 849 
values which were beyond ±3 s.d. from the mean in the cohort distribution were eliminated from the 850 
dataset per variable, (2) variables which became almost invariant across the participants were 851 
eliminated from the datasets, (3) values were converted with a transformation pipeline producing the 852 
lowest skewness (e.g., no transformation, the logarithm transformation for right skewed distribution, 853 
the square root transformation with mirroring for left skewed distribution), and (4) the transformed 854 
values were standardized with Z-score using the mean and s.d.; these preprocessed 51 variables were 855 
used as the numeric physiological features (Supplementary Data 4). Likewise, the Arivale datasets of 856 
the obesity-related clinical blood markers (i.e., selected clinical labs; Supplementary Data 6) and the 857 
TwinsUK datasets of the obesity-related phenotypic measures (Supplementary Data 6) were 858 
preprocessed. For gut microbiome α-diversity metrics, the number of observed ASVs and Chao1 859 
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index were converted with square root transformation while Shannon’s index was converted with 860 
square transformation, and then these transformed values were standardized with Z-score using the 861 
mean and s.d. Relationships of the numeric physiological features with the measured or omics-inferred 862 
BMI (Fig. 1e) were independently assessed using each OLS linear regression model with the 863 
(unstandardized) loge-transformed measured or omics-inferred BMI as dependent variable, a feature as 864 
independent variable, and sex, age, and ancestry PC1–5 as covariates, while adjusting multiple testing 865 
across the 255 (51 features × 5 BMI types) regressions. Relationships between Measure (i.e., BMI or 866 
WHtR) and the analytes that were retained in at least one of ten LASSO models (Fig. 2b–d, 867 
Supplementary Fig. 7k) were independently assessed using each OLS linear regression model with the 868 
(unstandardized) loge-transformed Measure as dependent variable, an analyte as independent variable, 869 
and sex, age, and ancestry PC1–5 as covariates, while adjusting multiple testing across the 210 (Fig. 870 
2b), 75 (Fig. 2c), 42 (Fig. 2d), or 289 (Supplementary Fig. 7k) regressions. In this regression analysis, 871 
a model including the omics-inferred Measure as independent variable was also assessed as reference. 872 
Differences in ΔMeasure (i.e., ΔBMI or ΔWHtR) between clinically-defined metabolic health 873 
conditions (Fig. 3b; Supplementary Fig. 6a, 7m) were independently assessed using each OLS linear 874 
regression model with ΔMeasure as dependent variable, metabolic condition (i.e., Healthy vs. 875 
Unhealthy) as categorical independent variable, and Measure, sex, age, and ancestry PC1–5 as 876 
covariates, while adjusting multiple testing across the eight (two BMI classes × four omics categories; 877 
Fig. 3b, Supplementary Fig. 7m) or four (two BMI classes × two cohorts; Supplementary Fig. 6a) 878 
regressions. Differences in the obesity-related clinical blood markers, the BMI-associated numeric 879 
physiological features, or the gut microbiome α-diversity metrics between the misclassification strata 880 
against the omics-inferred BMI class (Fig. 3d, 3e, 4b; Supplementary Fig. 6c) were independently 881 
assessed using each OLS linear regression model with a marker, feature, or metric as dependent 882 
variable, misclassification (i.e., Matched vs. Mismatched) as categorical independent variable, and 883 
BMI, sex, age, and ancestry PC1–5 as covariates, while adjusting multiple testing across the 40 (2 884 
BMI classes × 2 omics categories × 10 markers; Fig. 3d), 216 (2 BMI classes × 4 omics categories × 885 
27 features; Fig. 3e), 24 (2 BMI classes × 4 omics categories × 3 metrics; Fig. 4b), or 24 (2 BMI 886 
classes × 12 measures; Supplementary Fig. 6c) regressions. In the above regression analyses for the 887 
TwinsUK cohort, ancestry PCs were eliminated from the covariates due to data availability. 888 
 889 

