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Abstract 

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been recognized as 

genetic risk factors for both familial and sporadic forms of Parkinson's disease (PD). However, 

compared to cancer, overall lower genetic mutations contribute to the cause of PD, propelling the 

search for protein biomarkers for early detection of the disease. Utilizing 141 urine samples from 

four groups, healthy individuals (control), healthy individuals with G2019S mutation in the LRRK2 

gene (non-manifesting carrier/NMC), PD individuals without G2019S mutation (idiopathic PD/iPD), 

and PD individuals with G2019S mutation (LRRK2 PD), we applied a proteomics strategy to 

determine potential diagnostic and prognostic biomarkers for PD from urinary extracellular 

vesicles (EVs). After efficient isolation of urinary EVs through chemical affinity followed by mass 

spectrometric analyses of EV peptides and enriched phosphopeptides, we identified and 

quantified 4,480 unique proteins and 2,682 unique phosphoproteins. We detected multiple 

proteins and phosphoproteins elevated in PD EVs that are known to be involved in important PD 

pathways such as neuronal cell death, neuroinflammation, autophagy, and formation of amyloid 

fibrils. We established two panels of proteins and phosphoproteins as novel candidates for 

disease and risk biomarkers, and substantiated using ROC, machine learning, and in-depth 

network analysis. Several disease biomarkers were further validated in patients with PD using 

parallel reaction monitoring (PRM) and immunoassay for targeted quantitation. These findings 

demonstrate a general strategy of utilizing biofluid EV proteome/phosphoproteome as an 

outstanding and non-invasive source for a wide range of disease exploration. 
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Introduction 

It has been more than two centuries since Parkinson's disease (PD) was described by Dr. 

Parkinson in 18171. PD is the second most common neurogenerative disorder after Alzheimer's 

disease (AD)2. PD's most common pathological finding is a decreased pigmentation in the 

substantia nigra pars compacta (SNpc) caused by the death of dopaminergic neurons, leading to 

progressive deterioration of motor function3,4. In addition to motor symptoms, non-motor 

symptoms may include cognitive impairment, autonomic dysfunction, hyposmia, and sleep 

disturbances5. Currently, PD is incurable and progresses gradually with symptom deterioration 

into severe disabilities6. It has been estimated that PD affects 1 percent of the population over 

607. Overall, as many as 1 million Americans are living with PD, and approximately 60,000 

Americans are diagnosed with PD each year8,9.  

While the cause of PD is currently unknown, researchers speculate that environmental 

and genetic factors contribute to its development10. Large-scale genome-wide association studies 

(GWAS) have identified 41 independent risk variants for PD in various cohorts4,11. A subset of 

patients develops PD because of a major genetic risk. Specifically, mutations in the Leucine-rich 

repeat kinase 2 (LRRK2) gene are found in hereditary forms, emphasizing the shared molecular 

pathway driving both familial and non-familial PD to comprise the most common cause of the 

disease12,13. Mutations in LRRK2 have been recognized as genetic risk factors for sporadic (~1%) 

and familial forms of PD (~5%)13. LRRK2 encodes a large protein of 2,527 amino acids containing 

two functional enzymatic domains, the GTPase and the Ser/Thr kinase domains, and several 

protein-protein interaction domains such as the armadillo, ankyrin, leucine-rich repeat (LRR), and 

WD40 domains14,15. Out of many mutations in LRRK2, Gly2019→Ser (G2019S) mutation in its 

kinase domain is by far the most common among caucasians16. Interestingly, some individuals 

with the G2019S mutation, known as the non-manifesting carrier (NMC) group, do not develop 

PD. Whether they will develop the disease at an older age remains unclear.  
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 Recent findings regarding the Gly2019→Ser (G2019S) mutation in the LRRK2 kinase 

domain have uncovered that the mutation drives changes in vesicular trafficking, autophagy, and 

lysosomal dysfunction signaling pathways16. The changes in these signaling pathways are 

attributed to the hyperactivation of the LRRK2 kinase activity assessed by phosphorylation of its 

substrates, the Rab proteins17. Rab proteins are the main regulators of important aspects of 

autophagy and lysosome activity, including membrane trafficking, vesicle formation, vesicle 

movement along actin and tubulin networks, and membrane docking and fusion. In short, from 

the evidence above, it is conceivable that the changes in signaling pathways caused by the 

Gly2019→Ser (G2019S) mutation in the LRRK2 kinase domain may be reflected in extracellular 

vesicles (EVs). Therefore, EVs offer a promising source for protein biomarkers in PD.  

