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Abstract 
 
Background: In patients undergoing radiotherapy or neurosurgery, neuroanatomical segmentation is a 
critical aid that improves outcomes. Current auto-segmentation methods are limited because they cannot 
generalize to brain images with features not represented in the training data. 
 
OBJECTIVE: To develop and validate 3D capsule networks (CapsNets) to segment brain images with 
features not represented in the training data. 
 
METHODS: We used 3430 brain MRIs acquired in a multi-institutional study. We compared our CapsNets 
with U-Nets, the current standard, based on the accuracy in segmenting various brain structures and those 
with spatial features not represented in the training data. We also assessed performance when the models 
are trained using limited data, memory requirements, and computation times. 
 
RESULTS: 3D CapsNets segmented the third ventricle, thalamus, and hippocampus with Dice scores of 
94%, 94%, and 91%, respectively. 3D CapsNets outperformed 3D U-Nets in segmenting brain images with 
features that were not represented in the training data, with Dice scores more than 30% higher (P-values < 
0.01). 3D CapsNets had 93% fewer trainable parameters than 3D U-Nets. The 3D CapsNets were 25% 
faster to train compared with U-Nets. The two models were equally fast during testing. 
 
CONCLUSION: 3D CapsNets segment brain structures with high accuracy, outperform U-Nets in 
segmenting brain images with features that were not represented during training, and are more efficient 
compared with U-Nets, achieving similar results while their size is an order of magnitude smaller.  
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Introduction 
 
In patients undergoing radiotherapy or neurosurgery, neuroanatomical segmentation is a critical component 
of the clinical workflow.1–3 Manual segmentation on diagnostic images is difficult because it requires 
radiologist-level expertise and often cannot be completed in a timely fashion for clinical use. Additionally, 
manual segmentation is prone to inter- and intra-operator variability, limiting  generalizability.4 Although 
machine learning based auto-segmentation methods have been developed, current methods fail to properly 
segment anatomy that is not well represented in the training data. Given the variety of ways in which brain 
anatomy can change with various pathologic conditions, having training data that captures all potential 
anatomical variations is near impossible.4 There is an increasing need for auto-segmentation methods which 
can generalize  beyond the spatial features that are present in the training data. 
 
Auto-segmentation using capsule networks (CapsNets) is a potential solution to this problem.6–8 CapsNets, 
initially developed by Sabour et al,6 have properties that enable them to generalize beyond the narrow 
features present in the training data.7 In addition to learning representative features of an image, CapsNets 
also encode spatial information (such as rotation, size, and thickness), suggesting that they can generalize 
beyond the images represented in the training data. Presumably, if an anatomical structure rotates, changes 
in size, or undergoes other spatial changes, the capsule encoding that structure can still recognize it while 
encoding the changed spatial features.7  
 
Two-dimensional (2D) CapsNets have shown success in segmenting lungs on two-dimensional (2D) 
computed tomography (CT) slices, and muscle and fat tissues on 2D magnetic resonance imaging (MRI) 
slices,8 but have shown less impressive results in segmenting brain MRIs.9 We hypothesized that a 3D 
CapNet method would improve neuroanatomical segmentation by using the information in the entire 3D 
image volume as opposed to using the information in one 2D slice only. 
 
Accordingly, we developed and validated 3D CapsNets for volumetric neuroanatomical segmentation using 
a multi-institutional dataset of more than 3,000 brain MRIs . We compared the utility of 3D CapsNets with 
other standard deep-learning-based segmentation methods, across different neuroanatomic structures with 
varying levels of segmentation difficulty. We also evaluated the performance of the models when the test 
data had features that were not represented in the training data, the performance of the models with limited 
training data, computations times, and memory requirements to train and deploy the models. 
 
 
Methods 
 
Dataset 
 
This study was approved by the Institutional Review Board of Yale School of Medicine (IRB number 
2000027592). The dataset used for this study included 3,430 T1-weighted brain MRI images, belonging to 
841 patients from 19 institutions enrolled in Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.10 
The inclusion criteria of ADNI are already published.11 The participants in this multi-institutional study 
range from normal to mild cognitive impairment to Alzheimer’s dementia. On average, each patient 
underwent four MRI acquisitions. Details of MRI acquisition parameters are provided in Appendix 1. We 
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acquired the anonymized MRIs of the patients enrolled in ADNI through Image and Data Archive, which 
is a data-sharing platform.10 We randomly split the patients into training (3,199 MRI volumes), validation 
(117 MRI volumes), and test (114 MRI volumes) sets. Patient demographics are provided in Table 1. 
 
Anatomic Segmentations 
 
Three neuroanatomic structures were chosen for our analysis including third ventricle, thalamus, and 
hippocampus. These structures were chosen to represent neuroanatomic structures with varying degrees of 
segmentation difficulty. Segmentations for training and testing were obtained using FreeSurfer, which is a 
segmentation software with expert-level performance for non-distorted brain images (including in patients 
with mild cognitive impairment or Alzheimer’s dementia).12–14 To ensure that segmentations were free from 
error, 120 randomly-selected MRIs from the training set as well as all 114 MRIs in the test set were 
evaluated by a board-eligible radiologist for accuracy. The procedures used to ensure the accuracy of 
ground-truth segmentations are detailed in Appendix 2. 
 
