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ABSTRACT 

Genome-wide association studies (GWAS) in admixed populations such as African 

American (AA) have limited sample sizes, resulting poor performance of polygenic risk scores 

(PRS). Based on the observations that many disease-causing genes are shared between AA and 

European ancestry (EA) populations, and some disease-causing variants are located within 

boundaries of these genes, we proposed a novel gene-based PRS method (PRSgene) by using 

variants located in these shared disease-causing genes. Using AA GWAS of alcohol use disorder 

(AUD) from the Million Veteran Program and EA GWAS of problematic alcohol use as the 

discovery datasets, we identified 858 variants from 410 genes that were AUD-related in both AA 

and EA. PRSgene calculated using these variants were significantly associated with AUD in three 

AA cohorts (P-values: 7.61E-05-6.27E-03; Betas: 0.15-0.21) and outperformed PRS calculated 

using all variants (P-values: 7.28E-03-0.16; Betas: 0.06-0.18). PRSgene was also associated with 

AUD in an EA cohort (P-value=0.02, Beta=0.11). In AA, individuals in the highest PRSgene 

decile had an Odds Ratio of 1.76 (95% CI: 1.32-2.34) to develop AUD compared to those in the 

lowest decile. The 410 genes were enriched in 54 Gene Ontology biological processes, including 

ethanol oxidation and processes involving synaptic system, which are known to be AUD-related. 

Additionally, 26 genes were targets of drugs to treat AUD or other diseases, but may be 

repurposed to treat AUD. Our study demonstrated that our gene-based PRS had improved 

performance in evaluating AUD risk in AA and provided new insight into identification of AUD 

genes. 

 

Key words: African American, Alcohol use disorders, polygenic risk scores, gene ontology 

enrichment analysis, drug target genes.  
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INTRODUCTION 

Alcohol use disorder (AUD) is one of the most common public health problems (1) and 

caused by both genetic and environmental factors. Estimates of the heritability of AUD ranges 

from 40% to 60% (2-4). Recently, multiple large-scale genome-wide association studies (GWAS) 

of AUD-related phenotypes have been published (5-7) and many variants associated with AUD 

have been identified. These GWAS reinforce the highly polygenic architecture underlying AUD, 

with many variants exerting small effects. Consequently, polygenic risk scores (PRS) have 

proven to be a strong approach for assessing AUD genetic liability beyond genome-wide 

significant variants (5, 7). For instance, in a recent study (Lai et al, accepted), individuals 

comprising the highest PRS decile were almost twice as likely to meet criteria for AUD relative 

to all others in a European ancestry sample, an estimate comparable to those published for first 

degree family history of AUD in national surveys (8, 9). However, PRS analysis of AUD in 

admixed populations, such as African American (AA), suffer from poor performance due to the 

smaller sample sizes of the discovery GWAS (5). 

While increasing the discovery sample sizes is the ultimate way to improve PRS 

performance, sample sizes comparable to European ancestry populations (hundreds thousands 

to >1 million) for admixed populations will require extensive and strategic data collection. 

Studies have shown that many disease-causing genes are shared among different populations 

(10-13). Therefore, large-scale EA GWAS summary statistics can be leveraged to improve the 

performance of PRS in non-EA populations by increasing the overall discovery GWAS sample 

size. However, disease-causing variants may have different allele frequencies and effect sizes in 

different populations, and linkage disequilibrium (LD) patterns in admixed populations are more 

complicated than those in EA populations (11, 14-17). Methods utilizing the large EA GWAS 
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and smaller non-EA GWAS to calculate PRS in non-EA populations aimed to address these 

challenges have been proposed, but their performance remains far from ideal (18-22).  

Optimizing the selection of variants to include in PRS improves performance. Majority 

variants in the genome are likely not related to a particular condition and including them in PRS 

calculations will reduce performance by introducing noises. Ideally, only variants that act on 

disease-causing genes should be used in calculating PRS. However, most of these genes and 

variants remain to be discovered. Since many disease-causing genes are shared across different 

populations (10-13), GWAS from different populations provide another way to identify these 

genes and variants. For instance, if a gene is nominally associated (e.g. P-values <0.05) with a 

disease in both EA and non-EA populations, then it is likely to be a shared disease-causing gene 

across populations. Furthermore, for these disease-causing genes, it is highly likely that there is 

at least one disease-causing variant located within the gene boundaries, e.g. non-synonymous 

mutations that change gene products or 3’ UTR variants that alter gene expression levels (23, 24). 