EVs (primarily exosomes and microvesicles) are lipid bilayer-coated nanoparticles 

secreted by all cell types. The secretion of EVs was initially considered a means of eliminating 

proteins, lipids, and RNA from inside the cells18. With accumulating evidence, EVs have become 

recognized as a very important component in intercellular communication19. Recent studies have 

reported EVs as a rich resource of biomarkers for the non-invasive detection of 

neurodegenerative diseases from biofluids20. These EV-based disease markers can be identified 

well before the onset of symptoms or physiological detection of illness, making them promising 

candidates for early-stage PD diagnosis21,22. Moreover, since phosphorylation events directly 

reflect cellular physiological status during neurodegeneration, urinary EVs represent a highly 

promising source of phosphoproteins as non-invasive disease markers23,24. Previous studies from 

our group have identified numerous EV phosphoproteins in urine and plasma from breast cancer, 

chronic kidney disease, and kidney cancer patients25,26.  

Here we present a strategy for the discovery and development of proteins and 

phosphoproteins from urinary EVs as diagnostic and prognostic biosignatures for Parkinson's 

disease. For the discovery experiment, we utilized 82 individual urine samples made available 

from Columbia University Irving Medical Center under a Michael J. Fox Foundation (MJFF)-
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funded LRRK2 biomarker project27 and split them into 164 analyses (82 proteomics and 82 

phosphoproteomics). We used our in-house developed unique EVtrap (Extracellular Vesicles total 

recovery and purification) approach to efficiently enrich EVs and coupled it with LC-MS-based 

detection and quantitation for accurate urinary EV proteome and phosphoproteome analysis. Our 

approach to date is the first such method to successfully demonstrate the feasibility of developing 

biofluid-derived EV phosphoproteins for disease profiling25,26. In total, we determined two panels 

of unique proteins and phosphoproteins as novel high-confidence candidates for disease and risk 

biomarkers. Disease biomarkers will help diagnose whether a patient currently has PD; on the 

other hand, risk biomarkers will predict the likelihood of developing PD in the future. Our large-

scale LC-MS analysis efforts combined with extensive bioinformatics analysis led to the discovery 

of unique biosignatures for potential Parkinson's disease diagnostics. 

Furthermore, we also discovered important disease-relevant pathways that provided new 

information for PD intervention. These findings will enhance the discovery and development of 

novel EV protein-based biomarkers and help create an effective early-stage clinical diagnosis 

strategy for PD. An in-depth understanding of those biosignature pathways could also lead to the 

potential discovery of new drugs for optimal intervention strategies in PD progression. 

Results 

Urine EV phosphoproteomics study design and sample quality control for PD biosignature 

development. 

For decades, scientists have been focusing on PD genotype marker discovery. In the case 

of LRRK2 G2019S mutation diagnosis alone, people are often found to either have the mutation 

in their genome without even experiencing PD (non-manifesting carrier/NMC) or do not have the 

mutation in their genome although they are suffering from PD (idiopathic PD/iPD). Furthermore, 

whether people with diagnosed NMC will develop PD later in their lives remains unclear. Multiple 

recent studies have shown that analysis of proteins and phosphoproteins in many cases provides 

a better snapshot of cellular processes and disease progression than genomic or transcriptomic 
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investigations28–31. Proteome/phosphoproteome profiling efforts have already demonstrated 

significant advantages for disease diagnosis and prediction of treatment response32–35. This is 

particularly true for kinase-dependent conditions and kinase inhibitor drugs36–38. Using this study 

design, we have further confirmed what is already known in the PD research community - that 

genotype markers are unreliable. Therefore, there is a critical need to shift the focus to developing 

protein- and phosphoprotein-based biomarkers for PD detection instead. Since the LRRK2 

G2019S mutation alters the phosphorylation activity and these changes are reflected in 

extracellular vesicles, this supports the rationale behind using EVs as promising biosignature 

sources for PD diagnosis and prognosis. Moreover, considering that many phosphorylation 

events directly reflect cellular physiological status, urinary EVs represent a highly promising 

source of proteins and phosphoproteins as non-invasive PD markers23,24. This is further reinforced 

by the recent studies showing Parkinson’s disease relevance of LRRK2 phosphorylation in urinary 

EVs39–41 and LRRK2 G2019S mutation influence on neat urine proteome42.  

