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Abstract 
 
INTRODUCTION: Segmenting the brain anatomy is important for radiotherapy and surgical planning. 
Current auto-segmentation methods often fail to segment the brain anatomy when it is distorted by 
tumors. 
 
OBJECTIVE: To develop and validate 3D capsule networks (CapsNets) that can segment brain 
structures with spatial features that were not represented in the training data. 
 
METHODS: We developed, trained, and tested 3D CapsNets using 3430 brain MRIs acquired in a multi-
institutional study. We compared our CapsNets with U-Nets using a battery of performance measures, 
including accuracy in segmenting various brain structures, segmenting brain structures with spatial 
features not represented in the training data, performance when the models are trained using limited data, 
memory requirements, and computation times. 
 
RESULTS: 3D CapsNets can segment third ventricle, thalamus, and hippocampus with Dice scores of 
94%, 94%, and 91%, respectively. 3D CapsNets outperform 3D U-Nets in segmenting brain structures 
that were not represented in the training data, with Dice scores more than 30% higher. 3D CapsNets are 
also remarkably smaller models compared to 3D U-Nets, with 93% fewer trainable parameters. This led 
to faster convergence of 3D CapsNets during training, making them faster to train compared to U-Nets. 
The two models were equally fast during testing. 
 
CONCLUSION: 3D CapsNets can segment brain structures with high accuracy, outperform U-Nets in 
segmenting brain structures with features that were not represented during training, and are remarkably 
more efficient compared to U-Nets, achieving similar results while their size is an order of magnitude 
smaller.  
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Introduction 
 
Anatomical segmentation of diagnostic images is an important step in a variety of clinical workflows 
within radiology, radiation therapy, and surgery. Specifically, within radiation therapy of the brain, 
segmentation of critical structures (such as hippocampus, brain stem, and optic nerves) is necessary to 
reduce toxicity in treatment planning. Within surgical planning, neuroanatomical segmentations aid in 
image-guided interventions. Manual segmentation is impractical because it requires radiologist-level 
expertise, is time-consuming, and is prone to inter- and intra-operator variability.1 Current auto-
segmentation methods are promising, but are limited when attempting to segment anatomy that is not well 
represented in the training data. With small, narrow training sets and with images that contain space-
occupying lesions that distort the normal anatomy, these methods often underperform.1,2 
 
Auto-segmentation using capsule networks (CapsNets) represents a potential solution to this problem.3,4 
CapsNets are unique in deep learning architectures because, in addition to learning representative features 
of an image, they also encode spatial information (such as rotation, size, and shear) about the learned image 
features. If a structure rotates, changes in size, or undergoes other spatial changes, the capsule encoding 
that structure can still recognize it while encoding the changed spatial features.3 CapsNets can achieve this 
level of knowledge generalization without data augmentation. CapsNets have been shown to outperform 
current segmentation methods in segmenting lungs on CT images, and muscle and fat tissues on MR 
images. However, the efficacy of CapsNets on neuroanatomic segmentation has not been well studied.  
 
In this study, we developed and validated 3D capsule networks for volumetric segmentation of 
neuroanatomy on brain MRIs.5 We trained and tested our model using a multi-institutional dataset of more 
than 3000 brain MRIs. We compared the performance of 3D CapsNets with 3D U-Nets across different 
neuroanatomic structures with varying levels of segmentation difficulty. 
 
 
Methods 
 
Dataset 
 
The dataset used for this study included 3,430 T1-weighted brain MRI images, belonging to 841 patients 
from multiple institutions enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.6 The 
participants in this study range from normal to mild cognitive impairment to Alzheimer’s dementia. On 
average, each patient underwent four MRI acquisitions. Details of MRI acquisition parameters are provided 
in Appendix 5. We randomly split the patients into training (3,199 MRI volumes), validation (117 MRI 
volumes), and test (114 MRI volumes) sets.  
 
Anatomic Segmentations 
 
Three neuroanatomic structures were chosen for our analysis including third ventricle, thalamus, and 
hippocampus. These structures were chosen to represent neuroanatomic structures with varying degrees of 
segmentation difficulty. Segmentations for training and testing were obtained using FreeSurfer, which is a 
segmentation software with expert-level performance for non-distorted brain images (including in patients 
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with Alzheimer’s dementia).7–9 To ensure that segmentations were free from error, 120 randomly-selected 
MRIs from the training as well as all 114 MRIs in the test set were evaluated by a board-eligible radiologist 
for accuracy.  
 
Image Pre-Processing  
 
To make data loading faster, we converted the DICOMs of each brain MRI into a 3D NIfTi file.10 MRI 
volumes were then corrected for intensity inhomogeneities, including B1-field variations.11,12 Then, the 
skull, face, and neck tissues were removed, only leaving the brain.13 The resultant 3D images were cropped 
around the extracted brain. To overcome memory limitations, we cropped 64×64×64-voxel boxes of the 
MRI volume that contained each segmentation target.  
 