Additionally, regulatory variants that are close to a gene may be tagged by variants located 

within the gene boundaries due to LD. Therefore, variants located in gene boundaries that are 

nominally associated with a disease in both EA and non-EA populations are likely to be disease-

causing variants or in LD with disease-causing variants. Based on these observations, we 

proposed a novel method aimed at further enhancing the performance of PRS in admixed 

population, referring to this method as gene-based PRS. We first used EA GWAS and non-EA 

GWAS to identify shared disease-causing genes, then used variants located within these genes’ 

boundaries to calculate PRS. While variants acting distally are not included in this calculation, 

by excluding majority variants in the genome that are unlikely to be related to a disease, the 

signal to noise ratio theoretically increases and thus the performance of PRS is expected to 
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improve. Further, if the gene-based PRS are significantly associated with a disease, it becomes 

more likely that some or most of these included genes are truly disease-causing, despite not 

previously being implicated by GWAS or gene-based genome-wide association studies like those 

using MAGMA (25). Thus gene-based PRS provide another opportunity to pinpoint the disease-

causing genes with sub-threshold P-values.  

In this study, we examined the performance of the proposed gene-based PRS in 

evaluating the risk of AUD in AA and EA populations. Using summary statistics from an EA 

GWAS of problematic alcohol use (EA-PAU) (7) and an AA GWAS of AUD from the Million 

Veteran Program (AA-AUD) (5), the largest GWAS of AUD-related phenotypes to date in EA 

and AA populations respectively as the discovery GWAS, we calculated gene-based PRS 

(PRSgene) to evaluate AUD risk in three AA cohorts: the Collaborative Study on the Genetics of 

Alcoholism (COGA) (26), Study of Addiction: Genetics and Environment (SAGE)(27), Alcohol 

Dependence GWAS in European and African Americans (YalePenn, AA participants only) (28), 

as well as one EA cohort from the Indiana Biobank (https://indianabiobank.org/). We compared 

the performance of PRSgene with PRS calculated using all variants (PRSall). Then, for genes 

included in PRSgene calculations, we performed gene ontology enrichment analysis to test 

whether they were enriched in biological processes known to be related to AUD or other 

pathways that could provide novel insight into AUD etiology. We also searched a publically 

available drug target database (29) to evaluate whether these genes were potential drug targets 

for AUD treatment, or drug targets for treatment of other diseases but may be repurposed to treat 

AUD. 

  

METHODS 
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Discovery datasets 

The EA-PAU was a meta-analysis of problematic alcohol use (N=435 563) (7) that 

comprised an AUD GWAS of the Million Veteran Program Phase I (5) and Phase II data, an 

alcohol dependence GWAS from the Psychiatric Genomics Consortium (30), and a GWAS of 

scores from the problem subscale of the Alcohol Use Disorder Identification Test (AUDIT items 

4 to 10) in the UK Biobank (6). AA-AUD (N=56 648) (5) served as the discovery sample for AA 

target samples. Across both discovery GWAS, A/T or C/G variants were excluded to avoid 

strand ambiguity. As we were focusing on AUD-causing variants shared between EA and AA, 

only variants having the same direction of effects in both the EA-PAU and AA-AUD were 

included. Both GWAS summary statistics were downloaded from the database of genotypes and 

phenotypes (dbGaP: phs001672.v3.p1, https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs001672.v3.p1).  

 

Target datasets 

AA individuals were drawn from 3 sources: COGA (N=3 375), SAGE (N=930), and 

YalePenn (N=2 010). COGA is a family cohort, in which alcohol dependent probands and their 

family members from inpatient and outpatient AD treatment facilities in seven sites were invited 

to participate. COGA also recruited community comparison families from a variety of sources in 

the same areas (26, 31). The study was approved by Institutional review boards from all sites. 