Image Pre-Processing  
 
To make data loading faster, we converted the DICOMs of each brain MRI into a 3D NIfTI file.15 MRI 
volumes were then corrected for intensity inhomogeneities, including B1-field variations.16,17 Then, the 
skull, face, and neck tissues were removed, leaving only the brain.18 The resultant 3D images were cropped 
around the extracted brain. To overcome memory limitations, we cropped 64×64×64-voxel boxes of the 
MRI volume that contained each segmentation target. Details of pre-processing are provided in Appendix 
3. 
 
3D CapsNet 
 
We built on the 2D CapsNets, as introduced by LaLonde et al8, to develop 3D CapsNets for volumetric 
segmentation. CapsNets are composed of three main components: 1) capsules that each encode a structure 
together with the pose of that structure: the pose is an n-dimensional vector that learns to encode orientation, 
size, curvature, location, and other spatial information about the structure; 2) a supervised learning 
paradigm that learns the transforms between the poses of the parts (e.g. head and tail of hippocampus) and 
the pose of the whole (e.g. the entire hippocampus); and 3) a clustering paradigm that detects a whole if the 
poses of all parts (after getting transformed) vote for matching poses of the whole. Therefore, any CapsNet 
architecture requires procedures for: 1) creation of the first capsules from the input; 2) learning transforms 
between the poses of parts and wholes; and 3) clustering the votes of the parts to detect wholes. Details 
about the fundamental difference between CapsNets and other deep learning methods are provided in 
Appendix 4.  
 
Figure 1.A shows the architecture of our 3D CapsNet. The first layer, Conv1, performs 16 convolutions 
(5×5×5) on the input volume to generate 16 feature volumes, which are reshaped into 16D vectors at each 
voxel. The 16D vector at each voxel provides the first pose that can learn to encode spatial information at 
that voxel. The next layer, PrimaryCaps2, has two capsule channels that learn two 16D-to-16D 
convolutional transforms (5×5×5) from the poses of the previous layer to the poses of the next layer. 
Likewise, the next convolutional capsule layers (green layers in Figure 1.A) learn m-to-n-dimensional 
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transforms between the poses of the previous layer and the poses of the next layer. The number of 
transforms at each layer matches the number of capsule channels (shown by stacks of capsules in Figure 
1.A). Our CapsNet has downsampling and upsampling limbs. The downsampling limb learns what structure 
is present at each voxel, and the skip connections from downsampling to upsampling limbs preserve where 
each structure is on the image. Downsampling is done using 5×5×5 convolutional transforms with stride = 
2. The poses in the deeper parts of the downsampling limb have more pose components (up to 64) to be 
able to encode more complex spatial information. Additionally, layers in the deeper parts of the model 
contain more capsule channels (up to 8) to be able to encode more structures at each voxel, since each voxel 
in these layers corresponds to multiple voxels in the input that can each represent a separate structure. 
Upsampling is done using 4×4×4 transposed convolutional transforms with stride = 2 (turquoise layers in 
Figure 1A). The final layer, FinalCaps13, contains one capsule channel that learns to activate capsules 
within the segmentation target and deactivate them outside the target. Details about how the final layer 
activations were converted into segmentations are provided in Appendix 5. 
 
To find clusters of the agreeing votes of the parts, we used the inner products between the poses of the parts 
and the aggregate pose of the whole.6 The details are provided in Appendix 6. We used Dice loss to train 
our models and to evaluate segmentation accuracy.19  
 
3D U-Net 
 
The 3D U-Net was used as a benchmark to compare the performance of the 3D CapsNets. The U-Net is 
considered among the highest-performing segmentation algorithms in diagnostic imaging.20–23 The U-Net 
has shown strong auto-segmentation accuracy across a variety of different imaging modalities and anatomic 
structures.21–26 Figure 1.B shows the architecture of our 3D U-Net. The input image undergoes 64 
convolutions (3×3×3) to generate 64 feature maps. These volumes then undergo batch normalization and 
ReLU activation. Similar operations are carried out again, followed by downsampling using max-pooling 
(2×2×2). The downsampling and upsampling limbs each include four units. Upsampling is done using 
2×2×2 transposed convolutions with stride = 2. The final layer carries out a 1×1×1 convolution to aggregate 
all 64 channels, followed by soft thresholding using the sigmoid function. The model learns to output a 
number close to 1 for each voxel inside the segmentation target, and a number close to 0 for each voxel 
outside the target. 
 
Model Training  
 
We used Dice loss for training our models. Adam optimizer was used with the following hyperparameters: 
𝛽! = 0.9, 𝛽" = 0.999, and 𝜖 = 10#$. Training was done using 50 epochs, each consisting of all 3,199 brain 
MRIs in the training set, and with the batch size of four. Because of the large epoch size, we split each 
epoch into mini-epochs that each comprised 30 batches (120 MRIs). After each mini-epoch during training, 
the Dice loss was computed for the validation set (117 MRIs).  
 
We used dynamic paradigms for learning rate scheduling and for selecting the best models. The initial 
learning rate was set at 0.002. The validation set Dice loss was monitored after each mini-epoch, and if it 
did not decrease over 10 consecutive mini-epochs, the learning rate was decreased by half. The minimum 
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learning rate was set at 0.0001. The model with the lowest Dice loss over the validation set was selected 
as the best model and was used for testing. The training hyperparameters are detailed in Appendix 7. 
 
