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Abstract 

Introduction:  

Current psychiatric diagnoses, although heritable, have not been clearly mapped onto distinct 

underlying pathogenic processes. The same symptoms often occur in multiple disorders, and a 

substantial proportion of both genetic and environmental risk factors are shared across 

disorders. However, the relationship between shared symptomatology and shared genetic 

liability is still poorly understood. Well-characterised, cross-disorder samples are needed to 

investigate this matter, but currently few exist, and severe mental disorders are poorly 

represented in existing biobanking efforts. Purposely curated and aggregated data from 

individual research groups can fulfil this unmet need, resulting in rich resources for psychiatric 

research.  

Methods and analyses:  

As part of the Cardiff MRC Mental Health Data Pathfinder, we have curated and harmonised 

phenotypic and genetic information from 15 studies within the MRC Centre for 

Neuropsychiatric Genetics and Genomics to create a new data repository, DRAGON-DATA. 

To date, DRAGON-DATA includes over 45,000 individuals: adults or children with psychiatric 

diagnoses,  affected probands with family members and individuals who carry a known 

neurodevelopmental copy number variant (ND-CNV). We have processed the available 

phenotype information to derive core variables that can be reliably analysed across groups. In 

addition, all datasets with genotype information have undergone rigorous quality control, 

imputation, CNV calling and polygenic score generation. 

Ethics and Dissemination: 

DRAGON-DATA combines genetic and non-genetic information and is available as a resource 

for research across traditional psychiatric diagnostic categories. Its structure and governance 

follow standard UK ethical requirements (at the level of participating studies and the project as 

a whole) and conforms to principles reflected in the EU data protection scheme (GDPR). 

Algorithms and pipelines used for data harmonisation are currently publicly available for the 

scientific community, and an appropriate data sharing protocol will be developed as part of 

ongoing projects (DATAMIND) in partnership with HDR UK. 
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Introduction 

The value of collaboration and data sharing is well recognised within the medical community 

and is one of the hallmarks of what has been called “the fourth age of research”, in which the 

pace of discovery has accelerated and international platforms for studying multifactorial 

problems have been built1 2. The aggregation of data from individual research groups not only 

maximises the utility of individual datasets and minimises demands on participants, but enables 

the joint analyses of complex data that can lead to incremental advances in elucidating disease 

aetiology3. Within major psychiatric and neurodevelopmental conditions, few truly novel 

pharmacological treatments have been developed for several decades, with the noteworthy 

exceptions of ketamine for depression4 and atomoxetine for ADHD5. Worryingly, many major 

pharmaceutical companies are decreasing their research efforts and investment in this area6. 

This apparent stagnation in progress is the result of a lack of understanding of the pathogenesis 

of these conditions, which hinders the identification of novel targets for drug discovery7, and 

also the limitations of current diagnostic categories in defining mechanistically discrete 

disorders8. A route to address these limitations involves integrating biological data at scale and 

across, rather than within, diagnostic classifications9 10. Research conducted in this manner can 

explore the aetiological and biological commonalities between diagnoses revealed by genetic 

studies11, accelerating discovery on complex disorders and informing novel therapeutic 

strategies, pharmacological and non-pharmacological, firmly grounded in biology12. 

Recent large-scale studies have built on the hypothesis that psychiatric phenotypes do not 

always reflect distinct underlying pathogenic processes and that some genetic risk factors are 

shared between neuropsychiatric disorders13-15. This echoes the widely acknowledged clinical 

observation that many symptoms are features of multiple disorders and that patients often 

challenge current diagnostic classifications by presenting with characteristics of more than one 

disorder16. What is currently not known, however, is to what extent this distribution of cross-

disorder symptoms is related to the shared genetic liability between neurodevelopmental 

conditions15 17. Commonalities in genetic risk factors might help identify a shared underlying 

biology, but this line of inquiry cannot be pursued without well-characterised cross-disorder 

samples, scarce even within large international consortia. In fact, it has been explicitly 

suggested that the majority of samples used in published genetic discovery studies have not 

been collected with the required amount of phenotypic data necessary to advance diagnostics, 

stratification and treatment18. Thus, many research groups have directed their efforts to access 

resources with large amounts of routinely collected data, such as population biobanks and 

electronic health record systems, from which rich phenotypic data can be derived18-20. 

However, some common limitations of these include selection biases and underrepresentation 

of clinically severe disorders20 21. These can be exemplified by a recent genetic study on 

106,160 patients across four US healthcare systems, where only 522 individuals with a ICD-

9/10 diagnosis of schizophrenia were included22. Such is a classic quandary in psychiatric 

genomics23, in which the setup of research studies leads to either a large case sample with 

minimal phenotyping or an extensively phenotyped one with fewer individuals. 