Every participant provided informed consent. The Semi-Structured Assessment for the Genetics 

of Alcoholism (SSAGA) was administered to individuals 18 or over and the child version of the 

SSAGA was used for those younger than 18 (32, 33). SAGE (phs000092.v1.p1, 
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https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000092.v1.p1) and 

YalePenn (phs000425.v1.p1, https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000425.v1.p1) were downloaded from dbGaP. Since COGA had 

more phenotypic information, if a sample in the COGA dataset was also in SAGE and/or 

YalePenn, they were only analyzed as part of the COGA data. SAGE and YalePenn are mix of 

related and unrelated individuals, although most are unrelated. Only AA samples from COGA, 

SAGE, and YalePenn were used. Across all three datasets, AUD was defined as meeting lifetime 

criteria for DSM-IV alcohol dependence (34) or DSM-5 alcohol use disorder (35). All other 

individuals were considered as controls.  

EA individuals were drawn from one source (i.e. Indiana Biobank). The gene-based PRS 

was calculated using variants located in AUD genes implicated in both AA and EA. 

Consequently, it should be applicable to both populations. To test this proposition, we included a 

European ancestry dataset from the Indiana Biobank (IB: https://indianabiobank.org/). IB is a 

state-wide collaboration that provides centralized processing and storage of specimens that are 

linked to participants’ electronic medical information via Regenstrief Institute at Indiana 

University. All IB individuals included in this study are unrelated. AUD in IB was diagnosed 

based on ICD9 (303 and 305.0) and ICD10 (F10) codes. Individuals not diagnosed as AUD and 

without AUD associated conditions such as alcohol-associated pancreatitis were defined as 

controls. As some EA samples of COGA and SAGE data were part of EA-PAU, they were not 

included as target EA samples. 

 

Genotype data processing and Imputation: 
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 Detailed information about COGA, SAGE, and YalePenn data processing has been 

reported (36-38). Briefly, a common set of high quality (minor allele frequency (MAF) >10%, 

missing rate <2%, Hardy-Weinberg Equilibrium (HWE) P-values >0.001) and independent 

(defined as R2 <0.5) variants (N=24 135) was used to identify duplicate samples among different 

cohorts and confirm the reported family structures using PLINK (39, 40). Family structures were 

updated if needed. The same set of common variants was also used to estimate the principal 

components (PCs) of population stratification using Eigenstrat (41) with 1000 Genomes data 

(Phase 3, version 5, NCBI GRCh37) as the reference panel. Each cohort was imputed to 1000 

Genomes by using SHAPEIT2 (42) followed by Minimac3 (43). Before imputation, variants 

with A/T or C/G alleles, missing rates >5%, MAF <3%, and HWE P-values <0.0001 were 

excluded. Imputed variants with R2 >=0.30 and MAF >=1% were included in all analyses. As 

previously reported, IB samples were genotyped using Illumina Infinium Global Screening Array 

(GSA , Illumina, San Diego, CA) by Regeneron (Tarrytown, NY)(44). Variants with missing 

rate >5%, MAF <1%, HWE P-value <1E-10 among cases and 1E-6 in controls were excluded. 

Population stratification was then estimated using the SNPRelate package (45) from 

Bioconductor (46). IB data were also imputed to 1000 Genomes using the Michigan Imputation 

Server (https://imputationserver.sph.umich.edu/index.html#!pages/home) (43). Imputed variants 

with R2 <0.30 and MAF <1% were excluded. 

