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Abstract 

 

Purpose: Segmentation of involved lymph nodes on head and neck computed tomography (HN-CT) scans is 

necessary for the radiotherapy treatment planning of human papilloma virus (HPV) associated oropharynx 

cancers (OPC). We aimed to train a deep learning convolutional neural network (DL-CNN) to identify and 

segment involved lymph nodes on contrast-enhanced HN-CT scans.  

 

Methods:  90 patients who underwent levels II-IV neck dissection for newly diagnosed, clinically node-

positive, HPV-OPC were identified. Ground-truth segmentation of all radiographically and pathologically 

involved nodes was manually performed on pre-surgical HN-CT scans, which were randomly divided into 

training/validation dataset (n=70) and testing dataset (n=20). A 5-fold cross validation was used to train 5 

separate DL-CNN sub-models based on a residual U-net architecture. Validation and testing segmentation 

masks were compared to ground-truth segmentation masks using overlap-based, volume-based, and distance-

based metrics. A lymph auto-detection model was developed by thresholding segmentation model outputs, and 

20 node-negative HN-CT scans were added to the test set to further evaluate auto-detection capabilities. Model 

discrimination of lymph node “positive” and “negative” HN-CT scans was evaluated using the area under the 

receiver operating characteristic curve (AUC). 

 

Results: In the DL-CNN validation phase, all sub-models yielded segmentation masks with median DSC > 

0.90 and median volume similarity score of > 0.95. In the testing phase, the DL-CNN produced consensus 

segmentation masks with median Dice of 0.92 (IQR, 0.89-0.95), median volume similarity of 0.97 (IQR, 0.94-

0.99), and median Hausdorff distance of 4.52 mm (IQR, 1.22-8.38). The detection model achieved an AUC of 

0.98.  

 

Conclusion: The results from this single-institution study demonstrate the successful automation of lymph 

node segmentation for patients with HPV-OPC using a DL-CNN. Future studies, including external validation 

using a larger dataset, are necessary to clarify the role of the DL-CNN in the routine radiation oncology 

treatment planning workflow.
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Introduction 

Approximately 66,000 cases of head and neck cancer will be diagnosed in the United States in 2021, including 

30% of cases pertaining to human papilloma virus (HPV)-associated oropharynx cancers (OPC) 1,2. Accurate 

assessment of the extent of lymph node involvement and lymph node characteristics on staging studies is 

necessary for appropriate treatment disposition. Some patients with early-stage HPV-associated OPC, 

including limited lymph node involvement and no radiographic evidence of extranodal extension, can be 

managed with transoral robotic resection of the primary site of disease and ipsilateral neck dissection. 

However, the majority of patients diagnosed with locoregionally advanced disease will receive radiotherapy 

treatment with definitive intent, thereby necessitating imaging-based segmentation of the primary tumor and 

involved lymph nodes to ensure adequate radiotherapy dose delivery to all sites of disease 3. 

 The acquisition of head and neck computed tomography (HN-CT) scans for HPV-associated OPC is 

an integral component of primary tumor and nodal staging as well as radiotherapy treatment planning. Several 

studies have demonstrated unique imaging characteristics for HPV-associated OPC 4,5. In a blinded, matched-

pair analysis of HN-CT scans for patients with HPV-positive and HPV-negative OPC, Cantrell et al. found that 

HPV-positive OPC scans were less likely to demonstrate muscle invasion of the primary tumor but more likely 

to demonstrate cystic morphology of involved lymph nodes 6. Similarly, Chan et al. observed that HPV-

positive OPC was more likely to demonstrate multiple lymph node involvement and cystic nodal appearance 7. 

These unique radiographic features correspond to histopathology findings observed on the surgical specimens 

of HPV-associated OPC tumors 8. 

 Deep learning is a subset of machine learning that uses deep neural networks to learn and classify data 

9. Within the context of OPC, deep learning algorithms have been used to predict HPV status based on pre-

treatment imaging 10,11. Although clinical assessment of involved lymph nodes is necessary for therapy 

disposition and radiotherapy treatment planning, no deep learning algorithms have focused on the 

identification and segmentation of involved lymph nodes for HPV-associated OPC. The purpose of this study 

was to develop a deep learning convolutional neural network (DL-CNN) capable of identifying and 

segmenting radiographically and pathologically involved lymph nodes for HPV-associated OPC on contrast-

enhanced HN-CT scans. Furthermore, we aimed to use the DL-CNN to discriminate between node-negative 

and node-positive HN-CT scans. 