The Digital Repository for Amalgamating GenOmic and Neuropsychiatric Data (DRAGON-

Data) was therefore established at Cardiff University as a means of developing a platform  
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where cross-disorder analyses of large well-phenotyped samples are possible. This approach 

integrates multiple existing case datasets with genetic, clinical, environmental, and 

developmental data. The focus on mental health across disorder boundaries and at scale aims 

to improve understanding of the pathophysiology of adult and child-onset neurodevelopmental 

and psychiatric disorders, providing opportunities to combine diagnosis-led and symptom-led 

research. DRAGON-Data shares a focus with previous initiatives to collate psychiatric 

phenotype data, which have included the Genetics of Endophenotypes of Neurofunction to 

Understand Schizophrenia (GENUS) consortium24, the International Consortium for 

Schizotypy Research (ICSR)25, the International 22q11.2 Deletion Syndrome Brain Behaviour 

Consortium (22q11.2DS IBBC)26, the Psychosis Endophenotypes International Consortium27, 

the Genes to Mental Health (G2MH) network, and ongoing efforts to collate phenotype data 

within the Psychiatric Genomics Consortium (PGC)28. However, all these projects have 

typically focused on a single disorder or group of closely related disorders, while DRAGON-

Data seeks to integrate data from a range of psychiatric disorders across the symptomatology 

and developmental continua. 

The current paper describes the formation of DRAGON-Data through the curation and 

harmonisation of phenotypic and genetic information across existing cohorts. This process has 

been informed by a series of legal and ethical considerations on the evolving landscape of 

individual-level data sharing, which is required to ensure the sustainability of this repository 

as a resource for current and future researchers. Therefore, the governance framework of 

DRAGON-Data is also described, which enables the access and reuse of its data in ways that 

align with confidentiality regulations and the ethics of participating studies.  

 

 

Methods and Analysis 

Studies included 

Fifteen studies from the MRC Centre for Neuropsychiatric Genetics and Genomics at Cardiff 

University (MRC CNGG; https://www.cardiff.ac.uk/mrc-centre-neuropsychiatric-genetics-

genomics) were included in this project. A summary of the studies can be found in Table 1. 

Each study had its own approved research ethics, whilst ethical approval for the curation and 

development of DRAGON-Data was obtained from Cardiff University’s School of Medicine 

Research Ethics Committee (Ref: 19/72). The studies included participants who were adults 

with psychiatric disorders, children (defined as up to age 16 or age 18) with 

neurodevelopmental  disorders, children of parents with psychiatric disorders, and both 

children and adult carriers of rare neurodevelopmental risk copy number variants (ND-CNVs). 

Phenotypic data harmonisation strategy 

The process of curating the phenotypic data is outlined in Figure 1. Initially, investigators from 

all studies completed a proforma detailing the data and types of  measures  available, including 

the study clinical interviews, rating scales and self-report questionnaires. All but one of the 

studies included a structured clinical interview, and thus consistent symptom-level data were 

available (Error! Reference source not found.), along with a detailed phenotype data. 
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We compared all the variables to identify overlaps and resolve situations where the same 

information might have been differently labelled across studies. We also defined a core set of 

variables (Table 2), focused on information relevant and applicable to cross-disorder research. 

A primary consideration for including a variable among this core set was whether it was 

collected as part of the National Centre for Mental Health (NCMH) research programme. The 

NCMH is a Welsh Government-funded research centre that investigates neurodevelopmental, 

psychiatric and neurodegenerative disorders across the lifespan. Its cohort is the largest sample 

with phenotype data available to us, and a cross-disorder resource in itself29. As NCMH is still 

being expanded by recruitment of participants, maximising its compatibility with DRAGON-

Data was desired. Additionally, every core variable was required to be available in at least half 

the current datasets, taking into consideration that some data might be specific to child or adult 

cohorts. Variables that were not available in NCMH and were present in less than half the 

studies were only included if they could be derived from existing data to achieve the 

representation threshold. 

Challenges of harmonising phenotypic data 

Measuring and rating psychopathology 

The individual studies that form DRAGON-Data were designed using standard protocols for 

psychiatric research, and collected similar phenotypic data. However, they also used a range of 

different interviews, rating scales and questionnaires.This creates well-known challenges for 

data harmonisation30 31. In general, it should be noted that caution has to be exercised when 

amalgamating data from different studies even when these claim to use the same measures. 

Potential differences can include: 

• Versioning: Measures can differ considerably between versions, with items being 

added or removed and definitions changing. 

• Rating definitions: Ordinal scales can be named (e.g. 1=“mild”, 2=“moderate”, etc) 

resulting in a categorical or integer variable depending on study protocol. Some scales 

(e.g. OPCRIT32) can include items for which decimal point rating is acceptable, which 

could be transformed into continuous variables. 

• Rating timeframes: Symptom and event data can be evaluated over different 

timeframes spanning weeks, months or years; and recorded as current, worst or 

lifetime occurrences. When integrating adult and childhood studies, it should be 

considered that events defined for the “lifetime” are not directly comparable due to 

intrinsic differences in this period of assessment. Measures that evaluate personality 

and behavioural traits might also not be completely consistent given the changes in 

these throughout the lifetime33.  

• Sources of information: A  difference between adult and childhood studies is that the 

latter is more likely to use multiple informants (participants, their siblings, parents and 

teachers). Harmonising all these reports can be difficult and might also require a prior 

compatibility assessment34. 

The considerations above apply to individual studies, but they can add particular difficulty to 

reflect complex outcomes in a larger harmonised dataset. As an example, we highlight the 

different ratings of suicidal ideation across the DRAGON-Data studies (Table 3). Note that 
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these studies differed in whether they considered single versus multiple suicide attempts, 

duration of suicidal ideation or seriousness of attempts. This is likely to reflect the existence of 

different definitions of suicidal behaviour used in different research contexts35 36, and illustrates 

one of the challenges that can be faced when merging data from different studies.  