 

PRS calculation 

We used PRS-CSx, a recently developed method designed for cross-ethnic polygenic 

prediction and showed better performance when compared with other methods in simulation 

studies and real data analysis (22). The posterior effect size of each variant was estimated via a 
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Bayesian regression framework using continuous shrinkage priors. African and European 

samples from the 1000 Genomes project were used as the LD reference panels. PRS-CSx can 

estimate posterior effect sizes of AA only, EA only, and meta-analysis of EA-PAU and AA-

AUD. Since we focused on AUD-causing variants implicated in both AA and EA, meta-analysis 

posterior effect sizes were used. Only variants located within gene boundaries (defined as ±1 kb 

from the transcription start and end sites), having P-values <0.05 in both EA-PAU and AA-AUD 

(i.e., at least showing marginal associations), and having the same directions of effects were 

included in PRS calculations (referred to as PRSgene). We also used all variants to calculate PRS 

(PRSall) for comparison purposes. PLINK (39, 40) was used to calculate PRS using the posterior 

effect sizes estimated by the PRS-CSx. PRSgene and PRSall were standardized as mean=0 and 

standard deviation=1 in AA (all three datasets combined) and EA target dataset separately.  

 

Statistical analysis 

As COGA, SAGE, and YalePenn included related individuals, generalized linear mixed 

models were used with a random effect to adjust for family relationships. For IB, which is a 

cohort of unrelated individuals, logistic regression models were used. We also stratified 

individuals based on PRS deciles and compared each to the bottom decile. Since the sample sizes 

in COGA, SAGE, and YalePenn are small to moderate (therefore having insufficient sample 

sizes in each decile), we combined all three cohorts for the stratified analyses. For all models, 

sex and the first 10 PCs were included as covariates. For the combined analysis of COGA, 

SAGE, and YalePenn data, a cohort indicator (i.e. COGA, SAGE, or YalePen) was also included. 

Associations with P-values <0.05 across all 3 cohorts were considered statistically significant for 

PRSgene and PRSall. 
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Gene Ontology enrichment analyses, searching GWAS catalog and potential drug target genes 

For genes included in calculating PRSgene, we performed gene ontology enrichment 

analysis using PANTHER (released 2021-01-24) (47) implemented in the Gene Ontology (GO) 

Resource (http://geneontology.org/, released 2021-08-18). We focused on GO Biological 

Processes (GOBPs), which were compiled by multiple molecular activities. We also searched the 

GWAS catalog (https://www.ebi.ac.uk/gwas/) (48) to check whether these genes had been 

previously implicated in GWAS of AUD-related phenotypes. Lastly, we checked whether these 

genes could be potential drug targets by searching the gene list for targets of FDA-approved 

drugs as well as those in current clinical trial investigations, compiled by Wang et al (29) derived 

from the Informa Pharmaprojects database (https://pharmaintelligence.informa.com/products-

and-services/data-and-analysis/pharmaprojects). 

 

RESULTS 

Samples used in this study are summarized in Table 1.  In all cohorts, about 60% of cases 

were males while <42% of controls were males.  

PRS-CSx estimated posterior meta-analysis effect sizes for 1 126 428 variants and they 

were used to calculate PRSall. Among these variants, 858 variants with P-values <0.05 in both 

the EA-PAU and AA-AUD (Table S1) that were located within gene boundaries (410 genes, 

Table S2) were used to calculate PRSgene. As shown in Table 2, for AA cohorts, both PRSgene 

and PRSall had P-values<0.05 in all cohorts except PRSall for COGA. Effect sizes ranged from 

0.15-0.21 for PRSgene and 0.06-0.18 for PRSall. In EA, 847 of 858 variants (Table S1), and 1 061 
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130 of 1 126 428 variants were present in IB after QC; both PRSgene and PRSall had P-

values<0.05 (PRSgene Beta=0.11, SE=0.02; PRSall Beta=0.34, SE=0.05). Overall, PRSgene 

outperformed PRSall in AA but the opposite was observed in EA.   

The association between PRS and AUD increased from the bottom decile (1st decile) to 

the top decile (10th decile) (Figure 1). Using the bottom decile as the reference, all except the 2nd 

and 3rd deciles were associated with the increased risk for AUD (ORs: 1.37-1.76. Table 3) after 

adjusting for covariates. 

Of the 410 genes, 353 were uniquely mapped to the GO database. The unmapped genes 

were non-coding RNAs, anti-sense RNAs, pseudo-genes, and read-throughs. Fifty four GOBPs 

had false discovery rate (FDR) P-values <0.05, including ethanol oxidation, synaptic signaling, 

synapse organization, synaptic plasticity, startle response, neurogenesis, nervous system 

development, learning or memory, protein metabolic process, cell adhesion, cell development, 

cell junction organization, movement of cell or subcellular component, cell-cell signaling, 

regulation of signaling, etc. (Table S3).  