3D CapsNet 
 
We built on the 2D CapsNets introduced by LaLonde et al5 to develop 3D CapsNets for volumetric 
segmentation. CapsNets are composed of three main ingredients: 1) capsules that each encode a structure 
together with the pose of that structure: the pose is an n-dimensional vector that learns to encode orientation, 
size, curvature, location, and other spatial information about the structure; 2) a supervised learning 
paradigm that learns the transforms between the poses of the parts (e.g. head and tail of hippocampus) and 
the pose of the whole (e.g. the entire hippocampus); and 3) a clustering paradigm that detects a whole if the 
poses of all parts (after getting transformed) vote for matching poses of the whole. Therefore, any CapsNet 
architecture requires procedures for: 1) creation of the first capsules from the input; 2) learning transforms 
between the poses of parts and wholes; and 3) clustering the votes of the parts to detect wholes.  
 
Figure 1.A shows the architecture of our 3D CapsNet. The first layer, Conv1, performs 16 convolutions 
(5×5×5) on the input volume to generate 16 feature volumes, which are reshaped into 16D vectors at each 
voxel. The 16D vector at each voxel provides the first pose that can learn to encode spatial information at 
that voxel. The next layer, PrimaryCaps2, has two capsule channels that learn two 16D-to-16D 
convolutional transforms (5×5×5) from the poses of the previous layer to the poses of the next layer. 
Likewise, the next convolutional capsule layers (green layers in Figure 1.A) learn m-to-n-dimensional 
transforms between the poses of the previous layer and the poses of the next layer. The number of 
transforms at each layer matches the number of capsule channels (shown by stacks of capsules in Figure 
1.A). Our CapsNet has downsampling and upsampling limbs. The downsampling limb learns what structure 
is present at each voxel, and the skip connections from downsampling to upsampling limbs preserve where 
each structure is on the image. Downsampling is done using 5×5×5 convolutional transforms with stride = 
2. The poses in the deeper parts of the downsampling limb have more pose components (up to 64) to be 
able to encode more complex spatial information. Additionally, layers in the deeper parts of the model 
contain more capsule channels (up to 8) to be able to encode more structures at each voxel, since each voxel 
in these layers corresponds to multiple voxels in the input that can each represent a separate structure. 
Upsampling is done using 4×4×4 transposed convolutional transforms with stride = 2 (turquoise layers on 
Figure 1A). The final layer, FinalCaps13, contains one capsule channel that learns to activate capsules 
within the segmentation target and deactivate them outside the target. Activation of a capsule is determined 
by the length of its pose vector, which is a number between 0 and 1. Further details about the activation of 
capsules are provided in the supplemental material. 
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To find clusters of the agreeing votes of the parts, we used the inner products between the poses of the parts 
and the aggregate pose of the whole.4 We used Dice loss to train our models and to evaluate segmentation 
accuracy.14 Further details about the clustering method, loss function calculation, and activation of each 
capsule are provided in the supplemental material.  
 
3D U-Net 
 
The 3D U-Net was used as a benchmark to compare the performance of the 3D CapsNets. The U-Net is 
considered among the highest-performing segmentation algorithms in diagnostic imaging.15–18 The U-Net 
has shown strong auto-segmentation accuracy across a variety of different image modalities and anatomic 
structures.16–21 Figure 1.B shows the architecture of our 3D U-Net. The input image undergoes 64 
convolutions (3×3×3) to generate 64 feature maps. These volumes then undergo batch normalization and 
ReLU activation. Similar operations are carried out again, followed by downsampling using max-pooling 
(2×2×2). The downsampling and upsampling limbs each include four units. Upsampling is done using 
2×2×2 transposed convolutions with stride = 2. The final layer carries out a 1×1×1 convolution to aggregate 
all 64 channels, followed by soft thresholding using the sigmoid function. The model learns to output a 
number close to 1 for each voxel inside the segmentation target, and a number close to 0 for each voxel 
outside the target. 
 
Model Training  
 
We used Dice loss for training our models. Adam optimizer was used with the following hyperparameters: 
𝛽𝛽1 = 0.9, 𝛽𝛽2 = 0.999, and 𝜖𝜖 = 10−8. Training was done using 50 epochs, each consisting of all 3,199 brain 
MRIs in the training set, and with the batch size of four. Because of the large epoch size, we split each 
epoch into mini-epochs that each comprised 30 batches (120 MRIs). After each mini-epoch during training, 
the Dice loss was computed for the validation set (117 MRIs).  
 
We used dynamic paradigms for learning rate scheduling and for selecting the best models. The initial 
learning rate was set at 0.002. The validation set Dice loss was monitored after each mini-epoch, and if it 
did not decrease over 10 consecutive mini-epochs, the learning rate was decreased by half. The minimum 
learning rate was set at 0.0001. The model with the lowest Dice loss over the validation set was selected as 
the best model and was used for testing. 
 