Data visualization 890 

Results were visualized using Python matplotlib (version 3.4.3) and seaborn (version 0.11.2) libraries, 891 
except for the plasma analyte correlation network. Data were summarized as the mean with 95% 892 
confidence interval (CI) or the boxplot (median: center line; 95% CI around median: notch; [Q1, Q3]: 893 
box limits; [xmin, xmax]: whiskers, where Q1 and Q3 are the 1st and 3rd quartile values, and xmin and xmax 894 
are the minimum and maximum values in [Q1 − 1.5 × IQR, Q3 + 1.5 × IQR] (IQR: the interquartile 895 
range, Q3 − Q1), respectively), as indicated in each figure legend. For presentation purpose, CI was 896 
simultaneously calculated during visualization using Python seaborn barplot or boxplot API with 897 
default setting (1,000 times bootstrapping or a Gaussian-based asymptotic approximation, 898 
respectively). The OLS linear regression line with 95% CI was simultaneously generated during 899 
visualization using Python seaborn regplot API with default setting (1,000 times bootstrapping). The 900 
plasma analyte correlation network was visualized with a circos plot using R circlize (version 0.4.15) 901 
package70. 902 
 903 

Data availability 904 

The de-identified Arivale datasets that were used in this study can be accessed by qualified researchers 905 
for research purposes. Requests should be sent to data-access@isbscience.org, and the data will be 906 
available after submission and approval of a research plan. The de-identified TwinsUK datasets that 907 
were used in this study were provided by Department of Twin Research & Genetic Epidemiology 908 
(King’s College London) after the approval of our Data Access Application (Project Number: E1192). 909 
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Requests should be referred to their website (http://twinsuk.ac.uk/resources-for-researchers/access-910 
our-data/). 911 
 912 

Code availability 913 

Code used in this study is freely available on GitHub (https://github.com/PriceLab/Multiomics-BMI). 914 
  915 
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Figures 1087 

 1088 
Figure 1. Plasma multiomics captured 48–78% of the variance in BMI. 1089 

a Overview of study cohorts and the omics-based Body Mass Index (BMI) model generation. LASSO: 1090 
least absolute shrinkage and selection operator, CV: cross-validation. b Correlation between the 1091 
measured and predicted BMIs. The solid line is the ordinary least squares (OLS) linear regression line 1092 
with 95% confidence interval (CI), and the dotted line is measured BMI = predicted BMI. Standard 1093 
measures: OLS linear regression model with sex, age, triglycerides, high-density lipoprotein (HDL)-1094 
cholesterol, low-density lipoprotein (LDL)-cholesterol, glucose, insulin, and homeostatic model 1095 
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assessment for insulin resistance (HOMA-IR) as regressors; P: adjusted P-value of two-sided 1096 
Pearson’s correlation test with the Benjamini–Hochberg method across the five categories. n = 1,277 1097 
participants. c, d Model performance of each fitted BMI model. Out-of-sample R2 was calculated from 1098 
each corresponding hold-out testing set (c, Arivale in d) or from the external testing set (TwinsUK in 1099 
d). Metabolomics (full): LASSO model trained by all 766 metabolites of the Arivale dataset, 1100 
Metabolomics (restricted): LASSO model trained by the common 489 metabolites in the Arivale and 1101 
TwinsUK datasets (see Supplementary Fig. 3). Note that Standard measures and Metabolomics (full) 1102 
of Arivale in d are the same with corresponding ones in c. Data: mean with 95% CI, n = 10 models. 1103 
***Adjusted P < 0.001 in two-sided Welch’s t-test with the Benjamini–Hochberg method across the 1104 
four (c) or three (d) comparisons. e Association between omics-inferred BMI and physiological 1105 
feature. For each of the 51 numeric physiological features (Supplementary Data 4), β-coefficient was 1106 
estimated using OLS linear regression model with the measured or omics-inferred BMI as dependent 1107 
variable and sex, age, and ancestry principal components (PCs) as covariates. Presented are the 30 1108 
features that were significantly associated with at least one of the BMI types after multiple testing 1109 
adjustment with the Benjamini–Hochberg method across the 255 (51 features × 5 BMI types) 1110 
regressions. BMI: measured BMI, MetBMI: metabolomics-inferred BMI, ProtBMI: proteomics-1111 
inferred BMI, ChemBMI: clinical chemistries-inferred BMI, CombiBMI: combined omics-inferred 1112 
BMI, PRS: polygenic risk score, n: the number of assessed participants. Data: estimate with 95% CI. 1113 
*Adjusted P < 0.05, **adjusted P < 0.01, ***adjusted P < 0.001. 1114 
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 1116 
Figure 2. Omics-based BMI estimates captured the variance in BMI better than any single 1117 
analyte. 1118 