Sampling from the Population 

Recruitment strategies and inclusion criteria can affect the characteristics of the samples, 

creating differences between them and making them unrepresentative of the population from 

which they are drawn. It has been suggested that participants enrolled in research studies of 

serious mental illness display better functional outcomes than are typical for those with the 

disorders in the wider population37, when compared against naturalistic samples from 

outpatient services38. Population cohort studies also suggest that those with more severe 

psychopathology and higher genetic loading for psychiatric disorder are more likely to drop 

out, leading to underrepresentation particularly in longitudinal samples39. Media used to 

approach these participants also play a role in the sample characteristics, with internet-based 

recruitment engaging larger proportions of highly-educated female individuals but also those 

from ethnic minorities40 41. For most studies in DRAGON-Data, recruitment was based on 

clinically ascertained, prevalent cases and therefore are likely to have over-sampled 

participants with severe, chronic illness and under-sampled individuals who recovered and/or 

were discharged from services. Additionally, in common mental health conditions such as 

depression and anxiety, this might also over-represent women who are more likely to access 

help than affected males42. A special case in terms of sample composition also concerns the 

DEFINE, ECHO and IMAGINE studies, which specifically focused on carriers of ND-CNVs. 

Including these samples has important implications for research examining genotype-

phenotype associations in the combined dataset, as improperly accounting for their genotype-

led recruitment might bias calculations on the prevalence of genetic or environmental risk 

factors. However, they are important to integrate as they also enable comparative research into 

the role of these in people with and without highly penetrant genetic variants43. 

Study Protocol 

Samples were recruited following longitudinal and cross-sectional designs. The existence of a 

follow-up period in longitudinal studies establishes a temporal order for symptom and event 

measures, which provides another level of detail over the broader definitions found in cross-

sectional designs. The cross-sectional studies collected a mixture of current, worst episode and 

lifetime symptom measures. As it has been previously described in the context of causal 

inference44, it is not advisable to combine longitudinal measures into or with “lifetime ever” 

variables, since this assumes that the events they reflect did not occur outside of the study 

assessment periods. Other issues that can affect the compatibility of different designs are 

attrition (in longitudinal studies), participant issues in completing assessments (e.g. length of 

time required) and the mode in which the study was conducted. Within DRAGON-Data most 

studies were conducted face to face with participants before the onset of the COVID-19 

pandemic, but also utilised telephone interviews, postal questionnaires and online data 

collection. This could affect how questions are interpreted and in turn, the likelihood and 
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content of participants’ responses. In addition, there is evidence that participants may be more 

willing to disclose sensitive information in some settings than others45 46. 

Diagnosis 

Due to the different focus of individual DRAGON-Data studies, there were differences in the 

ways that diagnoses were made. Most studies used standardised interviews and medical records 

(where available) to derive consensus research diagnoses, with CLOZUK validating their 

ascertainment (based on intake of the antipsychotic clozapine) against research interviews47. 

The NCMH population sample used self-report, asking participants to report diagnoses that 

they had been given by a health professional. This is an approach taken by other large studies 

such as the UK Biobank48. While data obtained via self-reports can be of poorer resolution than 

that from a structured interview, this approach has the advantage of allowing faster recruitment 

of larger samples49. The accuracy of self-report diagnoses needs also to be considered, which 

may differ by diagnosis. Self-reported diagnoses of specific, chronic mental health conditions 

that require involvement with secondary psychiatric services, such as schizophrenia, may be 

more accurate than reports of common mental health conditions, such as depression, that 

typically encompass a wide range of presentations and can be diagnosed and treated in a variety 

of health settings. This can introduce variability in defining phenotypes with impacts on study 

results. Research attempting to estimate the heritability of depressive disorders using 

inconsistent diagnostic criteria classically demonstrated this50; and recent work employing 

samples with broad, self-report definitions of depression to identify genetic risk loci have also 

resulted in signals that are not specific to this condition51. To ameliorate these problems, the 

studies included in DRAGON-Data have focused on categorical diagnoses rated according to 

the Diagnostic and Statistical Manual of Mental Disorders (DSM) or International Statistical 

Classification of Diseases (ICD) criteria. While these are standard criteria, it has been proposed 

that a better approach to diagnostic classification may be to focus on dimensional measures of 

psychopathology, such as the National Institute for Mental Health’s Research Domain Criteria 

(RDoC52). This approach may be adopted in the future as it could facilitate combining datasets 

to conduct cross-disorder research, given that many symptoms overlap diagnostic boundaries, 

such as the overlapping mood and psychotic symptoms observed in both schizophrenia and 

bipolar disorder8. 

Key Recommendations 

Based on our experience developing DRAGON-Data, we suggest some recommendations for 

the harmonisation and analysis of clinical data: 

• Consider the broad research questions that can be addressed with the creation of a 

clinical database. Consult with principal investigators and field researchers to identify 

the variables that will be needed to address these aims. 

• Identify measures (e.g., questionnaires and interviews) that are in common across the 

datasets included. These measures may be easier to harmonise for analysis, though the 

factors outlined above should be considered to ensure comparability. 

• Record accurate information about each study variable including measure used, version 

number, rating definitions, rating timeframe and source of information. This aids in the 

identification of comparable variables. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.18.22269463doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.18.22269463
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

• Where new (secondary) variables have been derived from others, and are designed to 

be comparable, information should be recorded about the (primary) variables used from 

each study to derive those secondary variables. 