Model Performance 
 
Segmentation accuracy was compared, using Dice scores, for the third ventricle, thalamus, and 
hippocampus. These structures were chosen to represent neuroanatomic structures with varying degrees of 
segmentation difficulty. Third ventricle is an easy structure because it is a cerebrospinal fluid (CSF) filled 
cavity with clear boundaries. Thalamus is a medium-difficulty structure because it is abutted by CSF on 
one side and brain parenchyma on the other side. Hippocampus is a difficult structure because it has a 
complex shape and is abutted by multiple brain structures with indistinct borders. While our main measure 
of segmentation accuracy was Dice score, we also tested our final models using additional measures of 
segmentation accuracy. Details about these additional measures and the performance of our models using 
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these measures are provided in the supplemental material.To evaluate performance across different dataset 
sizes, segmentation performance was tested using the full data set as well as random subsets of  (600, 240, 
and 120 MRI volumes).  
 
To evaluate the performance of CapsNets on out-of-distribution images not represented in training data, we 
trained segmentation algorithms using only data from the right thalamus and right hippocampus. We 
subsequently measured the segmentation accuracy of each algorithm on test sets which only included the 
images of left thalamus and left hippocampus.  
 
Relative efficiency of the segmentation models was measured by the number of trainable parameters, the 
memory required to run the model (in megabytes), the computational times required for training, and 
computational time for segmentation of each MRI.  
 
For all experiments, the mean segmentation accuracies over the test set were compared between CapsNets 
and U-Nets using paired-samples t-tests. The mean Dice scores together with their 95% confidence intervals 
were also tabulated for the two models and the three brain structures that were segmented.  
 
Implementation 
 
Image processing was done using FreeSurfer and Python. PyTorch was used for model development and 
testing. The SciPy package was used for statistical analyses. Training and testing of the models were run 
on AWS instances (4 vCPUs, 61 GB RAM, 12 GB NVIDIA GK210 GPU with Tesla K80 Accelerators). 
The code used to train and test our models is publicly available at:  
github.com/Aneja-Lab-Yale/Aneja-Lab-Public-CapsNet 
 
 
Results 
 
This study included 3430 brain MRIs belonging to 841 patients across multiple institutions. 22 Patient 
demographics are provided in Table 1.  
 
The accuracy of 3D CapsNets in segmenting various brain structures is above 90% and is within 1.5% of 
to the accuracy of U-Nets. Figure 1 shows the segmentation of various brain structures by both models in 
a patient. Table 2 compares the segmentation accuracy of the two models, measured by Dice scores. 
Supplemental Table 2 compares additional measures of segmentation accuracy between the two models. 
 
The 3D CapsNets achieved better out-of-distribution segmentation accuracy compared to 3D U-Nets. When 
both models were trained to segment right-sided brain structures and tested on contralateral left left-sided 
brain structures, 3D CapsNets significantly outperformed 3D U-Nets with Dice scores more than 30% 
higher. Figure 3 illustrates segmentation of the contralateral left thalamus and hippocampus by both models 
in a patient. Table 2 compares out-of-distribution segmentation accuracy between the two models. 
 
The 3D CapsNets and 3D U-Nets achieved comparable segmentation accuracy when trained on smaller 
datasets. When the size of the training set was decreased from 3199 to 600 brain MRIs, both CapsNet and 
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U-Net were minimally affected. Further decrease in the size of the training set down to 120 brain MRIs 
caused a decrease in the accuracy of both models down to 85%. Figure 4 shows the performance of both 
models when trained on smaller datasets. 
 
The 3D CapsNets were over 10 times smaller models compared to 3D U-Nets. The 3D CapsNet has 7.4 
million trainable parameters, while the corresponding 3D U-Net has 90.3 million trainable parameters. In 
addition, the 3D CapsNet has fewer layers and fewer steps of image propagation in forward and backward 
passes, leading to a smaller cumulative size of the feature volumes in the entire model. The 3D CapsNet 
and 3D U-Net respectively hold 228 and 1364 megabytes of cumulative feature volumes in the entire model. 
Figure 5.A compares the size of 3D CapsNet and 3D U-Net models. 
 
The 3D CapsNets train slightly faster compared to U-Nets by approximately 0.5 seconds per sample. When 
we compared the training time between the two models (on an AWS instance with NVIDIA GK210 GPU 
providing 12 GB of GPU memory), our 3D CapsNets and 3D U-Nets respectively took about 1.5 and 2 
seconds per example per epoch to train. The two models are equally fast during testing, taking 0.9 seconds 
to segment the MRI volume. Figure 5.B compares the training and testing times between the two models.  
 