Urine samples were collected at Columbia University Irving Medical Center (CUIMC) from 

four cohorts with or without PD, and with or without the common G2019S mutation in the LRRK2 

gene27. The samples were collected from March 2016 to April 2017 under a Michael J. Fox 

Foundation (MJFF)-funded LRRK2 biomarker project. The participants underwent clinical 

evaluation of their cognitive functions using the Montreal Cognitive Assessment (MoCA) and 

motor skills using the Unified Parkinson’s Disease Rating Scale part III (UPDRS-III). This sample 

cohort has been uniquely curated for in-depth analysis and comparison of LRRK2 genotype and 

activity effects on PD as previously described27,43. These 141 samples were divided into three 

groups: the discovery experiment (82 samples) and two validation experiments (59 samples) 

(Figure 1). We were fully blinded to the identity of all samples until after the complete analysis. 

These four groups - control, NMC, iPD, and LRRK2 PD - were the major components of this 

biosignature study design. The demographic information for all samples is provided in Table 1. 

As shown, the four groups were balanced for all demographic variables. 
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Figure 1. The development and validation of biomarker signatures for the diagnosis and prognosis of 

Parkinson’s Disease. A total of 141 urine samples were divided into two groups: the discovery and validation 

experiments. The urine samples were processed by using our in-house EVtrap for EV isolation and PolyMAC 

(where applicable) for phosphopeptides enrichment. In the discovery experiment, the available 82 clinical urine samples 

were further randomly distributed into training and test sets for biomarker prediction. We proposed categorizing the 

potential biomarkers in 2 main categories: disease markers as the potential biomarkers for PD regardless of the LRRK2-

G2019S mutation and risk markers as the potential biomarkers for the risk of acquiring PD. Utilizing machine learning, 

we discovered the top disease and risk biomarkers. Furthermore, we also trained our model using the ten-fold cross-

validation and unbiasedly estimated the predictive ability on the test set. For biomarker validation, another 59 clinical 

urine samples were divided into two groups for parallel reaction monitoring (PRM) and immunoassay analysis. HC: 

healthy control, NMC: non-manifesting carrier, iPD: idiopathic Parkinson’s Disease, LRRK2 PD: LRRK2 Parkinson’s 

Disease, and PD: Parkinson’s Disease. 
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Table 1. The summary of cohort demographics and clinical characteristics for all 82 patients whose samples 

were used in the discovery experiment. The range units for age and disease duration are in years. The groups 

include healthy individuals (control), healthy individuals with G2019S mutation in the LRRK2 gene (non-manifesting 

carrier/NMC), PD individuals without G2019S mutation (idiopathic PD/iPD), and PD individuals with G2019S mutation 

(LRRK2 PD). 

 

To evaluate the quality of samples and demonstrate the superior efficiency of isolating 

urinary EVs by EVtrap, we first selected a few representative samples and analyzed them using 

Tunable Resistive Pulse Sensing (TRPS), Western blotting with anti-CD9 and anti-LRRK2 

antibodies, and LC-MS analyses. Nanoparticle size and distribution analysis with qNano (TRPS) 

of EVtrap- and ultracentrifugation (UC)-enriched urine EV samples both demonstrated a similar 

range of the isolated EVs, with the majority being in the 100-200 nm range (Supplementary Figs. 

1a, b). Here, EVtrap showed a higher concentration of isolated EVs, as demonstrated in a 

previous publication44. Similarly, detection of CD9 and LRRK2 target proteins by Western blot 

from 5 randomly selected urine samples revealed a significant increase in signal levels for both 

proteins after EVtrap isolation compared to UC (Supplementary Fig. 1c). Finally, to show the 

reproducibility of our analytical procedure (from EVtrap enrichment to LC-MS analysis), we split 

a urine sample into six aliquots and processed them separately for LC-MS analysis. 