 

Methods 

After obtaining Institutional Review Board approval, 90 patients who underwent selective, levels II-IV neck 

dissection for newly diagnosed, clinically node-positive, OPC at our institution were identified from the Steifel 

Oropharynx Database—a prospective database of clinical and patient-reported outcomes for patients treated at 

The University of Texas MD Anderson Cancer Center. In addition, 20 randomly selected patients who 

underwent selective, levels II-IV neck dissection and were found to have clinically and pathologically node-

negative OPC were included in the dataset. The inclusion criterion were at least 18 years of age at the time of 
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diagnosis and pathology findings consistent with HPV-associated OPC, while the exclusion criteria were a 

history of radiotherapy treatment to the head and neck region or a history of prior neck dissection. 

 

Data Preparation and Preprocessing 

Pre-surgical, contrast-enhanced, HN-CT scans were identified for all patients. Expert, “ground-truth 

segmentation” of all radiographically involved lymph nodes was manually performed on node-positive HN-CT 

scans using RayStation Research (RaySearch Laboratories, Stockholm, Sweden) 12. Histopathology findings 

from selective neck dissection were correlated with neuroradiology annotations to ensure that 1) all segmented 

lymph nodes corresponded to pathologically involved lymph nodes and 2) no radiographically occult lymph 

nodes were present on surgical pathology. The ground-truth segmentations for each patient were then 

combined into a solitary “ground-truth mask”.  

Pre-processing was performed on HN-CT scans to mitigate the variabilities in image size and 

resolution. The images and structure files were converted from Digital Imaging and Communications in 

Medicine (DICOM) format to Neuroimaging Informatics Technology Initiative (NIfTI) format using the 

Advanced Medical Imaging Registration Engine (ADMIRE, Elekta AB, Stockholm, Sweden). The images 

were cropped to a specific sub-volume, with the auto-segmented cephalad border of the mandible, the 

manually-segmented cephalad border of the sternum, and the auto-segmented external patient contour serving 

as the superior, inferior, and circumferential boundaries, respectively (Figure 1). Image intensities were then 

truncated to the range of [−100, 300] Hounsfield units and rescaled to the range of [-1, 1] to increase soft tissue 

contrast 13. The images and their respective ground-truth masks were resampled to 1.0 mm isotropic resolution 

using a trilinear interpolator in ADMIRE.  

 

Model Development 

A DL-CNN was developed based on a 3-dimensional (3D) residual U-Net architecture included in the 

Medical Open Network for Artificial Intelligence (MONAI) software package 14. This architecture has been 

utilized successfully in previous OPC tumor auto-segmentation studies 15. The network consisted of 4 

convolution blocks in the encoding and decoding branches with a bottleneck convolution block separating 

these two branches (Figure 2). In the encoding branch, all convolutional layers used a kernel size of 3, with 

each block consisting of a two-strided convolution layer; the residual connections contained a two-strided and 

one-strided convolution layer. In the decoding branch, all convolutional layers used a kernel size of 3, with 

each block consisting of a two-strided transpose convolution layer, a one-strided convolution layer, and a 

residual connection. In the bottleneck, all convolutional layers used a kernel size of 1 and the residual 

connection consisted of a two-strided convolution layer. Throughout the architecture, we utilized batch 

normalization and Parametric Rectified Linear Unit (PReLU) activation functions. 

 

Model Training & Validation 
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The 90, node-positive HN-CT scans and their respective ground-truth masks served as the data by 

which the DL-CNN was developed. The data were randomly divided into 2 datasets—a training/validation 

dataset (n=70) and a testing dataset (n=20). Each HN-CT scan was split into four, random regions (i.e., 

patches) of 96 x 96 x 96 voxels in dimension. The input tensor consisted of a batch size of 2, a single channel 

input, and 4 patches per image, yielding a summative input of (8, 1, 96, 96, 96). Each patch was evaluated for 

the presence of an involved lymph node with the center as foreground (i.e., involved lymph node present) or 

background (i.e., involved lymph node absent) with a 50% probability for either condition. Several data 

augmentation processes were implemented to minimize overfitting. Random spatial cropping was performed to 

patch the images and ground-truth masks. Random horizontal flips with 50% probability, and random affine 

transformations with an axial rotation range of 12 degrees, and scale range of 10% were also performed.  

We implemented a 5-fold cross-validation approach to train 5 separate sub-models for the DL-CNN. 