Model Performance 
 
Segmentation accuracy was compared, using Dice scores, for the third ventricle, thalamus, and 
hippocampus. These structures were chosen to represent neuroanatomic structures with varying degrees of 
segmentation difficulty. Third ventricle is an easy structure because it is a cerebrospinal fluid (CSF) filled 
cavity with clear boundaries. Thalamus is a medium-difficulty structure because it is abutted by CSF on 
one side and brain parenchyma on the other side. Hippocampus is a difficult structure because it has a 
complex shape and is abutted by multiple brain structures with indistinct borders. To evaluate performance 
across different dataset sizes, segmentation performance was tested using the full data set as well as random 
subsets of  (600, 240, and 120) MRI volumes.  
 
To evaluate the performance of CapsNets on the images that were not represented during training, we 
trained the models using only data from the right thalamus and right hippocampus. We subsequently 
evaluated the segmentation accuracy of the models on test sets that only included the images of the left 
thalamus and left hippocampus. Since the left brain structures in the test set were not represented in the 
distribution of the right brain structures in the training set, this experiment evaluated the out-of-distribution 
performance of the models. 
 
Relative efficiency of the segmentation models was measured by the number of trainable parameters, the 
memory required to run the model (in megabytes), the computational times required for training, and the 
computational times required for segmenting each MRI.  
 
For all experiments, the mean segmentation accuracies over the test set were compared between CapsNets 
and U-Nets using paired-samples t-tests. The mean Dice scores together with their 95% confidence intervals 
were also tabulated for the two models and the three brain structures that were segmented.  
 
Implementation 
 
Image pre-processing was done using FreeSurfer and Python. PyTorch was used for model development 
and testing. The SciPy package was used for statistical analyses. Training and testing of the models were 
run on AWS instances (4 vCPUs, 61 GB RAM, 12 GB NVIDIA GK210 GPU with Tesla K80 Accelerators). 
The code used to train and test our models is publicly available at:  
github.com/Aneja-Lab-Yale/Aneja-Lab-Public-CapsNet. 
 
 
Results 
 
The accuracy of 3D CapsNets in segmenting various brain structures is above 90% and is within 1.5% of 
the accuracy of U-Nets. Figure 2 shows the segmentation of various brain structures by both models in a 
patient. Table 2 compares the segmentation accuracy of the two models, measured by Dice scores.  
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The 3D CapsNets achieved better out-of-distribution segmentation accuracy compared to 3D U-Nets. When 
both models were trained to segment right brain structures and tested on segmenting contralateral left brain 
structures, 3D CapsNets significantly outperformed 3D U-Nets with Dice scores more than 30% higher. 
Figure 3 illustrates segmentation of the contralateral left thalamus and hippocampus by both models in a 
patient. Table 3 compares out-of-distribution segmentation accuracy between the two models. 
 
The 3D CapsNets and 3D U-Nets achieved similar segmentation accuracies (within 3% of each other) when 
trained on smaller datasets. When the size of the training set was decreased from 3199 to 600 brain MRIs, 
both CapsNet and U-Net were minimally affected. Further decrease in the size of the training set down to 
120 brain MRIs caused a decrease in the accuracy of both models down to 85. Figure 4 shows the 
performance of both models when trained on smaller datasets. 
 
The 3D CapsNets are over 10 times smaller compared to 3D U-Nets. The 3D CapsNet has 7.4 million 
trainable parameters, while the corresponding 3D U-Net has 90.3 million trainable parameters. In addition, 
the 3D CapsNet has fewer layers and fewer steps of image propagation in forward and backward passes, 
leading to a smaller cumulative size of the feature volumes in the entire model. The 3D CapsNet and 3D 
U-Net respectively hold 228 and 1,364 megabytes of cumulative feature volumes in the entire model. Figure 
5.A compares the size of 3D CapsNet and 3D U-Net models. 
 
The 3D CapsNets train slightly faster compared with U-Nets by approximately 0.5 seconds per sample. 
When we compared the training time between the two models (on an AWS instance with NVIDIA GK210 
GPU providing 12 GB of GPU memory), 3D CapsNets and 3D U-Nets respectively took about 1.5 and 2 
seconds per example per epoch to train. The two models are equally fast during testing, taking 0.9 seconds 
to segment the MRI volume. Figure 5.B compares the training and testing times between the two models.  
 
 
Discussion 
 
In this study, we introduce 3-D CapsNets as a superior approach to autosegmentation because of its 
flexibility in characterizing anatomy that is not represented in the training set. This advantage is critically 
important because no training set can comprehensively capture every way that the anatomy might be 
distorted by cancer. Our results show that 3D CapsNets have high segmentation accuracy for segmenting 
various brain structures with Dice scores above 90%. While our CapsNets are one order of magnitude 
smaller than traditional U-Nets, their segmentation accuracy is within 1.5%. In out-of-distribution 
segmentation, our CapsNets outperformed U-Nets with Dice scores more than 30% higher. These results 
suggest that 3D CapsNets may generalize better than traditional deep learning auto-segmentation methods 
on data not well represented in training.  
 
This study extends the literature in key ways. This is the first study to develop 3D CapsNets, and to use 
them for volumetric image segmentation. To overcome memory limitations, we added a pre-processing step 
in which we placed a 3D box around the segmentation target. We subsequently segmented the volume 
within this box using our models. We also overcame the problem of unstable loss optimization during the 
training of CapsNets, which is a known problem in CapsNet training,8 by converting the outputs of the final 
layer of CapsNets using a forgiving paradigm (details are provided in Appendix 5). We also showed that 
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3D CapsNets can segment images that are different from the images in the training data. Given this 
capability of CapsNets to generalize to images with new spatial features that were not represented in the 
training data, CapsNets may be the solution to the problem of segmenting brain images with changed spatial 
features caused by space-occupying lesions. 
 