Only 47 genes were identified in previous GWAS of AUD-related phenotypes (Table S2). 

Twenty six genes were targets of drugs approved by FDA or in clinical trials. Among them, four 

(DRD2, PDE4B, GRM5, and SLC6A9; the first two were reported by previous GWAS of AUD-

related phenotypes) were drug target genes for AUD treatment (Table S4); for those 22 genes 

that were targets of drugs to treat diseases other than AUD, 21 were involved in the significant 

GOBPs identified and five (EIF4E, ESR1, MAPT, METAP1, and TNKS) were reported by 

previous GWAS of AUD related phenotypes (Table S2). 
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DISCUSSION 

In this study, we found that gene-based PRS (PRSgene) calculated using 858 variants of 

410 genes were significantly associated with AUD in both AA and EA, and outperformed the 

PRS calculated using all variants (PRSall) in AA. Compared to the bottom decile, those at the top 

PRSgene decile were nearly twice as likely to be AUD cases (OR=1.76) in AA. These 410 genes 

were enriched in 54 GOBPs, and many of them are likely to be AUD-related. Additionally, four 

genes were targets of drugs in Phase II or III clinical trials to treat AUD; 22 genes were targets of 

drugs approved by FDA or in clinical trials to treat other diseases but may be repurposed to treat 

AUD. Together, these findings showed that a biologically meaningful polygenic signal can be 

characterized in non-European ancestry individuals by leveraging methods that focus on 

intragenic signals with concordant directions of effects across ancestries. Further, the process 

identified drugs already under development that should be evaluated for their potential in AUD. 

To improve the performance of PRS, more disease-causing variants should be included 

and unrelated variants should be excluded. AUD is caused by many genes with small effects and 

in GWAS of AUD, due to the large number of variants tested, many variants that are unrelated to 

AUD show some degree of association (e.g. P-values <0.05) purely by chance (i.e., false 

positives). If sample sizes are large (e.g. hundreds of thousands of participants or more), while a 

majority of AUD-related variants are still not genome-wide significant, they usually have smaller 

P-values than those false positives and can still contribute to the calculation of PRS. However, 

when the discovery GWAS sample sizes are small to moderate, the discrimination between 

AUD-related and unrelated variants narrow. This may lead to a reduction in PRS performance. 

Using large-scale EA discovery GWAS could mitigate this problem, but the improvement is 

limited even with sophisticated statistical methods (22). Using our gene-based PRS strategy, we 
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focused on genes with nominal association in both EA and AA then used variants located in 

these genes to calculate PRSgene. By excluding most unrelated variants, the chance of selecting 

true AUD-related variants was greatly increased; and as shown in our study, resulted in superior 

performance in all our AA cohorts. Thus, we conclude that this strategy can be used to improve 

the performance of PRS when the discovery GWAS sample sizes are not sufficiently large, 

notable in admixture populations and other groups that have been underrepresented in GWAS 

studies to date. 

While PRSgene outperformed PRSall in AA, the opposite was observed in EA. This is 

expected for the following reasons. First, many GWAS findings, such as variants in KLB and 

GCKR, which reached genome-wide significance in EA, had P-values >0.05 in AA (i.e. these 

genes may not be AUD-related in AA for some unknown mechanisms, or variants act on these 

genes in AA have not been identified), therefore, they were not included in calculating PRSgene 

but were used in calculating PRSall in EA. Second, even within genes that have shown 

associations with AUD in both AA and EA, different causal variants may have been important in 

each ancestral group. One example is rs2066702 in the ADH1B gene. While relatively common 

in AA individuals (MAF=0.18), the variant is rare in EA individuals (MAF=0.002) 