a The variables that were retained across all ten combined omics-based Body Mass Index 1119 
(CombiBMI) models (132 analytes: 77 metabolites, 51 proteins, and 4 clinical laboratory tests). β-1120 
coefficient was obtained from the fitted CombiBMI model with least absolute shrinkage and selection 1121 
operator (LASSO) regression. Each background color corresponds to the analyte category. Data: 1122 
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median (center line), [Q1, Q3] (box limits), [xmin, xmax] (whiskers), where Q1 and Q3 are the 1st and 3rd 1123 
quartile values, and xmin and xmax are the minimum and maximum values in [Q1 − 1.5 × IQR, Q3 + 1.5 1124 
× IQR] (IQR: the interquartile range, Q3 − Q1), respectively; n = 10 models. b–d Univariate explained 1125 
variance in BMI by each metabolite (b), protein (c), or clinical laboratory test (d). BMI was 1126 
independently regressed on each of the analytes that were retained in at least one of the ten LASSO 1127 
models (209 metabolites, 74 proteins, 41 clinical laboratory tests; Supplementary Data 5), using 1128 
ordinary least squares (OLS) linear regression with sex, age, and ancestry principal components (PCs) 1129 
as covariates. Multiple testing was adjusted with the Benjamini–Hochberg method across the 210 (b), 1130 
75 (c), or 42 (d) regressions, including each omics-based BMI (MetBMI: metabolomics-based BMI, 1131 
ProtBMI: proteomics-based BMI, ChemBMI: clinical chemistries-based BMI) model as reference. 1132 
Among the analytes that were significantly associated with BMI (180 metabolites, 63 proteins, 30 1133 
clinical laboratory tests), only the top 30 significant analytes are presented with their univariate 1134 
variances. 1135 
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 1137 
Figure 3. Metabolic heterogeneity was responsible for the high rate of misclassification within 1138 
the standard BMI classes. 1139 