• A comprehensive data dictionary should accompany the database that incorporates the 

information outlined above. At a minimum, each variable should have recorded: name, 

description, definition and coding of missing values. Within the data dictionary, 

variables should be highlighted if they are in common across the datasets, as these may 

be suitable to analyse together. It is noteworthy that this curation and creation of 

dictionaries may often need to occur after the data collection, so researchers and funders 

should allow sufficient staff resources for the accurate completion of this task. 

• Include basic demographic information to evaluate the representativeness of the 

sample, including age range, sex, ethnicity and education. 

• Datasets do not need to be combined into a single data file. A database that houses the 

datasets and allows an easy combination of selected studies and variables avoids the 

need for a single, large-scale dataset and minimises the computational requirements for 

the querying and extraction of data. 

  

Genetic data harmonisation strategy 

Format and genome assembly standardisation 

We developed an in-house genotype quality control (QC) pipeline to facilitate standardised 

procedures for all aspects of genetic analysis (Figure 2), available at 

https://github.com/CardiffMRCPathfinder/GenotypeQCtoHRC. The pipeline begins with 

conversion of genotype data into binary PLINK format53 54. Genotyping platform was inferred 

by comparing chromosome and basepair positions of the genotypes on each dataset and 166 

array manifests55. Across the datasets in DRAGON-Data, Illumina chips are by far the most 

common (Table 1).  

To maximise the number of SNPs available for imputation, we performed alignment of local 

genotype data against the Haplotype Reference Consortium (HRC) panel v.1.156 using 

Genotype Harmoniser v1.4257. Genotype Harmoniser is a Java-based application that compares 

SNP information in the user data against a reference dataset such as an imputation panel. Where 

discordant SNP information is present, for example due to allele mismatches, strand flips or 

different SNP identifiers, the user genotype data is updated to match that of the reference panel. 

We have observed that differences in genome build between the original and reference dataset 

result in Genotype Harmoniser discarding large numbers (e.g. more than 50%) of the original 

SNPs. If present, instances of this behaviour are flagged by our pipeline and solved via a local 

implementation of the widely-used Liftover Tool58 to retrieve physical coordinates in the 

appropriate b37/hg19 format.   

Sex-based quality control 

We performed checks for discordant phenotypic and biological sex using the “sex-check” 

function in PLINK v1.9. This function is reliant on the presence of at least one sex 

chromosome. Discordant findings in the absence of complementary information from the 
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individual (e.g. a disclosure of gender transitioning) are suggestive of either a sample mix-up 

during genotyping or an inaccurately recorded phenotype. If no resolution can be reached these 

samples are excluded from further analysis. Where no sex information is present in the original 

dataset, the sample is retained. If genotype calls from both sex chromosomes are present, call 

rates at the Y chromosome are used to assess the presence of individuals with sex-linked 

chromosomal disorders such as Turner (X0) or Klinefelter (XXY) syndromes59. Individuals 

with suggestive sex-linked chromosomal disorders are flagged for further investigation.  

Call-rate quality control 

We removed SNPs with low call rates (<0.95), individuals with low genotyping rates (<0.95), 

markers that fail the Hardy-Weinberg Equilibrium test (mid-p<10-6) and those with a minor 

allele frequency (MAF) < 0.01. Duplicated individuals were removed unless they belong to 

known monozygotic twin pairs; however, first degree relatives are retained for studies with trio 

or family designs. This is the final step of the pre-imputation QC. Afterwards genotypes are 

converted to VCF format using PLINK, sorted using vcftools v0.11660 and compressed to .gz 

format.  

Assessment of population structure 

While not strictly part of a QC process, the generation of principal components (PCs) using 

genotype data is needed to identify and account for population and ancestral substructures that 

can bias the results of association studies61. Our pipeline addresses this by generating PCs using 

the GENESIS suite, implemented in R. Within it, the PC-AiR62 function allows us to process 

both unrelated and family-based datasets, as it accounts for known or cryptic relatedness via 

the calculation of genotype relatedness matrices (GRMs). PCs generated by this method can 

readily be used to correct for population structure in regression-based analyses. 

A more detailed ancestry analysis is also performed on each dataset, following a similar 

procedure to that described in Legge et al. 201963. First the available SNPs are restricted to 

those on the set of 167 ancestry informative markers (AIMs) contained in the 

EUROFORGEN64 and 55-AISNP65 forensic panels, many of which are common across the 

different Illumina genotyping platforms. Afterwards, the dataset is merged with a public 

reference panel with known ancestries, a combination of the Human Genome Diversity Project 

(HGDP)66 and South Asian Genome Project (SAGP)67 datasets. This reference contains 1108 

samples from 62 worldwide populations, which have been subdivided in 7 biogeographical 

ancestries68 (“Subsaharan African”, “North African”, “European”, “Southwest Asian”, “East 

Asian”, “Native American” and “Oceanian”). In order to perform the ancestry inference, a 

number of PCs, determined using the Tracy-Widom test for eigenvalues61, are then derived 

solely on the reference panel, and a prediction model is trained using Fisher’s Linear 

Discriminant Analysis algorithm. The samples with unknown ancestries are then “projected” 

onto the reference panel PCs69, and their ancestry is estimated using the prediction model. At 

least 80% probability of a given ancestry is required to automatically assign an individual to it, 

though the admixture patterns of individuals not achieving this probability can still be manually 

examined.  
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Genotype imputation 