(https://www.ncbi.nlm.nih.gov/snp/rs2066702?vertical_tab=true#frequency_tab). This is the 

only variant selected in ADH1B in calculating PRSgene, resulting in no contribution of ADH1B 

when calculating PRSgene in EA individuals from the Indiana Biobank. However, for PRSall, 

multiple common EA variants in ADH1B (e.g. rs2066701, rs1042026, and rs2075633) were 

included, thus increasing the performance of PRSall. Third, we limited inclusion to variants 

within gene boundaries and this may affect AA and EA disproportionately. For example, 

rs1229978, which is located between ADH1B and ADH1C, is much more common in EA 
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(MAF=0.39) than in AA (MAF=0.15) 

(https://www.ncbi.nlm.nih.gov/snp/rs1229978?vertical_tab=true); therefore, not including this 

variant in PRS calculations had larger impact in EA than in AA. Nevertheless, the significance of 

PRSgene in both AA and EA suggested that most of these genes are AUD-related in these two 

populations.  

Most variants identified in GWAS are typically outside gene boundaries, therefore, post-

GWAS functional studies (in silico or in wet lab) are usually performed to identify true AUD-

associated genes. Our gene-based PRS provided another strategy to pinpoint these AUD 

associated genes. By focusing on variants within gene boundaries that were nominally associated 

with AUD in AA and EA, if PRS calculated using these variants were significantly associated 

with AUD, then genes that host these variants were likely to be AUD-associated. In this study, 

started with >1M variants, we ended up using 858 variants located in 410 genes to calculate 

PRSgene. The significant results of PRSgene in both AA and EA indicated that most of these 410 

genes contributed to the association signal and were likely to be AUD-related. There exist 

multiple gene-based methods such as MAGMA (25) to consolidate genome-wide variant-level 

signals, however, these methods are hypothesis free and can still suffer an attenuated but harsh 

multiple testing correction. As a result, most genes will not meet genome-wide significance (e.g. 

in our study, 363 of those 410 genes were not mentioned by any GWAS of AUD) and additional 

studies are still needed to differentiate the true disease-causing genes from falsely identified ones. 

Furthermore, gene-based methods like MAGMA test the same GWAS samples, while our gene-

based PRS test independent samples, increasing replicability. 

More than half of the 410 genes (244) were involved in 54 significant GOBPs. As 

expected, ethanol oxidation was among them and four genes (ADH1B, ADH1C, ADH4, and 
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ADH5) were involved.  Compromised executive functioning (i.e., neuroadaptation) is one of the 

major mechanisms contributing to AUD (49) and not surprisingly, several significant GOBPs 

related to synaptic systems (synaptic signaling, synapse organization, synaptic plasticity, startle 

response) were identified (46 genes). Although the role of the synaptic system in AUD is well-

established (49), however, only nine genes (CSMD1, DCC, DRD3, EIF4E, ERC2, LINGO2, 

MAPT, NRXN2, and TENM2) were implicated in previous GWAS of AUD related phenotypes. 

We also found significant GOBPs related to learning and memory (27 genes), consistent with 

previous findings that AUD and neurodegenerative diseases share some genetic liability (50). 

Nervous system development related GOBPs were significant (69 genes), and genes involved 

may predispose to AUD via mechanisms yet to be discovered. GOBPs such as protein metabolic 

process, cell adhesion, cell development, cell junction organization, movement of cell or 

subcellular component, cell-cell signaling, and regulation of signaling were also significant. 

Intuitively, these GOBPs may not seem to be AUD-related, however, among 148 genes only 

involved in these processes, 20 of them were reported in previous GWAS of AUD related 

phenotypes with some of them, e.g. FTO, PDE4B, and SLC39A8, being genome-wide significant 

in recent large-scale GWAS of AUD (7). In addition, there were seven genes (EHBP1, EYS, 

FNBP4, LOC100507053, TNRC6A, WDR7, and ZNF462) that were not involved in any 

significant GOBPs but were reported by previous GWAS of AUD-related phenotypes. Further 

studies are needed to elucidate the roles of these genes in predisposing to AUD. By searching the 

drug target gene database, we found four genes (DRD2, PDE4B, GRM5, and SLC6A9) are 

already targets of AUD treatment drugs (Table S4). We also found 22 genes are targets of drugs 

to treat other diseases (Table S4)  which could be examined and/or repurposed to treat AUD. 