 
Discussion 
 
In this study, we developed and validate 3D capsule networks for volumetric segmentation of brain MRIs. 
Our results showed that 3D CapsNets have high segmentation accuracy for segmenting various brain 
structures with Dice scores above 90%. While our CapsNets are one order of magnitude smaller than 
traditional U-Nets, their segmentation accuracy is within 1.5%. In out-of-distribution segmentation, our 
CapsNets outperformed U-Nets with Dice scores more than 30% higher.  
 
Our results corroborate previous studies that deep learning is effective in medical image segmentation.16–

18,23,24 This study also replicated the results of prior studies showing that U-Nets can segment brain images 
with high accuracy.18,23 Our results also corroborate a previous study that showed the effectiveness of 2D 
CapsNets for segmenting biomedical images, outperforming other deep learning models including U-Nets.5 
A subsequent study showed that 2D CapsNets were less effective in segmenting heart and brain MRI 
slices.25 As a result, 2.5D CapsNets were introduced that showed slightly improved performance in 
segmenting heart and brain MRIs, but with suboptimal segmentation accuracy.25 Therefore, there was a 
need to develop 3D CapsNets for volumetric segmentation. This study achieved this goal by developing 
and validating 3D CapsNets for brain MRI segmentation.  
 
CapsNets may represent better out-of-distribution modeling. Previous studies have already shown the 
generalizability of CapsNets to novel spatial features of inputs. In 2D object recognition, 2D CapsNets are 
outperformed other deep learning methods when the objects were imaged from viewpoints that were not 
represented during training.3 In 2D image segmentation, 2D CapsNets were shown to outperform 2D U-
Nets in segmenting rotated images.5 Our study extends the literature by showing that 3D CapsNets 
outperform 3D U-Nets in segmenting mirror-image contralateral brain structures that were not represented 
during training. Notably, we did not use data augmentation during training. Therefore, this study provides 
further evidence that CapsNets have out-of-distribution segmentation capabilities. This study also 
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corroborates previous results showing that CapsNet can model spatial features more efficiently, achieving 
higher or similar performance compared to other deep learning methods while having a smaller model 
size.3–5 Our CapsNet is one order of magnitude smaller than U-Net while achieving similar segmentation 
results.  
 
Our results corroborate with previous studies that show faster convergence of CapsNets during training, as 
compared to other deep learning methods.3,5 Our results show that 3D CapsNets are slightly faster to train 
compared to 3D U-Nets. While clustering of pose vectors between capsule layers slows down CapsNets, 
they converge faster because they have 93% fewer parameters to train. The net effect of these opposing 
factors leads to slightly faster training of CapsNets. Our results also show that the two models are equally 
fast during testing. Given that the forward pass through the fixed, trained parameters during testing is faster 
compared to the forward and backward passes during training, the larger size of the 3D U-Net does not 
slow it down as much during testing as it does during training. At the same time, clustering between the 
capsule layers slows down the 3D CapsNet during testing to the same degree as during training. As a result, 
the two models end up being equally fast during testing. 
 
To develop 3D CapsNets and make them work for volumetric brain MRI segmentation, we explored 
multiple design options, hyperparameters, loss functions, and implementation details to find optimal 
solutions. We used the validation set to explore these questions, and tested our final model on the test set 
only once. While our model performs well for volumetric segmentation of T1-weighted brain MRIs, we did 
not evaluate its performance for segmentation of other organs or other imaging modalities. We assume that 
our model would need modifications to perform well on other segmentation tasks or on brain MRIs that are 
pre-processed differently. We have described the experiments that helped us find optimal solutions for our 
design questions in the supplemental material, and we welcome further research to generalize our 3D 
CapsNet to the segmentation of other organs and to other imaging modalities.  
 
Some limitations of this study should be noted. First, the ground truth segmentations were elicited from 
FreeSurfer software package which is shown to have segmentation accuracy similar to human experts.7–9,26 
To ensure the accuracy of our segmentations, a radiologist checked and approved the segmentations of all 
MRIs in the test set as well as 120 randomly-selected MRIs in the training set. Second, we only validated 
our model for the segmentation of three brain structures of varying difficulty. Our model may not generalize 
to other organs or imaging modalities. Third, we only validated our model for segmenting brain MRIs 
without space-occupying lesions. Our model may not generalize to segmenting brain anatomy in the 
presence of lesions that distort the anatomy. However, this study showed out-of-distribution segmentation 
capabilities of CapsNet, providing evidence that CapsNet may be the potential solution to the problem of 
neuroanatomic segmentation in the presence of space-occupying lesions. 
 