  
Our results corroborate previous studies that deep learning is effective in medical image segmentation.20–

22,26,27 Multiple prior studies have shown the success of U-Nets in biomedical image segmentation.20,22,27 
The 3D U-Net that we coded in this study also showed strong performance in segmenting brain MRIs. The 
only previous study that used 2D CapsNet to segment brain MRIs did not achieve impressive results.8 In 
this study, we developed 3D CapsNets that rival U-Nets in performance and efficiency. Moreover, we found 
3D CapsNets to have improved out-of-distribution generalizability compared to U-Nets.  
 
Our results corroborate previous studies that CapsNets have superior out-of-distribution generalizability 
compared to more traditional deep learning methods, including U-Nets.6,7 In 2D object recognition, 2D 
CapsNets outperformed other deep learning methods when the objects were imaged from viewpoints that 
were not represented during training.6 In 2D image segmentation, 2D CapsNets outperformed 2D U-Nets 
in segmenting rotated and flipped images.7 Our study extends the literature by showing that 3D CapsNets 
outperform 3D U-Nets in segmenting mirror-image 3D image volumes that were not represented during 
training.  
 
This study also corroborates previous studies showing that CapsNets can model spatial features more 
efficiently, achieving better or similar performance compared to other deep learning methods while their 
model size is significantly smaller.5–7 Our 3D CapsNet is one order of magnitude smaller than 3D U-Net 
while achieving similar segmentation results. Our results also corroborate with previous studies that show 
faster convergence of CapsNets during training, as compared to other deep learning methods.6,7 Our 3D 
CapsNets are slightly faster to train compared to 3D U-Nets, because they converge faster. Although 
clustering of pose vectors between capsule layers slows down CapsNets, the significantly fewer trainable 
parameters lead to faster convergence and, as a result, faster training of CapsNets. During testing, however, 
the two models are equally fast. Given that the forward pass through the fixated, trained parameters during 
testing is faster compared to the forward and backward passes during training, the larger size of the 3D U-
Net does not slow it down as much during testing as it does during training. At the same time, clustering 
between the capsule layers slows down the 3D CapsNet during testing to the same degree as during training. 
The overall effect of these opposing factors, fewer layers of CapsNet (making it faster) but more complex 
computations between CapsNet layers (making it slower), make CapsNet and U-Net equally fast during 
testing. 
 
To develop 3D CapsNets and make them work for volumetric brain MRI segmentation, we explored 
multiple design options, hyperparameters, loss functions, and implementation details to find optimal 
solutions. We used the validation set to explore these questions, and tested our final model on the test set 
only once. While our model performs well for volumetric segmentation of T1-weighted brain MRIs, we did 
not evaluate its performance for segmentation of other organs or other imaging modalities. We assume that 
our model would need modifications to perform well on other segmentation tasks or on brain MRIs that are 
pre-processed differently. We have described the experiments that helped us find optimal solutions for our 
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design questions in the supplemental material, and we welcome further research to generalize our 3D 
CapsNet to the segmentation of other organs and to other imaging modalities.  
 
There are limitations of this study that should be noted. First, the ground truth segmentations were elicited 
from FreeSurfer software package, which is shown to have segmentation accuracy similar to human 
experts.11–13,28 To ensure that possible inaccurate ground-truth segmentations would not negatively affect 
our study, a radiologist confirmed and approved the segmentations of all MRIs in the test set as well as 120 
randomly-selected MRIs in the training set. Second, we only validated our model for the segmentation of 
three brain structures, having varying levels of difficulty. Our model may not generalize to other anatomic 
structures or other imaging modalities. Third, computation times were measured using the same computing 
resources, including GPU memory. While we showed faster training of CapsNets compared to U-Nets, our 
results may not translate to different computational settings. Last, we did not compare 3D CapsNets against 
all available deep learning segmentation methods. However, we compared 3D CapsNets with U-Nets, 
because U-Nets have become the standard deep learning method for biomedical image segmentation.   
 
 
Conclusion 
 
In this study, we show 3D CapsNet as a superior method of brain image segmentation because of its ability 
to segment neuro-anatomy that was not represented in the training data. Moreover, our 3D CapsNet is one 
order of magnitude smaller than the equivalent U-Net, but still achieves comparable performance in 
segmenting various brain structures.  
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Figure 1: CapsNet (A) and U-Net (B) architectures. Both models process 3D volumes in all layers, with 
dimensions shown on the left side. D, H, and W respectively represent the depth, height, and width of the 
image in each layer. In (A), the number over the Conv1 layer represents the number of channels. The 
numbers over the capsule layers (ConvCaps, DeconvCaps, and FinalCaps) represent the number of pose 
components. The stacked layers represent capsule channels. In (B), the numbers over each layer represent 
the number of channels. In the 3D U-Net, the convolutions have stride=1 and the transposed convolutions 
have stride = 2. Please note that the numbers over capsule layers show the number of pose components, 
while the numbers over non-capsule layers show the number of channels.  
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Table 1: Study participants tabulated by the training, validation, and test sets.  
 