Studies have found that gene-targeted drugs were more likely to get FDA approval (29, 51, 52), 
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therefore, identifying the roles of genes used in calculating PRSgene could facilitate the 

development of novel treatment methods. 

This study has several limitations. First, while limiting variants to within gene boundaries 

can help pinpoint AUD genes, many variants with larger effects are intergenic. As a result, the 

performance of PRSgene was not comparable to those reported previously in EA samples (Lai et 

al, accepted) and cannot be used to evaluate AUD risks. Second, even variants in a gene may act 

on other distal genes, therefore, it is possible that these intragenic variants were indexing disease-

attributable effects of distal genes. Third, we limited to variants that have effects in both AA and 

EA, thus, variants that have effects in AA or EA only were excluded, further reducing the 

performance of PRSgene. Fourth, we used posterior effects estimated from the meta-analysis of 

AA-MVP and EA-PAU. As the EA-PAU had a much larger sample size (>7 times of sample size 

of AA-MVP), more weight was put on effects estimated from the EA samples. Therefore, for 

those variants that have different effects between AA and EA, effects from the meta-analysis 

were biased toward the EA GWAS. Fifth, PRS-CSx used African samples from the 1000 

Genomes project as the LD reference panel and the LD structure within that population does not 

exactly correspond with the AAs in our samples.  

 In summary, using 858 variants from 410 genes, we calculated gene-based PRS that were 

significantly associated with AUD in both AA and EA and outperformed PRS calculated using 

all variants in AA. These 410 genes were enriched in GO biological processes related to ethanol 

oxidation and synaptic functions, and many of them are likely to cause AUD and are potential 

drug targets to treat AUD. Our study outlines a novel strategy for PRS calculation in admixed 

populations and opportunities for new insight into AUD genetics.  
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Figure legends 

Figure 1. X-axis is each decile and Y-axis is the standardized PRSgene. 
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Table 1: Sample summary. 

Population cohort # case (%male) # control (%male) # total # families 

AA 

All
*
 2,786 (60.80) 3,529 (39.27) 6,315 3,322 

COGA 875 (62.06) 2,500 (41.60) 3,375 590 

SAGE 387 (59.17) 543 (37.02) 930 869 

YalePenn 1,524 (60.50) 486 (29.84) 2,010 1,863 

EA IB 539 (62.15) 3,515 (40.40) 4,054 4,054 

 

*: COGA, SAGE, and YalePenn combined.  
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Table 2: Associations between AUD and PRSgene, PRSall in AA and EA. 

Population cohort 

PRSgene PRSall 

Beta SE P-value # Variants Beta SE P-value # Variants 

AA 

All
*
 0.17 0.03 3.55E-08 858 0.12 0.03 9.42E-05 1,126,428 

COGA 0.15 0.04 9.67E-04 858 0.06 0.04 0.16 1,126,428 

SAGE 0.18 0.07 6.27E-03 858 0.18 0.07 0.01 1,126,428 

YalePenn 0.21 0.05 7.61E-05 858 0.17 0.06 7.28E-03 1,126,428 

EA IB 0.11 0.05 0.02 847 0.34 0.05 2.35E-21 1,061,130 

 

*: COGA, SAGE, and YalePenn combined. PRSgene: PRS calculated using variants located in 

genes associated with AUD in both AA and EA. PRSall: PRS calculated using all variants. 

Significant P-values are in bold. 
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Table 3: Odds Ratios when comparing each PRSgene decile with the bottom decile in AA. 

Decile OR OR 95%CI P-value 

10 1.76 1.32-2.34 1.03E-04 

9 1.72 1.29-2.29 2.05E-04 

8 1.52 1.15-2.00 2.93E-03 

7 1.64 1.27-2.12 1.49E-04 

6 1.43 1.09-1.87 0.01 

5 1.37 1.05-1.79 0.02 

4 1.48 1.13-1.93 4.55E-03 

3 1.22 0.91-1.62 0.18 

2 1.11 0.85-1.45 0.44 

Note: Significant P-values are in bold. 
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Figure 1: Distributions of PRSgene in each decile in AA. 
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