 
Conclusion 
 
In this study, we developed and validated 3D capsule networks for volumetric segmentation of brain MR 
images. While our capsule network is one order of magnitude smaller than the equivalent U-Net, it achieves 
comparable performance in segmenting brain structures of varying difficulty. Additionally, our capsule 
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network showed out-of-distribution segmentation capabilities, making it a potential solution for 
neuroanatomical segmentation when the brain anatomy is distorted by space-occupying lesions.mess  
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Figure 1: CapsNet (A) and U-Net (B) architectures. Both models process 3D volumes in all layers, with 
dimensions shown on the left side. D, H, and W respectively represent the depth, height, and width of the 
image in each layer. In (A), the number over the Conv1 layer represents the number of channels. The 
numbers over the capsule layers (ConvCaps, DeconvCaps, and FinalCaps) represent the number of pose 
components. The stacked layers represent capsule channels. In (B), the numbers over each layer represent 
the number of channels. In the 3D U-Net, the convolutions have stride=1 and the transposed convolutions 
have stride = 2. Please note that the numbers over capsule layers show the number of pose components, 
while the numbers over non-capsule layers show the number of channels.  
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Table 1: Study participants tabulated by the training, validation, and test sets.  
 

Data Partitions Number of MRI 
volumes 

Number of 
patients 

Age 
mean ± SD 

Gender 
% female Ethnicity 

Training set 3199 841 ? ± ? ?% ? 

Validation set 117 30 ? ± ? ?% ? 

Test set 114 30 ? ± ? ?% ? 
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Figure 2: CapsNet vs U-Net in segmenting brain structures that were represented in the training 
data. Segmentations for three structures are shown: 3rd ventricle, thalamus, and hippocampus. Target 
segmentations and model predictions are respectively shown in white and red. Dice scores are provided 
for the entire volume of the segmented structure in this case (this case was randomly chosen from the test 
set).  
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Table 2: CapsNet vs U-Net in segmenting brain structures that were represented in the training 
data. The segmentation accuracy was quantified using Dice scores on the test (114 brain MRIs). The 3rd 
ventricle, thalamus, and hippocampus respectively represent easy, medium, and difficult structures to 
segment. 
 

Brain structure 
CapsNet 

Dice score (95% CI) 
U-Net 

Dice score (95% CI) P-value† 

3rd ventricle 93.6 (93.2 to 94.0) % 95.3 (95.0 to 95.6) % < 0.01 

Thalamus 93.6 (93.4 to 93.8) % 94.4 (94.3 to 94.6) % < 0.01 

Hippocampus 91.0 (90.7 to 91.3) % 92.5 (92.1 to 92.9) % < 0.01 

 

† Paired-samples t-test, degrees of freedom = 114 - 1 = 113 
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Figure 3: CapsNet outperforms U-Net in out-of-distribution segmentation. Both models were trained 
to segment right-sided brain structures, and were tested to segment contralateral left-sided brain structures. 
Target segmentations and model predictions are respectively shown in white and red. Dice scores are 
provided for the entire volume of the segmented structure in this case. While CapsNet partially segmented 
the contralateral thalamus and hippocampus, U-Net poorly segmented thalamus and entirely missed the 
hippocampus. 
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Table 3: CapsNet vs U-Net out-of-distribution segmentation accuracy. Both models were trained to 
segment the right thalamus and hippocampus. Then, they were tested on segmenting the contralateral left 
thalamus and hippocampus. 
 

Brain structure 
CapsNet 

Dice score (95% CI) 
U-Net 

Dice score (95% CI) P-value† 

Thalamus 52 (46 to 58) % 16 (11 to 21) % < 0.01 

Hippocampus 43 (38 to 48) % 10 (6 to 14) % < 0.01 
 

† Paired-samples t-test, degrees of freedom = 114 - 1 = 113 
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Figure 4: CapsNet vs U-Net segmentation accuracy as a measure of training set size. When the size of 
the training set was decreased from 3199 to 600 brain MRIs, both models maintained their segmentation 
accuracy above 90%. Further decrease in the size of the training set down to 120 MRIs led to worsening of 
their segmentation accuracy down to 85% (measured by Dice scores). 
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Figure 5: Model size (A) and computation times (B) compared between CapsNet and U-Net. The 
model size bars in (A) represent parameter size (28 and 345 MB for CapsNet and U-Net, respectively) plus 
the cumulative size of the forward and backward pass feature volumes (228 and 1364 for CapsNet and U-
Net, respectively). The CapsNets train slightly faster (B), given that they have 93% fewer trainable 
parameters. However, clustering between the capsule layers slows down CapsNets, making them only 
slightly faster than U-Nets during training. The two models are equally fast during testing.  
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3D Capsule Networks for Brain MRI Segmentation 
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Appendix 1: Capsule Networks 
 

Capsule networks (CapsNets) can detect objects 

when their spatial features change.1 This is a 

fundamental property of CapsNets that enables 

them to perform well when a test example is not 

represented in the training data. (A) shows the 

sagittal T1-weighted brain MRI of a patient with 

a forward head tilt, and (B) shows the MRI of 

another patient with a backward head tilt. White 

arrows (connecting the posterior commissure to 

the anterior commissure) demonstrate the 

orientation of the brain. Let’s assume that we 

have a CapsNet that is trained to segment the 

entire brain. Let’s also assume that the training set only contains 

patients with forward head tilt (like in A). An ideal CapsNet should 

generalize to segment the brain in patients with a backward tilt (like 

in B). To achieve this goal, CapsNets encode the spatial features of 

each structure that they detect. The spatial features of the brain are 

encoded in a pose vector. The pose contains spatial features such as 

orientation, position, size, curvature, etc. Here, the orientation of the 

brain (one of the spatial features) is shown by the white arrow. Our 

goal is to illustrate how CapsNets detect a whole (the brain) when 

parts (frontal pole, corpus callosum, brainstem, cerebellum, occipital 

pole, etc.) all vote for the same spatial features of the whole.  