Data Partitions 
Number of 

MRI volumes 
Number of 

patients 
Age 

mean ± SD Gender† Diagnosis†† 

Training set 3199 841 76 ± 7 42% F, 58% M 29% CN, 54% MCI, 17% AD 

Validation set 117 30 75 ± 6 30% F, 70% M 21% CN, 59% MCI, 20% AD 

Test set 114 30 77 ± 7 33% F, 67% M 27% CN, 47% MCI, 26% AD 
 

† F: female; M: male. 
†† CN: cognitively normal; MCI: mild cognitive impairment; AD: Alzheimer’s disease. 
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Figure 2: CapsNet vs U-Net in segmenting brain structures that were represented in the training 
data. Segmentations for three structures are shown: 3rd ventricle, thalamus, and hippocampus. Target 
segmentations and model predictions are respectively shown in white and red. Dice scores are provided 
for the entire volume of the segmented structure in this patient (who was randomly chosen from the test 
set).  
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Table 2: CapsNet vs U-Net in segmenting brain structures that were represented in the training 
data. The segmentation accuracy was quantified using Dice scores on the test (114 brain MRIs). The 3rd 
ventricle, thalamus, and hippocampus respectively represent easy, medium, and difficult structures to 
segment. 
 

Brain structure CapsNet 
Dice score (95% CI) 

U-Net 
Dice score (95% CI) P-value† 

3rd ventricle 93.6 (93.2 to 94.0) % 95.3 (95.0 to 95.6) % < 0.01 

Thalamus 93.6 (93.4 to 93.8) % 94.4 (94.3 to 94.6) % < 0.01 

Hippocampus 91.0 (90.7 to 91.3) % 92.5 (92.1 to 92.9) % < 0.01 

 

† Paired-samples t-test, degrees of freedom = 114 - 1 = 113 
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Figure 3: CapsNet outperforms U-Net in out-of-distribution segmentation. Both models were trained 
to segment right brain structures, and were tested to segment contralateral left brain structures. Target 
segmentations and model predictions are respectively shown in white and red. Dice scores are provided for 
the entire volume of the segmented structure in this patient. While CapsNet partially segmented the 
contralateral thalamus and hippocampus, U-Net poorly segmented thalamus and entirely missed the 
hippocampus. 
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Table 3: CapsNet vs U-Net out-of-distribution segmentation accuracy. Both models were trained to 
segment the right thalamus and hippocampus. Then, they were tested on segmenting the contralateral left 
thalamus and hippocampus. 
 

Brain structure CapsNet 
Dice score (95% CI) 

U-Net 
Dice score (95% CI) P-value† 

Thalamus 52 (46 to 58) % 16 (11 to 21) % < 0.01 

Hippocampus 43 (38 to 48) % 10 (6 to 14) % < 0.01 
 

† Paired-samples t-test, degrees of freedom = 114 - 1 = 113 
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Figure 4: CapsNet vs U-Net segmentation accuracy as a measure of training set size. When the size of 
the training set was decreased from 3199 to 600 brain MRIs, both models maintained their segmentation 
accuracy above 90%. Further decrease in the size of the training set down to 120 MRIs led to worsening of 
their segmentation accuracy down to 85% (measured by Dice scores).  
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Figure 5: Model size (A) and computation times (B) compared between CapsNet and U-Net. The 
model size bars in (A) represent parameter size (28 and 345 MB for CapsNet and U-Net, respectively) plus 
the cumulative size of the forward and backward pass feature volumes (228 and 1364 MB for CapsNet and 
U-Net, respectively). The CapsNets train slightly faster (B), given that they have 93% fewer trainable 
parameters. However, clustering between the capsule layers slows down CapsNets, making them only 
slightly faster than U-Nets during training. The two models are equally fast during testing.  
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3D Capsule Networks for Brain MRI Segmentation 
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Appendix 1: MRI acquisition parameters 
 

 
Field strength = 3.0 tesla 
Coil = 8HR Brain 
 
Weighting = T1 
Flip angle=8.0 degree 
TR = 6.6 ms 
TE = 2.8 ms 
TI = 900.0 ms 
 
Acquisition type = 3D 
Acquisition plane = Sagittal 
Matrix size = 256×256×166 pixels (X×Y×Z) 
Pixel size = 1×1×1.2 mm (X×Y×Z) 
Pixel spacing: along X direction = 1 mm; along Y direction= 1 mm 
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Appendix 2: Ground-Truth Segmentations 
 
In this study, the ground truth segmentations were established by the FreeSurfer software package.1 Several previous studies 
have shown that FreeSurfer can segment brain images with accuracy similar to human experts, if the brain image is not 
distorted by space-occupying lesions.1–4 This holds true for the brain images of normal individuals as well as the brain 
images of patients with mild cognitive impairment or Alzheimer’s disease.2 Since we used the brain images of normal 
individuals and patients with mild cognitive impairment or Alzheimer’s disease in our study, FreeSurfer segmentations can 
be regarded as ground-truth. 
 