For each of the 5 sub-models, 80% of the HN-CT scans in the training/validation dataset and their respective 

ground-truth masks acted as model inputs for training purposes. The remaining 20% of HN-CT scans served 

for internal validation. One “validation segmentation mask” was generated per HN-CT scan, for a total of 70 

validation segmentation masks. Validation segmentation masks were compared to ground-truth masks using 

overlap-based (Dice similarity coefficient [DSC]) and volume-based (volume similarity) metrics. The DL-

CNN was trained for 700 epochs, with a learning rate of 2×10-4 for the first 550 epochs and 1×10-4 for the 

remaining 150 epochs.  

 

Model Testing  

 The performance of the DL-CNN to detect and segment involved lymph nodes was evaluated using an 

independent test dataset of 20 positive HN-CT scans. Additionally, 20 randomly selected HN-CT scans 

pertaining to patients with no involved lymph nodes were included in the testing dataset to evaluate the ability 

of the model to discriminate between “positive” (i.e., involved lymph node present) and “negative” (i.e., 

involved lymph node absent) HN-CT scans. In total, 5 “testing segmentation masks” were generated per HN-

CT scan (1 testing segmentation mask per sub-model). For the 20 node-positive scans, the 5 testing 

segmentation masks for each HN-CT scan were combined to create a “consensus segmentation mask” using 

the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm (Figure 3) 16. The testing 

segmentation masks and consensus segmentation masks were compared to their respective ground-truth masks 

using overlap-based (DSC), volume-based (volume similarity), spatial distance-based (Hausdorff distance 

[HD]), and probabilistic-based (Cohen Kappa Coefficient [CKC]) metrics 17. 

For the model discrimination, each voxel in the 5 testing segmentation masks generated from each 

sub-model for the 40 HN-CT scans in the testing dataset was scored as either “1” to indicate that a lymph node 

contour was generated or “0” to indicate that no lymph node contour was generated. The scores for each voxel 

were averaged for the 5 sub-models to yield an “average score” ranging from 0 (i.e., no testing segmentation 

mask generated by any of the 5 sub-models) to 1 (i.e., testing segmentation masks were generated by all 5 sub-
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models). A HN-CT scan was considered “positive” if any voxel average score was equal to 1, and “negative” if 

any voxel average score was < 0.8. This score threshold was chosen empirically from test results to maximize 

the accuracy, sensitivity, and positive predictive value of the DL-CNN. The model discrimination was 

evaluated by determining the area under the receiver operating characteristic curve (AUC). Three image 

resampling resolutions⎯high (1.0 mm), medium (1.5 mm), and low (2.0 mm)⎯were used to evaluate the 

impact of image resolution on the discriminatory ability of the DL-CNN. 

 

Results 

Patient and Tumor Characteristics 

Patient and tumor characteristics are presented in Table 1. The median age at diagnosis was 60 years and there 

was a male sex predominance (n=101, 92%). The majority of the patients had no history of cigarette smoking 

(n=72, 66%) and cT1 disease (n=63, 57%). Among cN1 patients, there was a median of 1 involved lymph node 

(range, 1-4) in the training/validation dataset and 1 involved lymph node (range, 1-3) in the testing dataset.  

 

DL-CNN Validation Performance 

 Segmentation mask metrics for model validation are presented in Table 2. When compared to ground-

truth masks, sub-model #4 achieved the highest median DSC, with a score of 0.92 (interquartile range [IQR], 

0.90-0.94) for the validation segmentation masks. All the 5 sub-models generated validation segmentation 

masks with a median DSC of at least 0.90. Similarly, all the 5 sub-models generated validation segmentation 

masks with a median volume similarity score of at least 0.95, with sub-model #1 achieving the highest median 

volume similarity score and narrowest volume similarity IQR.  

 

DL-CNN Testing Performance 

Segmentation mask metrics for model testing are presented in Table 3. When compared to ground-

truth masks, the median DSC for testing segmentation masks was greater than 0.90 for all sub-models. The 

median DSC for consensus segmentation masks was 0.92 (IQR, 0.89-0.95). Comparisons between the testing 

segmentation masks and ground-truth masks for a subset of cases based on DSC are depicted in Figure 4. A 

maximum volume similarity score of 1.0 was achieved by all sub-models for testing segmentation masks, with 

sub-model #4 achieving the highest minimum volume similarity score and median volume similarity score of 

0.97. The median volume similarity score for consensus segmentation masks was 0.97 (IQR, 0.94-0.99). All 

sub-models achieved a median HD less than 6 mm, with a median HD for consensus segmentation masks of 

4.52 mm (IQR, 1.22-8.38). The median CKC for testing segmentation masks was nearly identical across the 

sub-models, and the median CKC for consensus segmentation masks was 0.92 (IQR, 0.89-0.95). 