 

CapsNets are composed of three main ingredients: 1) capsules that 

each encode a structure together with the pose of that structure; 2) a 

supervised learning paradigm that learns the transforms between the 

poses of the parts (e.g. corpus callosum, brainstem) and the pose of 

the whole (e.g. the entire brain); and 3) a clustering paradigm that 

detects a whole if the poses of all parts 

(after getting transformed) vote for 

matching poses of the whole. Therefore, 

any CapsNet needs to: 1) learn the 

transforms between the poses of parts 

and wholes; and 2) cluster the votes of 

the parts to detect wholes.  

 

(C) shows a CapsNet that has already 

detected parts of the brain and has 

encoded their spatial features 

(demonstrated by the smaller white 

arrow over each part). The red curved 

arrows demonstrate the transforms 

between the poses of the part and the 

pose of the whole. After transformation, 

each part votes for a candidate pose of 

the whole. If all these votes match, the 
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whole is present. Please note that we are only showing the 

orientations here for simplicity, but the pose vectors encode more 

complex spatial features. 

 

In (E), We want the CapsNet to detect the backward-tilted brain 

while the model is only trained on forward-tilted brain images (such 

as in C). We can imagine that (E) is just the rotated version of (C), 

as demonstrated in (D). The parts are all rotated clockwise (compared 

to the poses of the parts in C). However, the same transforms (red 

curved arrows) can still transform the poses of the parts into the 

candidate poses of the whole. The candidate poses of the whole still 

match, and therefore the whole is detected. This process does not 

need any data augmentation: an ideal CapsNet can detect objects 

when they are rotated or have undergone other spatial changes, 

without the need for any data augmentation. This is because the 

CapsNet can still use the same transforms between the parts and the 

wholes (red curved arrows) even though the input image has rotated. 

Therefore, a change in the poses of the parts will cause an equivalent 

change in the pose of the whole, while the relationship between the 

poses of the parts and the whole remains the same. This is a powerful capability that makes CapsNets equivariant to the 

changes in the inputs: spatial change in the inputs will cause an equivalent spatial change in the pose of the detected objects.1 

Such CapsNets can still detect the changed objects and will encode these changes in the pose of the detected objects. As a 

result, a CapsNet that is trained on forward-tilted brains (such as in C) can detect backward-tilted brains (such as in E) 

without the need for any data augmentation. 

 

This approach is fundamentally different from other machine learning methods such as U-Nets, which do not have 

equivariance capabilities. Instead, the max-pooling layers in U-Nets try to kill information about the changes in the inputs 

to make the model invariant to the changed inputs. In essence, CapsNets use equivariance to encode and model the spatial 

changes in the inputs, making CapsNets more efficient in handling variations of the same object.1 On the other hand, U-

Nets use information killing (in max-pooling layers) to make the model invariant to the spatial changes in the inputs. 

Therefore, U-Nets cannot efficiently detect variations of the same object.  

 

(F) demonstrates why CapsNets are less susceptible to adversarial attacks compared to U-Nets. Here, this adversarial image 

contains all parts of the brain but with orientations that do not make sense, not making a whole. When the poses of the parts 

are transformed into the candidate poses of the whole (using the same transforms as in C), the candidate poses of the whole 

do not match. Therefore, the CapsNet would not detect a brain because of the mismatch between the candidate poses of the 

brain. On the other hand, a U-Net that is trained using augmented data may detect the parts. Such a U-Net has no mechanism 

to encode the orientation and other spatial features of each part. In the U-Net feature space, each part is either present or 

absent. Since all parts are present on this adversarial image, the U-Net can be fooled to detect the entire brain.  