Still, to ensure that FreeSurfer segmentations were free from error, 120 randomly-selected MRIs from the training set as 
well as all 114 MRIs in the test set were evaluated by a board-eligible radiologist for accuracy. To evaluate the segmentation 
accuracy for each brain MRI, color-coded segmentations were overlaid on T1-weighted brain images. To streamline 
visualizations, a BASH script was developed to automatically overlay the segmentations on T1-weighted images in 
FreeView.1 The color-coded segmentations were made 50% transparent so that the underlying anatomy on T1-weighted 
image could be visualized. The radiologist then scrolled through the images in axial, coronal, and sagittal planes and visually 
inspected the segmentations. Segmentation of each brain structure was deemed acceptable if:  

1) the borders of color-coded segmentation did not deviate more than two voxels from the borders of the corresponding 
brain structure seen on the T1-weighted image; 

2) the segmentation included all clinically-important portions of the structure (for instance, the entire tail of the 
hippocampus should be included in the hippocampus segmentation); and 

3) the segmentation excluded all clinically-important portions of neighboring structures (for instance, the optic nerves 
and chiasm should be excluded from the amyglada segmentation).  

 
We planned to manually correct the segmentation of any brain structure that did not meet any of the above criteria. However, 
all visualized segmentations met all criteria detailed above.  
 
One might question the purpose of this study if FreeSurfer can already segment brain images with expert-level accuracy. 
The aim of this study was to develop 3D capsule networks for volumetric neuroanatomical segmentation. While we used 
non-distorted brain images to train and test the model in this study, our ultimate goal is to segment neuroanatomy in brain 
images distorted by space-occupying lesions. Our central hypothesis is that capsule networks have the potential to segment 
distorted brain images because they can generalize to novel spatial features. FreeSurfer, on the other hand, does not have 
such a potential (segmenting distorted brain images) because it works by constructing distributions for the shape and location 
of each brain structure. When a space-occupying lesion distorts the brain anatomy, it changes the shape and location of 
brain structures to the extent that they fall out of their expected distributions. As a result, FreeSurfer often fails to accurately 
segment brain images distorted by space-occupying lesions because it does not provide out-of-distribution generalizability.5 
 

 
Figure S2: evaluating the quality of ground-truth segmentations. The thalami, hippocampi, and third ventricle are respectively 
shown in green, yellow, and brown. The segmentations were overlaid on T1-weighted images and were visualized in axial (A and 
B), coronal (C), and sagittal (D) planes.  
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Appendix 3: Pre-Processing 
 
We used FreeSurfer to correct for intensity inhomogeneities including B1-field variations. FreeSurfer first registers the brain 
to MNI305 atlas. Then, pixel intensities are used to roughly segment the white matter. The variations in the pixel intensities 
in the white matter are then used to estimate the B1 field map Finally, B1 bias field correction is done by dividing the pixel 
intensities by the estimated bias field.6 
 
We used FreeSurfer1 for skull stripping. Skull stripping includes removal of the skull, face, and neck, only leaving the brain. 
FreeSurfer uses a hybrid method of skull stripping that combines a watershed algorithm and a deformable surface model.7 
This method first roughly segments the white-matter based on pixel intensities. Then, watershed algorithms are used to find 
the gray-white matter junction and the brain surface. Next, a deformable surface model is used to model the brain surface. 
The curvature of the brain surface at each point is computed, and these curvatures are used to register the brain surface onto 
an atlas. The atlas is formed by computing the curvatures of the brain sulci and gyri in several subjects. Notably, the sulci 
and gyri of the brain surface are constant among all humans, constituting positive and negative curvatures that are present 
in any brain image (unless the brain surface is markedly distorted by space-occupying lesions). The reconstructed brain 
surface, registered to the atlas, is then corrected in case the curvatures in a particular region of the surface do not make 
sense. The resulting corrected brain surface model is used for skull stripping.7 
 
To overcome memory limitations, we cropped 64×64×64-voxel boxes of the MRI volume that contained each segmentation 
target. The position of each box (e.g. for segmenting the right hippocampus) was determined by visually inspecting 20 brain 
MRI volumes, randomly selected from the training set. The visual inspection included moving the “crop” box (64×64×64 
voxels) over the MRI volumes to find the optimal position of the crop box. The position of this box was then fixated (with 
regard to the center of the skull-stripped brain volume) for each brain structure and for all subjects in the training, validation, 
and test sets. This task was done by the first author (board-eligible radiologist with 9 years of experience in neuroimaging 
research).  
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Figure S3: Pre-processing steps.
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Appendix 4: Capsule Networks 
 
Capsule networks (CapsNets) can detect objects 
when their spatial features change.8 This is a 
fundamental property of CapsNets that enables 
them to perform well when a test example is not 
represented in the training data. (A) shows the 
sagittal T1-weighted brain MRI of a patient with 
a forward head tilt, and (B) shows the MRI of 
another patient with a backward head tilt. White 
arrows (connecting the posterior commissure to 
the anterior commissure) demonstrate the 
orientation of the brain. Let’s assume that we 
have a CapsNet that is trained to segment the 
entire brain. Let’s also assume that the training set only contains 
patients with forward head tilt (like in A). An ideal CapsNet should 
generalize to segment the brain in patients with a backward tilt (like 
in B). To achieve this goal, CapsNets encode the spatial features of 
each structure that they detect. The spatial features of the brain are 
encoded in a pose vector. The pose contains spatial features such as 
orientation, position, size, curvature, etc. Here, the orientation of the 
brain (one of the spatial features) is shown by the white arrow. Our 
goal is to illustrate how CapsNets detect a whole (the brain) when 
parts (frontal pole, corpus callosum, brainstem, cerebellum, occipital 
pole, etc.) all vote for the same spatial features of the whole.  
 