 

DL-CNN Discrimination Performance 
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Confusion matrices and receiver operating characteristic curves for the three imaging resolutions are 

presented in Figure 5. The medium resampled resolution model achieved the most optimal identification for 

the positive HN-CT scans (AUC = 0.98), with 20 of 20 HN-CT scans with involved lymph nodes correctly 

identified as positive and 19 of 20 of the remaining HN-CT scans correctly identified as negative. In contrast, 

the low resampled resolution model had the worst classification of HN-CT scans (AUC = 0.81), with 2 of 20 

HN-CT scans with involved lymph nodes incorrectly identified as negative and 6 of 20 of HN-CT scans with 

no involved lymph nodes incorrectly identified as positive. Illustrative examples of the detection process and 

individual test case predictions using the best-performing model (medium resolution) are shown in Figure S1.  

 

 

Discussion 

The incidence of HPV-associated OPC has risen in recent decades and is projected to continue to increase 

during the next 30 years 18. Compared to HPV-negative OPC, HPV-associated OPC has been found to have 

higher rates of clinical and pathological lymph node involvement 19. Additionally, lymph node metastases in 

HPV-associated OPC are characterized by several distinct features on clinical imaging including cystic 

composition, and matted conglomeration 20. The acquisition of planning HN-CT scans is germane to the 

radiotherapy treatment workflow. Intravenous iodinated contrast may be administered during the radiotherapy 

simulation to enhance vascular visibility and soft tissue contrast, thereby facilitating lymph node delineation 

and manual target volume segmentation 21,22.  

Patient anatomical and tumor characteristics on medical imaging can be harnessed to automate the 

process of target volume segmentation for radiotherapy planning. More specifically, DL-CNNs can be used to 

model complex non-linear relationships in radiation oncology training datasets and make segmentation 

predictions on unseen HN-CT scans acquired during radiotherapy simulation 23. Cardenas et al. used HN-CT 

scans and their respective, physician-approved contours from 71 patients with head and neck cancers to train, 

validate, and test a DL-CNN in lymph node clinical target volume (CTV) auto-segmentation. The DL-CNN 

achieved a DSC of 0.89 for auto-segmented CTVs of neck levels II-V. Additionally, physician review of an 

independent dataset of 32 HN-CT scans found that over 99% of the DL-CNN auto-segmented lymph node 

CTVs were either sufficient for clinical use or required minor revisions 24. 

We designed a DL-CNN using a residual U-Net, a recognized neural network architecture for medical 

image segmentation 13,15,23. Using supervised learning and contrast-enhanced HN-CT scans with corresponding 

ground-truth masks as inputs, we implemented a patch-based approach to train the DL-CNN to auto-segment 

involved lymph nodes for patients with HPV-associated OPC. As radiographically occult lymph nodes can be 

identified on surgical specimens for upward of 50% of patients with head and neck cancers following neck 

dissection, we confirmed that all radiographically abnormal lymph nodes corresponded to pathologically-

involved lymph nodes and that no additional, pathologically-involved were present on surgical histopathology 

25,26. 
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The role of DL-CNN in the auto-segmentation of head and neck primary tumors on medical imaging 

has been widely explored 15,27. However, studies on auto-segmentation of involved lymph nodes of the head 

and neck are limited. Bielak et al. investigated the impact of various magnetic resonance imaging sequences on 

auto-segmentation of lymph nodes and found a maximum DSC of 0.58 28. Similarly, Wang et al. integrated the 

extraction of various imaging features into a DL-CNN and achieved a mean DSC score of 0.94 for the highest 

performing model 29. As computed tomography scans are acquired during the radiotherapy planning process, 

we chose to use contrast-enhanced, diagnostic HN-CT scans for the training of our DL-CNN. In order to 

evaluate the generalization capacity of the DL-CNN auto-segmentation model on unseen data, we split the 

dataset using 80% for training/validation and 20% for testing. In the validation phase, we found that the DL-

CNN achieved median DSC and volume similarity scores of at least 0.90 and 0.95, respectively. When tested 

on unseen data, the DL-CNN was notable for median consensus segmentation mask scores of 0.92 for DSC 

and 0.97 for volume similarity. Moreover, the DL-CNN was able to successfully identify node positive HN-CT 

scans, with an AUC of 0.98. These results suggest that our DL-CNN may be used to perform auto-detection 

and auto-segmentation of involved lymph nodes as part of the radiation oncology treatment planning workflow 

with a high degree of fidelity and without the need for additional imaging studies.  