 

We can indeed use data augmentation to train U-Nets to detect objects with changed spatial features. We can also use 

adversarial training to prevent U-Nets from detecting adversarial images. But these inefficiencies lead to the need for a 

larger U-Net model. On the other hand, CapsNets handle the changed spatial features in a smarter way. This allows 

CapsNets, which are one order of magnitude smaller compared to U-Nets, to achieve similar results.2 
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Appendix 2: Findings Agreeing Pose Vectors 
 

Let’s assume the previous capsule layers has six capsule channels, each outputting the vote vector of a part (v1 to v6). To 

find the vote vectors that agree, we first compute the vector summation of all vote vectors (v): 

𝑣 =∑𝑣𝑖
𝑖

 

Then, we compute the inner products between each vote vector vi and the sum v, yielding weights for each vote vector wi: 

𝑤𝑖 = 𝑣𝑖 . 𝑣 

 

Please note that each wi is a scalar. Next, we re-compute the vector sum v using the weighted average of the vote vectors 

using weights wi computed in the previous step : 

𝑣 =∑𝑤𝑖
𝑖

𝑣𝑖 

This process is often repeated for three iterations. The number of iterations is a hyperparameter that should be set between 

capsule layers. This whole process increases the weights of the vectors that align with the sum (v1, v2, and v6 in this 

example) and decreases the weights of the vectors that do not align with the sum (v3, v4, and v5 in this example).  
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Appendix 3: Converting Final Layer Poses into Segmentations 

 
 

The final layer of the 3D CapsNet is composed of one capsule channel that learns to activate capsules within the 

segmentation target and deactivate them outside the target. Activation of a capsule is determined by the length of its pose 

vector, which is a number between 0 and 1. The ground truth segmentations are coded similarly: pixels outside and inside 

the segmentation target are respectively coded by 0 and 1.  

 

During testing, the length of the final layer’s pose vectors is thresholded at 𝑇: 

 

𝑓𝑡𝑒𝑠𝑡(𝑥𝑖,𝑗,𝑘) = {
0, ‖𝒗𝑖,𝑗,𝑘‖ < 𝑇

1, ‖𝒗𝑖,𝑗,𝑘‖ ≥ 𝑇
 

 

where 𝑓(𝑥𝑖,𝑗,𝑘) is the prediction of the CapsNet for the input voxel 𝑥𝑖,𝑗,𝑘 and ‖𝒗𝑖,𝑗,𝑘‖ is the length of the final layer’s pose 

vector 𝒗𝑖,𝑗,𝑘 at the location (i,j,k) of the MRI volume (please note that 𝒗𝑖,𝑗,𝑘 is itself a function of 𝑥𝑖,𝑗,𝑘, the function being 

the entire CapsNet that takes 𝑥𝑖,𝑗,𝑘 as the input and gives 𝒗𝑖,𝑗,𝑘 as the output).  

 

During training, the length of the final layer’s pose vector and each location (i,j,k) undergoe a piecewise linear transform 

as follows: 

 

𝑓𝑡𝑟𝑎𝑖𝑛(𝑥𝑖,𝑗,𝑘) =

{
 
 

 
 
 0                       ,                 ‖𝒗𝑖,𝑗,𝑘‖ < 𝑇1

‖𝒗𝑖,𝑗,𝑘‖ − 𝑇1
𝑇2 − 𝑇1

  ,       𝑇1 ≤ ‖𝒗𝑖,𝑗,𝑘‖ < 𝑇2

  1                       ,                 ‖𝒗𝑖,𝑗,𝑘‖ ≥ 𝑇2

 

 

If we  set 𝑇 = 0.5  𝑇1 = 0.1 and 𝑇2 = 0.9, we get the following diagrams for 𝑓𝑡𝑒𝑠𝑡(𝑥𝑖,𝑗,𝑘) and 𝑓𝑡𝑟𝑎𝑖𝑛(𝑥𝑖,𝑗,𝑘) as functions of 

‖𝒗𝑖,𝑗,𝑘‖ :  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

During training, the piecewise conversion (formula 2) enables a forgiving paradigm for the length of the final layer’s pose 

vectors: if the length of the vector is more than 0.9 for a voxel inside the segmentation target, the loss for that voxel would 

be zero. Intuitively, a pose vector with a length more than 0.9 for a voxel inside the segmentation target is considered “good 

enough”, so the training algorithm should not try to perfect the length of this vector to 1. Similarly, a pose vector with a 
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length less than 0.1 is considered good enough for a voxel outside the segmentation target, so the training algorithm should 

not try to perfect the length of this vector to 0. This forgiving training paradigm makes the training of CapsNet stable because 

this paradigm does not try to perfect the length of the pose vectors of the final layer to 0’s and 1’s. In contrast, if a training 

paradigm tries to perfect the length of the pose vectors to 0’s and 1’s, that training paradigm becomes unstable because the 

pose vectors can assume a length close to 0 or 1, but not exactly 0 or 1. Remember that the pose vectors are generated by 

the squash function,3 which cannot generate vectors with a length equal to 0 or 1: 

 

𝒗𝑖,𝑗,𝑘 = 𝑠𝑞𝑢𝑎𝑠ℎ(𝒔𝑖,𝑗,𝑘) =
𝒔𝑖,𝑗,𝑘

‖𝒔𝑖,𝑗,𝑘‖
.
‖𝒔𝑖,𝑗,𝑘‖

2

1 + ‖𝒔𝑖,𝑗,𝑘‖
2 

 

where 𝒔𝑖,𝑗,𝑘 is the total input to the final layer capsule at the location (i,j,k), and 𝒗𝑖,𝑗,𝑘 is the pose vector of the final layer 

capsule at that location.  