The Michigan Imputation Server (MIS) is a cloud-based resource that facilitates haplotype pre-

phasing and genotype imputation70. The MIS also houses the HRC panel, containing genotypes 

of over 60,000 individuals across multiple ancestral backgrounds56. There are substantial 

improvements in imputation quality using the HRC reference over 1000 genomes, particularly 

at lower MAF thresholds71. The MIS also performs some SNP quality control before phasing, 

including removal of SNPs if they contain irregular allele codes, duplicate IDs, indels, 

monomorphic SNPs, discordant alleles between the user and population reference panel alleles 

and low call rates of < 0.9. Though other options are available, our dataset is processed via 

Eagle v2.3 pre-phasing72 and MiniMac3 imputation70 using HRC v1.1 as the reference panel.   

After genotype imputation, imputed data is stored in .vcf.gz format, with accompanying info 

files containing information about the quality of imputed variants. Data is converted into .pgen 

format using PLINK v2 and subsequently into standard .bed/.bim/.fam format. Specifically, we 

remove SNPs where individual genotype probabilities are < 0.9, MAF <1%, genotyping rate < 

0.95 and hwe < 1E-4. SNPs can be extracted at various imputation quality thresholds (R2). A 

conversion to best-guess genotypes is also performed in PLINK v2, after applying imputation 

quality thresholds (INFO < 0.3). 

Copy Number Variant Calling 

Most of the samples in DRAGON-Data include raw genotype information, enabling us to 

perform copy number variant (CNV) calling. We developed an in-house CNV QC pipeline to 

facilitate standardised procedures for all aspects of this procedure (Figure 3), available at 

https://github.com/CardiffMRCPathfinder/NeurodevelopmentalCNVCalling.  

First, we extract b-allele frequencies and logR ratios for each sample using Illumina Genome-

Studio v2.05. CNV calling is performed using PennCNV v1.05 with genomic control 

correction73. CNVs are subsequently merged if the total distance between CNVs is less than 

50% of their combined length. Appropriate PFB and GC content files are generated as 

recommended by PennCNV. Filters are applied to remove CNVs with QC fewer than 20 probes, 

less than 20KB in length or with confidence scores < 5. Individuals are excluded if they have 

more than 30 CNVs, large logR ratios > 0.35 or high or low wavefactor (less than -0.03 or 

greater than 0.03), however these parameters should be modified depending on the genotyping 

platform used.       

Initially, CNVs called using this pipeline are cross-referenced against a list of 54 pathogenic 

CNVs known to confer increased risk of schizophrenia, autism, intellectual disability and major 

depressive disorder74. There are several advantages to prioritising these CNVs: First, they are 

typically large (>100KB) and are more reliably called across different genotyping platforms. 

Second, these CNVs are pleiotropic and lack complete penetrance for specific disorders 

meaning they are good candidates for investigating associations with psychiatric cross-disorder 

phenotypes. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.18.22269463doi: medRxiv preprint 

https://github.com/CardiffMRCPathfinder/NeurodevelopmentalCNVCalling
https://doi.org/10.1101/2022.01.18.22269463
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

Challenges of harmonising genetic data 

Genotyping arrays and genomic assemblies 

In DRAGON-Data, a variety of genotyping arrays were used both within and between studies. 

This presents challenges for merging and imputing datasets. All the genotyping arrays analysed 

have a large set of common variants (a “GWAS backbone”), with most differences due to the 

inclusion of custom markers tagging rare exonic variation. The accuracy of genotype 

imputation is improved with larger sample sizes, plateauing around 2,000 samples75, though 

there must also be sufficient numbers of genotyped markers (at least 200,000 SNPs76) that 

overlap with the imputation reference panel after genotype quality control. We, therefore, 

grouped datasets that were genotyped on the same, or similar arrays. This resulted in four 

separate imputation batches for samples genotyped on the OmniExpress, PsychChip/Illumina 

HumanCoreExome, Illumina 610 Quad/Illumina HumanHap550 and Affymetrix5 platforms.  

We observed substantial batch effects in the pairwise comparison of samples after undergoing 

routine QC. Further inspection of the data revealed this was caused by palindromic SNPs 

(AT/TA or CG/GC genotypes), which resulted in erroneous allele frequencies which differed 

across datasets when the minor allele frequency was high (> 0.4). This issue was only apparent 

after merging datasets, which mirrors the experience of the eMERGE consortium77.  Removal 

of these SNPs resulted in the loss of obvious batch effects across the first 10 PCs tested.  

Identifying duplicate samples 

It is not uncommon for the same individual to be recruited into more than one psychiatric 

research study. Unless the individual voluntarily reports they have participated in a known 

existing study, this information would not be known to researchers in other groups. We 

identified 1909/41957 duplicate individuals (4.5%) across the entire dataset using genetic 

relatedness checks and retained the sample with the highest number of high quality imputed 

markers. In total,    

Processing of public GWAS summary statistics 

When performing genetic analyses such as polygenic risk scoring, LD score regression or other 

analyses, multiple GWAS summary statistics are required. Despite some proposals for 

standardisation78-80, the output from GWAS software is still highly variable and lacks even 

consistent headings across individual studies. Processing of these files is thus not user-friendly, 

typically requiring manual curation, for example filtering by imputation quality, allele 

frequency or changing header names to match the required format of specific programs. To 

address these issues, we developed an R pipeline (summaRygwasqc) that automatically 

processes GWAS summary statistics files and performs quality control filtering, aligns SNP 

information against the HRC reference panel and converts summary data to a standardised 

format that is compatible with PRSICE281 , PRScs82 and LDSC83 (Figure 4). This code is 

available at https://github.com/CardiffMRCPathfinder/summaRygwasqc. 