There are several limitations to our study. We included patients with HPV-associated OPC who had 

undergone surgical resection of the primary tumor and lymph node dissection. As this cohort reflects a patient 

population with early-stage disease, it is possible that our results may not be fully generalizable to patients 

with more locoregionally advanced disease, including greater than 3 or more radiographically involved lymph 

nodes and/or radiographic evidence of extranodal extension. Furthermore, our DL-CNN was trained, validated, 

and tested on contrast-enhanced HN-CT scans. Our findings represent the results of a small cohort of HN-CT 

scans obtained at a single institution. Therefore, additional studies are needed for external validation of the 

model in a larger dataset of HN-CT scans performed at other institutions, with and without the presence of 

intravenous contrast.   

 

Conclusion 

 Patients diagnosed with HPV-associated OPC are often found to have clinical evidence of lymph node 

involvement at the time of diagnosis. Manual segmentation of radiographically involved lymph nodes is an 

integral part of treatment planning for those patients dispositioned to definitive radiotherapy. Here we have 

presented a DL-CNN that can be used to automate the process of lymph node detection and segmentation for 

these patients with a high degree of fidelity. Future studies on the validation of the DL-CNN on larger external 

datasets of HN-CT scans, on HN-CT scans acquired without contrast, and HN-CT scans pertaining to patients 

with surgically unresectable disease are necessary to further clarify the role of the DL-CNN in the routine 

radiation oncology workflow.  
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Figure 1: Schematic representation pre-processing workflow. Head and neck computed tomography scans 

were cropped using the mandible, sternum, and external contours as boundaries (A & B). Scans were divided 

into 4 patches of 96 x 96 x 96 voxels in dimension (C).  

 

 

 

 
 

Figure 2: Schematic representation of the U-Net architecture implemented for the deep learning convolutional 

neural network with annotations pertaining to the number of channels, batch normalization (BN) layers, and 

Parametric Rectified Linear Unit (PReLU) layers. 
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Figure 3: Five sub-model segmentation masks and one consensus segmentation mask were generated for each 

head and neck computed tomography scan. The red contour corresponds to the ground-truth masks, the blue 

contours correspond to the predicted sub-model segmentation masks, and the yellow contour corresponds to 

the consensus segmentation mask generated by combing the 5 sub-model segmentation masks using the 

Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm. 
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Figure 4: Comparison of consensus segmentations (yellow) to ground-truth segmentations (red) for a subset of 

test set patients with greater or equal Dice similarity coefficients (A, B, C; 1 involved lymph node, 3 involved 

lymph nodes, and 2 involved lymph nodes, respectively), slightly lower Dice similarity coefficients (D, E; 2 

involved lymph nodes and 1 involved lymph node, respectively), and much lower Dice similarity coefficient 

(F; 1 involved lymph node) than the median value of 0.92.  
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Figure 5: Receiver operating characteristic curves for positive versus negative HN-CT scan discrimination 

comparing three resampled image resolutions (High – 1.0 mm, Medium – 1.5 mm, and Low – 2.0 mm) and 

their corresponding confusion matrices.  
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Characteristic  All Training/Validation Testing 

  n (%) n (%) n (%) 

Median age [IQR], y 60 [53-65] 60 [54-65] 59 [53-67] 

Sex    

 Male 101 (91.8) 66 (94.3) 35 (87.5) 

 Female 9 (8.2) 4 (5.7) 5 (12.5) 

Smoking Status     

 Never 72 (65.5) 44 (62.9) 28 (70.0) 

 Former 34 (30.9) 24 (34.3) 10 (25.0) 

 Current 4 (3.6) 2 (2.9) 2 (5.0) 

Oropharynx subsite    

 Base of tongue 51 (46.4) 38 (54.3) 13 (32.5) 

 Tonsil 59 (53.6) 32 (45.7) 27 (67.5) 

Clinical tumor classification    

 cT1 63 (57.3) 44 (62.9) 19 (47.5) 

 cT2 47 (42.7) 26 (37.1) 21 (52.5) 

Clinical lymph node classification    

 cN0 20 (18.2) 0 (0.0) 20 (50.0) 

 cN1 90 (81.8) 70 (100.0) 20 (50.0) 

Involved lymph nodes    

 0 20 (18.2) 0 (0.0) 20 (50.0) 

 1 68 (61.8) 53 (75.7) 16 (40.0) 

 2 18 (16.4) 16 (22.9) 2 (5.0) 

 3 3 (2.7) 0 (0) 2 (5.0) 

 4 1 (0.9) 1 (1.4) 0 (0.0) 

 

Table 1: Patient and tumor clinical characteristics for all patients (N=110), patients in the training/validation 

dataset (n=70), and patients in the testing dataset (n=40). 