Page 30 of 36 

a Difference of the omics-inferred Body Mass Index (BMI) from the measured BMI (ΔBMI). 1140 
MetBMI: metabolomics-inferred BMI, ProtBMI: proteomics-inferred BMI, ChemBMI: clinical 1141 
chemistries-inferred BMI, CombiBMI: combined omics-inferred BMI, P: adjusted P-value of two-1142 
sided Pearson’s correlation test with the Benjamini–Hochberg method across the six combinations, n: 1143 
the number of participants in each BMI class (total n = 1,277 participants). The line in histogram panel 1144 
indicates the kernel density estimate. b Difference in ΔBMI between clinically-defined metabolic 1145 
health conditions within the normal or obese BMI class. Significance was assessed using ordinary 1146 
least squares (OLS) linear regression with BMI, sex, age, and ancestry principal components (PCs) as 1147 
covariates, while adjusting multiple testing with the Benjamini–Hochberg method across the eight 1148 
(two BMI classes × four omics categories) regressions. c Misclassification rate of overall cohort or 1149 
each BMI class against the omics-inferred BMI class. Range of the previously reported 1150 
misclassification rate36,37 is highlighted with orange background. Note that the underweight BMI class 1151 
is not presented due to small sample size, but its misclassification rate was 80% against CombiBMI 1152 
class and 100% against the others. d, e Difference in the obesity-related clinical blood marker (d) or 1153 
BMI-associated physiological feature (e) between Matched and Mismatched groups within the normal 1154 
or obese BMI class. Significance was assessed using OLS linear regression with BMI, sex, age, and 1155 
ancestry PCs as covariates, while adjusting multiple testing with the Benjamini–Hochberg method 1156 
across the 40 (d, 2 BMI classes × 2 omics categories × 10 markers) or 216 (e, 2 BMI classes × 4 omics 1157 
categories × 27 features) regressions. Four of the 27 features that were significantly associated with 1158 
BMI (Fig. 1c) are representatively presented in e, and the other results are found in Supplementary 1159 
Data 6. HDL: high-density lipoprotein, LDL: low-density lipoprotein, CRP: C-reactive protein, 1160 
HOMA-IR: homeostatic model assessment for insulin resistance, HbA1c: glycated hemoglobin A1c, 1161 
25(OH)D: 25-hydroxyvitamin D. b, d, e Data: median (center line), 95% confidence interval (CI) 1162 
around median (notch), [Q1, Q3] (box limits), [xmin, xmax] (whiskers), where Q1 and Q3 are the 1st and 1163 
3rd quartile values, and xmin and xmax are the minimum and maximum values in [Q1 − 1.5 × IQR, Q3 + 1164 
1.5 × IQR] (IQR: the interquartile range, Q3 − Q1), respectively; n = 373 (b, Healthy in Normal), 49 1165 
(b, Unhealthy in Normal), 208 (b, Healthy in Obese), 241 (b, Unhealthy in Obese) participants (see 1166 
Supplementary Data 6 for each sample size in d and e). *Adjusted P < 0.05, **adjusted P < 0.01, 1167 
***adjusted P < 0.001. 1168 
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 1170 
Figure 4. Metabolomics-inferred BMI reflected gut microbiome profiles better than BMI. 1171 

a Overview of study cohorts and the gut microbiome-based obesity classifier generation. BMI: Body 1172 
Mass Index, MetBMI: metabolomics-inferred BMI, RF: random forest, CV: cross-validation. b 1173 
Difference in gut microbiome α-diversity between Matched and Mismatched groups within the normal 1174 
or obese BMI class. Significance was assessed using ordinary least squares (OLS) linear regression 1175 
with BMI, sex, age, and ancestry principal components (PCs) as covariates, while adjusting multiple 1176 
testing with the Benjamini–Hochberg method across the 24 (2 BMI classes × 4 omics categories × 3 1177 
metrics) regressions. ProtBMI: proteomics-inferred BMI, ChemBMI: clinical chemistries-inferred 1178 
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BMI, CombiBMI: combined omics-inferred BMI, ASV: amplicon sequence variant. Data: median 1179 
(center line), 95% confidence interval (CI) around median (notch), [Q1, Q3] (box limits), [xmin, xmax] 1180 
(whiskers), where Q1 and Q3 are the 1st and 3rd quartile values, and xmin and xmax are the minimum 1181 
and maximum values in [Q1 − 1.5 × IQR, Q3 + 1.5 × IQR] (IQR: the interquartile range, Q3 − Q1), 1182 
respectively. n = 240 (Normal), 260 (Obese) participants (see Supplementary Data 6 for each sample 1183 
size). *Adjusted P < 0.05, **adjusted P < 0.01. c, e Receiver operator characteristic (ROC) curve of 1184 
the gut microbiome-based model classifying participants to the normal vs. obese class in the Arivale 1185 
(c) or TwinsUK (e) cohort. Each ROC curve was generated from the overall participants: n = 500 (c, 1186 
BMI class), 427 (c, MetBMI class), 209 (e, BMI class), 145 (e, MetBMI class) participants. The red 1187 
dashed line indicates a random classification line. AUC: area under curve. **P < 0.01 in two-sided 1188 
unpaired DeLong’s test. d, f Comparison of model performance between the BMI and MetBMI 1189 
classifiers in the Arivale (d) or TwinsUK (f) cohort. Out-of-sample metric value was calculated from 1190 
each corresponding hold-out testing set. Data: mean with 95% CI, n = 5 models. *P < 0.05, **P < 1191 
0.01 in two-sided Welch’s t-test. 1192 
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 1194 
Figure 5. Metabolic health of the metabolically obese group was substantially improved 1195 
following a healthy lifestyle intervention. 1196 