Supplementary Fig. 2a demonstrates outstanding reproducibility of the procedure, with almost 

all of the proteins detected and quantified across all six samples falling under 10% coefficient of 

variation (CV) and the vast majority under 5% CV. 
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Urinary EVs as prominent sources of PD biomarkers 

We processed 82 urine samples individually for the discovery experiment following the 

illustrated workflow in Supplementary Fig. 2b using approximately 10-15mL of each urine after 

normalization by creatinine concentration. As the first step, we employed EVtrap to capture the 

complete EV profile from the urine samples using the synthesized magnetic beads described 

previously44. Following EV elution and drying, we lysed them with the optimized phase-transfer 

surfactant-based procedure to extract and denature proteins. After the reduction/alkylation step, 

the proteins were digested with sequential Lys-C and trypsin additions, and the resulting peptides 

were desalted. Here, a small portion of each sample (~1%) was used for direct proteomic analysis. 

We carried out phosphopeptide enrichment using our in-house developed dendrimer-based 

PolyMAC method on the remaining majority of each sample and analyzed by LC-MS. Indexed 

Retention Time Standard containing 11 artificial synthetic peptides was added to all proteomic 

and phosphoproteomic samples for improved peptide quantitation and reproducibility. The 

samples were analyzed by Thermo Fisher Q-Exactive HF-X MS coupled with the Ultimate 3000 

UHPLC system. 

Our urinary EV proteomic and phosphoproteomic analyses identified and quantitated 

4,480 unique proteins from 46,240 peptide groups and 2,682 unique phosphoproteins from 

10,620 phosphopeptide groups (see Fig. 2a for quantified features). We evaluated whether our 

identified EV proteins and phosphoproteins were a good source for PD assessment. We 

compared our data with the brain-specific RNA-seq data downloaded from the Human Protein 

Atlas website45. We used 2,587 proteins classified as brain-elevated from the Human Protein 

Atlas dataset to compare our EV protein and phosphoprotein data. We found that 8.9% of our EV 

proteins were denoted as brain-elevated (Supplementary Fig. 3). While the brain is likely a 

minimal source of EV proteins in urine46, this finding strengthens our hypothesis that urinary EV 

proteins and phosphoproteins are great candidates as potential biomarkers for PD.  
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The proteins and phosphoproteins identified must pass a rigorous statistical threshold and 

normalization to be statistically useful, as explained in more detail in the materials and methods 

section. We normalized both the proteome and phosphoproteome data based on internal 

standards. Figures 2b and 2c confirmed that the data had been effectively normalized with a 

coefficient of variation (CV) less than 20%. We also identified the upregulated proteins and 

phosphoproteins in NMC, iPD, and LRRK2 PD groups against the controls. 

 

Figure 2. The summary of identification and quantification for all 82 patients. a) Cleveland Dot Plots for all 

quantified proteins and phosphoproteins. Both proteomic (b) and phosphoproteomic data (c) were normalized based 

on internal standards. Most quantified proteins and phosphoproteins had a CV of less than 20%. Normalized quantified 

data in the training set were then analyzed using feature selection to find potential biomarkers for PD.  
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Functional annotation identifies inflammation, apoptosis, and Aβ accumulation as the 

most prominent etiologies of PD in urine EVs. 

 We also performed gene ontology analysis to understand the correlation between all 

upregulated proteins and PD. We utilized Gene Ontology enRIchment anaLysis and visuaLizAtion 

tool (GOrilla) for biological process gene ontology analysis47. The upregulated proteins from each 

volcano plot were imputed as the target set, while all identified proteins in our results were used 

as the background set. The gene ontology was set with a threshold P-value of less than 10e-3. 

Select gene ontology results are shown in Supplementary Fig. 4. 

As seen in Supplementary Figs. 4b and 4c, the regulation of acute inflammatory 

response was enriched in both iPD and LRRK2 PD, supporting prior knowledge that PD has a 

strong established association with systemic inflammation. The abnormal glycation and 

glycosylation seem to be more common than previously thought in PD and may underlie 

inflammation and mitochondria-induced oxidative stress in a feed-forward mechanism48. 