 

Our experiments show that training with the forgiving paradigm is more stable and leads to faster convergence. When we 

did not convert the length of the pose vector ‖𝒗𝑖,𝑗,𝑘‖ using the conversion function (formula 2), CapsNet training became 

unstable. Here, we show the evolution of the training set and the validation set losses during 10 epochs of training:  

 

 

 

We additionally searched for the optimal conversion functions. The piecewise linear function led to the most stable training 

and fastest convergence. Here we describe other functions that we studied (together with their plots) so that other groups 

would be aware of these conversion functions that we think are suboptimal for this task:  

 

𝑓𝑡𝑟𝑎𝑖𝑛(𝑥𝑖,𝑗,𝑘) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑞. (‖𝒗𝑖,𝑗,𝑘‖ − 𝑇)) =
1

1 + 𝑒−𝑞.(‖𝒗𝑖,𝑗,𝑘‖−𝑇)
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We set 𝑇 = 0.5 and tried different values for 𝑞 equal (10, 15, and 20): 

 

 

 

We also examined the piecewise conversion function (formula 2) with values for 𝑇1 and 𝑇2 other than 0.1 and 0.9: 

 

 

 

 

 

 

 

 

 

 

 

 

 

None of these conversion functions was as effective as the piecewise function with 𝑇1 = 0.1 and 𝑇2 = 0.9 in improving the 

stability and convergence of CapsNet training. 
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Appendix 4: Training hyperparameters 
 

 

 

Training set size (MRI volumes):   3199 

Validation set size (MRI volumes):   117 

Test set size (MRI volumes):   114 

 

 

Training batch size (MRI volumes):   4 

Training mini-epoch size: 30 batches: during training, the validation set loss was computed after 

each mini-epoch 

 

Training epochs:     50 

Optimizer:     Adam 

Optimizer hyperparameters:    𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8 

 

 

Initial learning rate:    0.002 

Minimal learning rate:    0.0001 

Learning rate scheduling:   Dynamic (via monitoring the validation set loss during training): 

Learning rate was decreased by half if the validation set loss did not 

improve over 10 mini-epochs 
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Appendix 5: MRI acquisition parameters 

 
 

Field strength = 3.0 tesla 

Coil = 8HR Brain 

 

Weighting = T1 

Flip angle=8.0 degree 

TR = 6.6 ms 

TE = 2.8 ms 

TI = 900.0 ms 

 

Acquisition type = 3D 

Acquisition plane = Sagittal 

Matrix size = 256×256×166 pixels (X×Y×Z) 

Pixel size = 1×1×1.2 mm (X×Y×Z) 

Pixel spacing: along X direction = 1 mm; along Y direction= 1 mm 
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Appendix 6: Pre-Processing 
 

We used FreeSurfer to correct for intensity inhomogeneities including B1-field variations. FreeSurfer first registers the brain 

to MNI305 atlas. Then, pixel intensities are used to roughly segment the white matter. The variations in the pixel intensities 

in the white matter are then used to estimate the B1 field map Finally, B1 bias field correction is done by dividing the pixel 

intensities by the estimated bias field.4 

 

We used FreeSurfer5 for skull stripping. Skull stripping includes removal of the skull, face, and neck, only leaving the brain. 

FreeSurfer uses a hybrid method of skull stripping that combines a watershed algorithm and a deformable surface model.6 

This method first roughly segments the white-matter based on pixel intensities. Then, watershed algorithms are used to find 

the gray-white matter junction and the brain surface. Next, a deformable surface model is used to model the brain surface. 

The curvature of the brain surface at each point is computed, and these curvatures are used to register the brain surface onto 

an atlas. The atlas is formed by computing the curvatures of the brain sulci and gyri in several subjects. Notably, the sulci 

and gyri of the brain surface are constant among all humans, constituting positive and negative curvatures that are present 

in any brain image (unless the brain surface is markedly distorted by space-occupying lesions). The reconstructed brain 

surface, registered to the atlas, is then corrected in case the curvatures in a particular region of the surface do not make 

sense. The resulting corrected brain surface model is used for skull stripping.6 

 

To overcome memory limitations, we cropped 64×64×64-voxel boxes of the MRI volume that contained each segmentation 

target. The position of each box (e.g. for segmenting the right hippocampus) was determined by visually inspecting 20 brain 

MRI volumes, randomly selected from the training set. The visual inspection included moving the “crop” box (64×64×64 

voxels) over the MRI volumes to find the optimal position of the crop box. The position of this box was then fixated (with 

regard to the center of the skull-stripped brain volume) for each brain structure and for all subjects in the training, validation, 

and test sets. This task was done by the first author (board-eligible radiologist with 9 years of experience in neuroimaging 

research).  
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