a Overview of the longitudinal analysis using omics-inferred Body Mass Index (BMI). BMI: 1197 
measured BMI, MetBMI: metabolomics-inferred BMI, ProtBMI: proteomics-inferred BMI, 1198 
ChemBMI: clinical chemistries-inferred BMI, LMM: linear mixed model. b, c Longitudinal change in 1199 
the omics-inferred BMI within the overall cohort (b) or within each baseline BMI class (c). Average 1200 
trajectory of each measured or omics-inferred BMI was independently estimated using LMM with 1201 
random effects for each participant (see Methods) in the overall cohort (b) or in each baseline BMI 1202 
class-stratified group (c). d, e Longitudinal change in MetBMI of the misclassified participants within 1203 
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the normal (d) or obese (e) BMI class. Average trajectory of each BMI or MetBMI was independently 1204 
estimated using the above LMM with the baseline misclassification of BMI class against MetBMI 1205 
class as additional fixed effects (see Methods) in each baseline BMI class-stratified group. b–e The 1206 
dashed line corresponds to the baseline value of each estimate. Data: mean with 95% confidence 1207 
interval (CI); n = 608 (b), 222 (c, Normal), 185 (c, Overweight), 196 (c, Obese), 137 (d, Matched), 85 1208 
(d, Mismatched), 139 (e, Matched), 57 (e, Mismatched) participants. 1209 
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 1211 
Figure 6. Plasma analyte correlation network in the metabolically obese group shifted toward a 1212 
structure observed in metabolically healthier state following a healthy lifestyle intervention. 1213 

a Cross-omic interactions modified by metabolomics-inferred Body Mass Index (MetBMI) and days 1214 
in the program. For each of the 608,856 pairwise relationships of plasma analytes (766 metabolites, 1215 
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274 proteomics, 64 clinical laboratory tests), the baseline relationship between analyte–analyte pair 1216 
and MetBMI within the Arivale sub-cohort (Fig. 5a; 608 participants) was assessed using their 1217 
interaction term in each generalized linear model (GLM; see Methods), while adjusting multiple 1218 
testing with the Benjamini–Hochberg method. The 100 analyte–analyte pairs (82 metabolites, 33 1219 
proteins, 16 clinical laboratory tests; Supplementary Data 7) that were significantly modified by the 1220 
baseline MetBMI are presented. For each of these 100 pairs, the longitudinal relationship between 1221 
analyte–analyte pair and days in the program within the metabolically obese group (i.e., the baseline 1222 
obese MetBMI class; 182 participants) was further assessed using their interaction term in each 1223 
generalized estimating equation (GEE; see Methods), while adjusting multiple testing with the 1224 
Benjamini–Hochberg method. The 27 analyte–analyte pairs (21 metabolites, 3 proteins, 3 clinical 1225 
laboratory tests) that were significantly modified by days in the program are highlighted by line width 1226 
and label font size. b, c Representative examples of the analyte–analyte pair that was significantly 1227 
modified by both baseline MetBMI (b) and days in the program (c) in a. The solid line in each panel is 1228 
the ordinary least squares (OLS) linear regression line with 95% confidence interval (CI). n = 530 (b, 1229 
left), 553 (b, center), 566 (b, right) participants; n = 324 (c, left), 339 (c, center), 347 (c, right) 1230 
measurements from the 182 participants of the metabolically obese group. Of note, data points outside 1231 
of plot range are trimmed in these presentations. 1232 
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