 

Abbreviations: IQR, interquartile range; y, years 
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 Sub-Model #1 Sub-Model #2 Sub-Model #3 Sub-Model #4 Sub-Model #5 

  
Min. 

Max

. 

Med

. 
IQR Min. 

Max

. 

Med

. 
IQR Min. 

Max

. 

Med

. 
IQR Min. 

Max

. 

Med

. 
IQR Min. 

Max

. 

Med

. 
IQR 

DSC 0.83 0.94 0.91 

0.88

-

0.92 

0.81 0.96 0.92 
0.90-

0.94 
0.83 0.94 0.91 

0.88-

0.93 
0.80 0.95 0.91 

0.88-

0.94 
0.67 0.97 0.90 

0.85-

0.91 

VS 0.84 0.99 0.96 

0.95

-

0.98 

0.86 1.00 0.96 
0.94-

0.98 
0.85 0.99 0.97 

0.93-

0.98 
0.80 0.99 0.95 

0.93-

0.97 
0.70 1.00 0.95 

0.92-

0.97 

 

Table 2: Minimum, maximum, median, interquartile range values for the overlap-based (Dice similarity coefficient) and volume-based (volume 

similarity) metrics for the sub-model validation segmentation masks when compared to the ground-truth masks. 

 

Abbreviations: DSC, Dice similarity coefficient; IQR, interquartile range; Max., maximum; Min., minimum; VS, volume similarity 
 

 

 

 
Sub-Model #1 Sub-Model #2 Sub-Model #3 Sub-Model #4 Sub-Model #5 Consensus (STAPLE) 

 Min. Max. 
Med

. 
IQR Min. Max. Med. IQR Min. Max. Med. IQR Min. Max. Med. IQR Min. Max. Med. IQR Min. Max. Med. IQR 

DSC 0.55 0.95 0.92 
0.89-

0.94 
0.66 0.95 0.92 

0.88-

0.94 
0.58 0.95 0.92 

0.87-

0.94 
0.62 0.96 0.91 

0.87-

0.94 
0.69 0.96 0.92 

0.88-

0.94 
0.61 0.96 0.92 

0.89-

0.95 

VS 0.64 1.00 0.97 
0.95-

0.98 
0.70 1.00 0.96 

0.92-

0.99 
0.59 1.00 0.97 

0.93-

0.99 
0.73 1.00 0.97 

0.91-

0.99 
0.72 1.00 0.97 

0.92-

0.99 
0.68 1.00 0.97 

0.94-

0.99 

HD  1.11 92.0 4.92 
1.11-

16.0 
1.22 90.0 5.78 

1.22-

17.4 
1.65 86.9 5.08 

1.64-

18.5 
1.22 

90.7

  
4.15 

1.22-

9.04 
1.22 91.4 5.56 

1.22-

11.7 
1.22 90.9 4.52 

1.22-

8.38 

CKC 0.55 0.95 0.92 
0.89-

0.94 
0.66 0.95 0.92 

0.88-

0.94 
0.58 0.95 0.92 

0.87-

0.95 
0.62 0.96 0.91 

0.87-

0.94 
0.69 0.96 0.92 

0.88-

0.94 
0.61 0.96 0.92 

0.89-

0.95 

 

 

Table 3: Minimum, maximum, median, interquartile range values for the overlap-based (Dice similarity coefficient), volume-based (volume similarity), 

spatial distance-based (Hausdorff distance), and probabilistic-based (Cohen Kappa Coefficient) metrics for the sub-model testing segmentation masks and 

consensus segmentation masks when compared ground-truth masks. 

 

Abbreviations: CKC, Cohen Kappa Coefficient; DSC, Dice similarity coefficient; HD, Hausdorff distance (in mm); IQR, interquartile range; Max., 

maximum; Min., minimum; STAPLE, Simultaneous Truth and Performance Level Estimation; VS, volume similarity 
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