Key Recommendations 

Based on our experience developing DRAGON-Data, we offer some recommendations for the 

amalgamation and analysis of genomic data across multiple studies: 
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1. Imputation should only be performed on samples that have been genotyped on the 

same array type, or where there is substantial SNP overlap after QC. Furthermore, 

when performing QC after imputation, removal of palindromic SNPs with high MAF 

(>0.4) is essential to minimising batch effects for samples genotyped on different 

arrays. 

2. When analysing CNV data across arrays, due to potential differences in probe density 

and coverage, it is vital that plots such as those for b-allele frequency drift, number of 

CNVs called per individual and LogR ratio standard deviation are visually inspected 

to ensure the quality of the resulting calls. 

3. Publicly available genome-wide association summary statistics should be examined, 

manually or through scripting, to ensure that their information can be processed in a 

coherent and standardised way in downstream analyses. At a minimum, most genomic 

analysis software requires a form of SNP name or identifier, chromosome number 

(CHR), basepair position (BP), allele code (A1/A2), association p-value and a metric 

for the association effect size (OR/logOR/beta/Z, which should always correspond 

with A1). Additional columns such as the allele frequency of A1, INFO/R2 

imputation quality metrics and sample size columns can also be helpful.  

 

 

The DRAGON-Data harmonised dataset 

Table 2 displays an overview of the variables held by each study included in the final 

DRAGON-Data data freeze. A full list of the variables included in DRAGON-Data can be 

found in Supplementary Table 1 although the exact variables included varied between studies. 

All the studies except CLOZUK included a semi-structured clinical diagnostic interview, most 

commonly the Schedule for Clinical Assessment in Neuropsychiatry (SCAN84) for adults and 

the Child and Adolescent Psychiatric Assessment (CAPA85) for children and adolescents. 

Twelve of the fifteen studies collected data on individual symptoms. The NCMH study includes 

a brief assessment that does not include questions about individual symptoms, although a 

subgroup of this sample (n=485) has completed more detailed interviews that include 

symptoms. The most common types of symptoms covered across all studies were depressive, 

manic and psychotic symptoms. Aside from symptoms, other variables with good coverage 

across studies were lifetime history of treatment (13/15), substance use (13/15) and history of 

suicidal ideation and attempts (12/15). The demographic characteristics of the studies are 

shown in Supplementary Table 1. The harmonised phenotype data is stored in a 

pseudonymised format within a secure database. There is an accompanying data dictionary 

cataloguing all available variables with names, descriptions and ratings and cross-referencing 

of comparable measures across the studies.  

 

Joint genetic-phenotypic data analysis 

All the DRAGON-Data data have been securely stored in HAWK, a high-performance 

computing (HPC) cluster supported by the Supercomputing Wales infrastructure86, which 

comprises a network of 13,000 computer nodes distributed across four universities (Cardiff, 
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Swansea, Bangor and Aberystwyth). This system allows the backed-up storage of genetic and 

phenotypic files, and their secure access by authorised users. Analysts in charge of curating 

genetic or phenotypic data are by default part of a “core project team” with unrestricted access 

to the entire DRAGON-Data, while data-contributing researchers are granted access to their 

own raw and curated data for any purpose. Undertaking cross-disorder analyses is facilitated 

through a framework by which any curator or data-contributing researcher can send a structured 

analytic proposal to the board of investigators, who then decides whether to grant access to the 

relevant data on purely scientific grounds. This is modelled after successful international 

consortia such as the PGC28, which in recent years has implemented responsible data sharing 

practices among hundreds of investigators. 

There are two main approaches to analysing the data within DRAGON-Data: combining 

individual-level information from across the studies (“mega-analysis”) or through meta-

analysis. While the latter is relatively straightforward, jointly analysing all samples allows for 

a better assessment of heterogeneity in the data and can increase statistical power87 88. However, 

combining samples is particularly problematic for the phenotypic data, as it requires recoding 

or modifying the variables to be comparable across studies, which could include deriving latent 

variables through factor analysis. Data combined in this way can be difficult to interpret due to 

the differences between studies outlined in the previous sections, and it is important to address 

this variability in both analytic techniques and interpretation of the results. Important 

considerations are whether the individual study variables are measuring the same construct and 

whether any variables derived from these are measuring the same construct as the original data. 

Note that none of these limitations applies to the genetic data, as (carefully) combining samples 

with large numbers of overlapping SNPs is a common procedure that is known to maximise 

both the number of successfully imputed variants and their quality75 89 90. Thus, the suitability 

of a mega-analysis or meta-analysis approach for studies using DRAGON-Data should be 

decided based on the availability, characteristics and biases of the phenotypic data.  