CapsNets are composed of three main ingredients: 1) capsules that 
each encode a structure together with the pose of that structure; 2) a 
supervised learning paradigm that learns the transforms between the 
poses of the parts (e.g. corpus callosum, brainstem) and the pose of 
the whole (e.g. the entire brain); and 3) a clustering paradigm that 
detects a whole if the poses of all parts 
(after getting transformed) vote for 
matching poses of the whole. Therefore, 
any CapsNet needs to: 1) learn the 
transforms between the poses of parts 
and wholes; and 2) cluster the votes of 
the parts to detect wholes.  
 
(C) shows a CapsNet that has already 
detected parts of the brain and has 
encoded their spatial features 
(demonstrated by the smaller white 
arrow over each part). The red curved 
arrows demonstrate the transforms 
between the poses of the part and the 
pose of the whole. After transformation, 
each part votes for a candidate pose of 
the whole. If all these votes match, the 
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whole is present. Please note that we are only showing the 
orientations here for simplicity, but the pose vectors encode more 
complex spatial features. 
 
In (E), We want the CapsNet to detect the backward-tilted brain 
while the model is only trained on forward-tilted brain images (such 
as in C). We can imagine that (E) is just the rotated version of (C), 
as demonstrated in (D). The parts are all rotated clockwise (compared 
to the poses of the parts in C). However, the same transforms (red 
curved arrows) can still transform the poses of the parts into the 
candidate poses of the whole. The candidate poses of the whole still 
match, and therefore the whole is detected. This process does not 
need any data augmentation: an ideal CapsNet can detect objects 
when they are rotated or have undergone other spatial changes, 
without the need for any data augmentation. This is because the 
CapsNet can still use the same transforms between the parts and the 
wholes (red curved arrows) even though the input image has rotated. 
Therefore, a change in the poses of the parts will cause an equivalent 
change in the pose of the whole, while the relationship between the 
poses of the parts and the whole remains the same. This is a powerful capability that makes CapsNets equivariant to the 
changes in the inputs: spatial change in the inputs will cause an equivalent spatial change in the pose of the detected objects.8 
Such CapsNets can still detect the changed objects and will encode these changes in the pose of the detected objects. As a 
result, a CapsNet that is trained on forward-tilted brains (such as in C) can detect backward-tilted brains (such as in E) 
without the need for any data augmentation. 
 
This approach is fundamentally different from other machine learning methods such as U-Nets, which do not have 
equivariance capabilities. Instead, the max-pooling layers in U-Nets try to kill information about the changes in the inputs 
to make the model invariant to the changed inputs. In essence, CapsNets use equivariance to encode and model the spatial 
changes in the inputs, making CapsNets more efficient in handling variations of the same object.8 On the other hand, U-
Nets use information killing (in max-pooling layers) to make the model invariant to the spatial changes in the inputs. 
Therefore, U-Nets cannot efficiently detect variations of the same object.  
 
(F) demonstrates why CapsNets are less susceptible to adversarial attacks compared to U-Nets. Here, this adversarial image 
contains all parts of the brain but with orientations that do not make sense, not making a whole. When the poses of the parts 
are transformed into the candidate poses of the whole (using the same transforms as in C), the candidate poses of the whole 
do not match. Therefore, the CapsNet would not detect a brain because of the mismatch between the candidate poses of the 
brain. On the other hand, a U-Net that is trained using augmented data may detect the parts. Such a U-Net has no mechanism 
to encode the orientation and other spatial features of each part. In the U-Net feature space, each part is either present or 
absent. Since all parts are present on this adversarial image, the U-Net can be fooled to detect the entire brain.  
 
We can indeed use data augmentation to train U-Nets to detect objects with changed spatial features. We can also use 
adversarial training to prevent U-Nets from detecting adversarial images. But these inefficiencies lead to the need for a 
larger U-Net model. On the other hand, CapsNets handle the changed spatial features in a smarter way. This allows 
CapsNets, which are one order of magnitude smaller compared to U-Nets, to achieve similar results.9 
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Appendix 5: Converting Final Layer Activations into Segmentations 
 

 
The final layer of the 3D CapsNet is composed of one capsule channel that learns to activate capsules within the 
segmentation target and deactivate them outside the target. Activation of a capsule is determined by the length of its pose 
vector, which is a number between 0 and 1. The ground truth segmentations are coded similarly: pixels outside and inside 
the segmentation target are respectively coded by 0 and 1.  
 
During testing, the length of the final layer’s pose vectors is thresholded at 𝑇: 
 

𝑓#!"#!$𝑥$,&,'& = (
0, +𝒗$,&,'+ < 𝑇
1, +𝒗$,&,'+ ≥ 𝑇

 

 
where 𝑓#$𝑥$,&,'& is the prediction of the CapsNet for the input voxel 𝑥$,&,' and +𝒗$,&,'+ is the length of the final layer’s pose 
vector 𝒗$,&,' at the location (i,j,k) of the MRI volume (please note that 𝒗$,&,' is itself a function of 𝑥$,&,', the function being 
the entire CapsNet that takes 𝑥$,&,' as the input and gives 𝒗$,&,' as the output).  
 