Outside of the data quality control pipelines, genetic analyses in DRAGON-Data can be 

undertaken using other consolidated tools, such as PLINK53 or GCTA91. Responding to the 

rapid development of statistical methods to analyse complex phenotypes and “big data”, an 

effort has been made to integrate DRAGON-Data with the highly customisable R framework, 

via the use of data importers such as GWASTools92 and bigsnpr93. This allows using the 

approximately 1,700 tools currently offered by the Bioconductor suite94 in a large-scale 

genome-wide setting, and facilitates applying complex analytic techniques such as mixed-

model regression95 and survival analysis96. Large-scale genomic storage solutions have not 

currently been implemented in DRAGON-Data, as the weak compression implemented in 

PLINK files and related formats allows for efficient querying of genotype data even in its 

imputed form53 97. However, these are active topics of research, and the upcoming development 

of the MPEG-G ISO standard will likely allow future data harmonisation initiatives to 

seamlessly incorporate whole-genome sequences98. 
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Ethics and dissemination 

Governance 

For studies to be incorporated into DRAGON-Data, the lead principal investigator needed to 

confirm approval from their institutional ethics committee. The protection and confidentiality 

of participant data were of the utmost importance throughout the design of DRAGON-Data 

and a number of safeguards were put in place to ensure the security, integrity, accuracy and 

privacy of participant data. Firstly, in line with the required safeguards for processing special 

category data stipulated in the EU General Data Protection Regulation (GDPR; Article 89)99, 

the principle of data minimisation was respected, with only limited individual-level data being 

requested from research groups. Furthermore, as a means of ensuring the confidentiality and 

privacy of participants, all data were pseudonymised, and no personal or phenotypic 

information that allowed individuals to be re-identified was retained. As genome-wide genetic 

information cannot effectively be anonymised without compromising its integrity100, all 

researchers accessing it must explicitly state that they will not attempt participant re-

identification.  

This project was conducted in line with Cardiff University’s Research Integrity and 

Governance Code of Practice, and ethical approval for the curation and development of the 

DRAGON-Data was obtained from Cardiff University’s School of Medicine Research Ethics 

Committee (Ref: 19/72). As described above, procedural safeguards were put in place to ensure 

secure managed access to the dataset through the HAWK system, with the most privileges 

restricted to the “core analyst team”. In addition, a process of oversight has been implemented 

for the approval of secondary research proposals, which are reviewed by the lead principal 

investigator of each contributing sample and must be approved before access to relevant, 

requested data can be granted. All genetic analyses carried out by secondary investigators also 

have to be carried out within the HAWK environment, which allows their monitoring and 

auditing to rapidly detect data misuses.  

Challenges of data sharing partnerships 

The organisational challenges faced by DRAGON-Data highlight that potential data sharing 

requirements should be considered, as much as reasonably possible, at the outset of any 

research study. Studies will benefit from having a data sharing policy in place prior to the 

collection of any data as a means of maximising the value of collected data, increasing 

transparency and ensuring responsible future sharing of data. This will depend on sharing with 

whom, and for what purpose. Consent processes have changed dramatically over the last 30 

years and historical studies will not all have explicit consent on the data sharing practices that 

are more commonly included today101. In certain situations, additional ethical permission may 

be required for data sharing when the sample is historical and or individuals can no longer be 

contactable. Thus, data sharing without that explicit permission can only occur within certain 

circumscribed situations.  

When obtaining consent for future research, researchers should aim to be as inclusive as 

possible and allow participants to provide their written informed consent for general areas of 
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research activity. In the context of broad consent, we would also advise the implementation of 

an oversight mechanism for the approval of future research studies. Participants entrust 

researchers to make reasonable decisions regarding future research on their behalf and the 

process of oversight adds further protection to participants, since not all future research uses 

can be predicted. 

Dissemination 

At present, DRAGON-Data has been designed as a way of maximising the present and future 

utility of data collected at the MRC CNGG during the last thirty years. Given the complexity 

of the data, particularly the phenotypic portion, the first cross-disorder analyses of DRAGON-

Data have been carried out by members of the core analytic team and the participating 

investigator groups.    Results of these analyses will be shared through Cardiff University online 

data repositories and communicated through standard scientific channels such as peer-reviewed 

publications.   Ultimately, through adapting the PGC open science model102 and taking 

advantage of the data-sharing frameworks supported by HDR UK, such as the DATAMIND 

Hub103, the DRAGON-Data resource will be available for external investigators where 

individual study consent and ethics permit such data sharing. This will ensure compliance with 

the permissions and ethics of individual studies, and will be based on the secondary analysis 

principles detailed in the Governance section.
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Table 1 

Studies included in DRAGON-Data 

Study Reference Main Diagnosis 
Principal 

Investigator(s) 

Genotyping 

Platform 

N 

Genotyped 

(Post-QC) 

Psychiatric 

Instruments 

Used 

N Phenotyped 

(harmonised) 

BDRN 104 Bipolar disorder 
N. Craddock, I. Jones, 

L. Jones 

Affymetrix5 

OmniExpress 

PsychChip 

4806 

8035 

1102 

SCAN 6000 

Bulgarian 

Trios 
       

Case-control 

data 
105 

Psychosis and mood 

disorders 
G. Kirov OmniExpress 806 SCAN 305 

Family data* 106 

Probands with psychosis and 

mood disorders and their 

families 

G. Kirov Affymetrix6 2119 SCAN 3084 

CLOZUK 47 107 
Treatment-resistant 

schizophrenia 

J. T. R. Walters, M. 

Owen, M O’Donovan 
OmniExpress 13743 None 16405 

Cardiff 

COGS 
108 

Schizophrenia, psychosis or 

bipolar disorder 

J. T. R. Walters, M. 

Owen 
OmniExpress 997 SCAN 1301 

CNV studies        

DEFINE 109 Confirmed ND-CNV carrier 

J.Hall, D.Linden, 

M.B.M. van den Bree, 

M. Owen 

PsychChip 

971  

(Number 

inclusive of 

 

SCID 

PAS-ADD 

125 
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ECHO and 

IMAGINE) 

ECHO 

IMAGINE 
110 111 Confirmed ND-CNV carrier 

M.B.M. van den Bree, 

J.Hall, D.Linden,M. 

Owen 

PsychChip  

CAPA 

 

 

963 

EPAD* 112 
Major depressive disorder (at 

least one affected parent) 
F. Rice, A. Thapar PsychChip 615 

CAPA and 

SCAN 
674 

F-Series* 113 
Psychosis and mood 

disorders 
M. Owen OmniExpress 749 SCAN 1022 

DeCC/DeNt 114 Major depressive disorder 

N. Craddock, L. 

Jones, C.Lewis, 

M.Owen 

610 Quad 1346 SCAN 1504 

NCMH 29 
Any developmental or 

mental disorder 
I. Jones (and others) PsychChip 3352 

SCAN (N=465) 

CAPS-5 

PAS-ADD 

16311 

PTSD 

Registry 
115 PTSD J. Bisson, N. Roberts PsychChip 325 

SCID 

CAPS 
325 

SAGE* 116 ADHD 

A. Thapar, M. 

O’Donovan, M.J. 

Owen, K. Langley, J. 

Martin 

HumanHap550 

PsychChip 
2073* CAPA 1132 

Sib-Pairs 117 Schizophrenia M. Owen OmniExpress 918 SCAN 918 

CAPA: Child and Adolescent Psychiatric Assessment; SCAN: Schedules for Clinical Assessment in Neuropsychiatry; SCID: Structured Clinical Interview for 

DSM-IV, *Includes family data and/or (trios). 
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Table 2 

List of phenotypic variables included in DRAGON-Data 

Variables Included 
Number of 

studies 

Number of 

participants 

Symptoms   

Depression 12 15410 

Mania 11 13906 

Psychosis 9 12072 

ADHD 4 2460 

Anxiety 4 2478 

Conduct disorders 4 2460 

Autism 

PTSD 

4 

1 

2460 

325 

Treatment history 13 31164 

Clinical / illness history   

Age of onset 10 29023 

Hospital admissions 7 26372 

Suicidal ideation 12 15410 

Adverse life events 6 9594 

Education 9 24790 

Substance use 13 29997 

Family history of psychiatric illness 8 21473 

Physical health 11 27725 

Functioning   

Standardised measure of functioning (e.g. Global 

Assessment Scale) 

5 6260 

Marital / relationship status 7 23290 

Current occupation 7 25597 

Cognitive function 7 5048 

   

Number of participants refers to the number of data points available for each set of variables 

listed. 
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Table 3 

Rating scales for suicidal ideation across the studies 

Study Suicidal Ideation: Rating Scale 

CoMPaSS 

0. Absent 

1. Tedium Vitae 

2. Suicidal Ideation 

3. Attempt unlikely to result in death 

4. Attempt likely to result in death 

5. Multiple attempts likely to result in death 

NCMH 

0. Absent 

1. Tedium vitae 

2. Suicidal ideation 

3. Attempt unlikely to result in death 

4. Attempt likely to result in death 

5. Multiple attempts unlikely to result in death 

6. Multiple attempts likely to result in death 

ECHO, IMAGINE, SAGE & 

EPAD (children only) 

Binary variables (yes/no) covering: 

• Thoughts about death or suicide 

• Suicide attempts 

• Non-suicidal self-harm 

EPAD (parents only) 

Suicide attempt or self-harm: 

1. Mild 

2. Moderate 

3. Severe 

PTSD Registry 

Question covers suicide attempts and self-harm in the context 

of borderline personality disorder: 

1. Inadequate information 

2. False or absent 

3. Sub-threshold 

4. Threshold or true 

Sib-Pairs & F-series 

0. None 

1. 1 week duration or one attempt 

2. 2 weeks duration 

3. At least one month 

Bulgarian Trios (family and case 

data) 

0. Not present 

1. Thoughts but no attempts 

2. Attempt at suicide 

3. Serious attempt 
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4. Multiple serious attempt 

BDRN 

Suicidal ideation: 

1. Yes 

2. No 

3. Unknown 

DeCC and DeNt 

1. Deliberately considered but no attempt 

2. Injured self or made attempt but no serious harm 

3. Suicide attempt resulting in serious harm 

4. Suicide attempt designed to result in death 

5. Uncertain 

Note: No variable for suicidal ideation or attempts in DEFINE
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Figure 1 

Curation of phenotypic data 
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Figure 2 

DRAGON-Data pipeline for SNP genotype QC and imputation 
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Figure 3 -  DRAGON-Data  pipeline for CNV Calling  
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Figure 4 - DRAGON-Data Pipeline for standardising genome-wide association summary statistics (summaRygwasqc) 
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