During training, the length of the final layer’s pose vector and each location (i,j,k) undergo a piecewise linear transform as 
follows: 
 

𝑓#!()$*$𝑥$,&,'& =

⎩
⎪
⎨

⎪
⎧ 	0																							,																	+𝒗$,&,'+ < 𝑇+
+𝒗$,&,'+ − 𝑇+
𝑇, − 𝑇+

		 , 						𝑇+ ≤ +𝒗$,&,'+ < 𝑇,

		1																							,																	+𝒗$,&,'+ ≥ 𝑇2

 

 
If we  set 𝑇 = 0.5  𝑇+ = 0.1 and 𝑇, = 0.9, we get the following diagrams for 𝑓#!"#!$𝑥$,&,'& and 𝑓#!()$*$𝑥$,&,'& as functions of 
+𝒗$,&,'+ :  
 

 
 
  
 
 

 
 
 
 
 
 
 
 
 
 
During training, the piecewise conversion (formula 2) enables a forgiving paradigm for the length of the final layer’s pose 
vectors: if the length of the vector is more than 0.9 for a voxel inside the segmentation target, the loss for that voxel would 
be zero. Intuitively, a pose vector with a length more than 0.9 for a voxel inside the segmentation target is considered “good 
enough”, so the training algorithm should not try to perfect the length of this vector to 1. Similarly, a pose vector with a 
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𝑥 $
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,'
&  

𝑓# !
()
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length less than 0.1 is considered good enough for a voxel outside the segmentation target, so the training algorithm should 
not try to perfect the length of this vector to 0. This forgiving training paradigm makes the training of CapsNet stable because 
this paradigm does not try to perfect the length of the pose vectors of the final layer to 0’s and 1’s. In contrast, if a training 
paradigm tries to perfect the length of the pose vectors to 0’s and 1’s, that training paradigm becomes unstable because the 
pose vectors can assume a length close to 0 or 1, but not exactly 0 or 1. Remember that the pose vectors are generated by 
the squash function,10 which cannot generate vectors with a length equal to 0 or 1: 
 

𝒗$,&,' = 𝑠𝑞𝑢𝑎𝑠ℎ(𝒔$,&,') =
𝒔$,&,'
+𝒔$,&,'+

.
+𝒔$,&,'+

,

1 + +𝒔$,&,'+
, 

 
where 𝒔$,&,' 	is the total input to the final layer capsule at the location (i,j,k), and 𝒗$,&,' is the pose vector of the final layer 
capsule at that location.  
 
Our experiments show that training with the forgiving paradigm is more stable and leads to faster convergence. When we 
did not convert the length of the pose vector +𝒗$,&,'+ using the conversion function (formula 2), CapsNet training became 
unstable. Here we show the evolution of the training set and the validation set losses during 10 epochs of training, with and 
without the forgiving paradigm:  
 
 

 
We additionally searched for the optimal conversion functions. The piecewise linear function led to the most stable training 
and fastest convergence. Here we describe other functions that we studied (together with their plots) so that other groups 
would be aware of these conversion functions that we think are suboptimal for this task:  
 

𝑓#!()$*$𝑥$,&,'& = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 I𝑞. $+𝒗$,&,'+ − 𝑇&J =
1

1 + 𝑒-..01𝒗!,#,$1-34
 

  

Training with the forgiving paradigm (with conversion) 

(3) 

(4) 

Training without the forgiving paradigm (without conversion) 
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We set 𝑇 = 0.5 and tried different values for 𝑞 (10, 15, and 20): 
 

 
 
We also examined the piecewise conversion function (formula 2) with values for 𝑇+ and 𝑇, other than 0.1 and 0.9: 
 
 
 
 
 
 
 
 
 
 
 
 
 
None of these conversion functions was as effective as the piecewise function with 𝑇+ = 0.1 and 𝑇, = 0.9 in improving the 
stability and convergence of CapsNet training. 
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Appendix 6: Findings Agreeing Pose Vectors 
 
Let’s assume the previous capsule layers has six capsule channels, each outputting the vote vector of a part (v1 to v6). To 
find the vote vectors that agree, we first compute the vector summation of all vote vectors (v): 

𝑣 =M𝑣$
$

 

Then, we compute the inner products between each vote vector vi and the sum v, yielding weights for each vote vector wi: 
𝑤$ = 𝑣$ . 𝑣 

 
Please note that each wi is a scalar. Next, we re-compute the vector sum v using the weighted average of the vote vectors 
using weights wi computed in the previous step : 

𝑣 =M𝑤$
$

𝑣$ 

This process is often repeated for three iterations. The number of iterations is a hyperparameter that should be set between 
capsule layers. This whole process increases the weights of the vectors that align with the sum (v1, v2, and v6 in this 
example) and decreases the weights of the vectors that do not align with the sum (v3, v4, and v5 in this example).  
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Appendix 7: Training hyperparameters 
 
 
 
Training set size (MRI volumes):   3199 
Validation set size (MRI volumes):   117 
Test set size (MRI volumes):   114 
 
 
Training batch size (MRI volumes):   4 
Training mini-epoch size: 30 batches: during training, the validation set loss was computed after 

each mini-epoch 
 
Training epochs:     50 
Optimizer:     Adam 
Optimizer hyperparameters:    𝛽+ = 0.9, 𝛽, = 0.999, 𝜖 = 10-5 
 
 
Initial learning rate:    0.002 
Minimal learning rate:    0.0001 
Learning rate scheduling:   Dynamic (via monitoring the validation set loss during training): 

Learning rate was decreased by half if the validation set loss did not 
improve over 10 mini-epochs 
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