Furthermore, since PD patients’ CSF appears to have a specific metabolomic signature that 

reflects alterations in glycation or glycosylation, it was not surprising to discover that some 

biological process alterations involving glycosylation were enriched in urine EVs48,49. In NMC and 

LRRK2 PD, those enriched biological processes were glycoside catabolic process, protein O-

linked glycosylation, protein glycosylation, glucosylceramide catabolic process, and 

glycosphingolipid catabolic process (Supplementary Figs. 4a, c). The pathway to degrade 

bradykinin (BK), a peptide that promotes inflammation and oxidative stress, was also enriched in 

iPD50 (Supplementary Fig. 4b). Even though there is no direct evidence of the kinin participation 

in PD, examining these peptides' roles in degenerative processes remains interesting. The 

degradation of BK might occur to counteract the overexpression of BK. Cytolysis, which is 

inhibited by various reducing agents, including dopamine, was also enriched in iPD51. The fact 

that dopamine production is diminished in PD supports the observed increase in cytolysis. Blood 

coagulation was enriched in LRRK2 PD, most likely due to the presence of amyloid formation in 



12 
 

plasma and profound ultrastructural changes to platelets4. The enrichment of fibrinolysis was also 

discovered in the LRRK2 PD population (Supplementary Fig. 4c). PD patients receiving 

antiparkinsonian drugs are often associated with blood coagulation and fibrinolysis 

abnormalities52. 

Supplementary Fig. 4d comparison provides the most exciting discovery about the 

difference between NMC and LRRK2 PD gene ontology. In this evaluation, apoptotic DNA 

fragmentation and cellular response to amyloid-beta (Aβ) were enriched in LRRK2 PD, supporting 

evidence that apoptosis and Aβ accumulation are two of the most prominent etiologies PD53,54. 

Increasing experimental evidence has also indicated that the accumulation of misfolded or 

unfolded proteins results in endoplasmic reticulum stress, contributing to apoptosis or neuronal 

death1,55.  

Diagnostic and prognostic panels correlate with disease progression. 

We investigated any correlations between the expression of these new potential 

biomarkers with age, gender, disease duration, MoCA score, and UPDRS-III score of the patients. 

There is increasing evidence that sex is an important factor in the development of PD56.  In men, 

the risk of developing PD is nearly twice as high as in women. However, women have a higher 

mortality rate and faster disease progression57. MoCA was initially designed to evaluate mild 

cognitive impairment associated with AD to assess memory, executive functions, and verbal 

fluency, among others, and can be applied in a short period of time58. The test has been used for 

the cognitive evaluation of patients with PD to identify cognitive deficits. MoCA scores 

range between 0 and 30, where a score of 26 or over is considered normal. UPDRS-III scoring 

method evaluates the patient’s motor skills ranging from 0 to 108, with 108 being the worst. 

We found that the expression levels of ENPEP, GDPD3, NAGA, NEDD4L, QPRT, and 

SCAMP3 proteins in urine EVs were significantly higher in males than in females 

(Supplementary Fig. 5a). There were positive correlations in the expression of FUT6 (R2=0.83, 

P<0.05) and HAO2 (R2=0.90, P<0.005) proteins with age in the female NMC group, as seen in 
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Supplementary Fig. 5b. Meanwhile, the expression of ALPL protein was negatively correlated 

with disease duration in the female iPD group (Supplementary Fig. 5c). Related to the MoCA 

scores in the male NMC group, we found a positive correlation in CAPN5 and HNRNPA1 proteins, 

and a negative correlation in ENPEP, GDPD3, and GPD1L proteins (Supplementary Fig. 5d). 

Additional significant correlations between protein abundance levels, MoCA scores, and gender 

are shown in Supplementary Fig. 5d. 

At the phosphoprotein level, pNEU1 abundance was positively correlated with age in the 

female NMC group (R2=0.86, P<0.01) (Supplementary Fig. 6a). DTD1 phosphorylation was 

positively correlated with MoCA in the female NMC group (Supplementary Fig. 6b). pANXA11 

and pHLA-B were negatively correlated with MoCA in the male NMC group, while there were 

positive correlations for CYSRT1, LTB4R, and TJP3 phosphoproteins. In addition, MoCA in 

female NMC was negatively correlated with the expression of CYSRT1 phosphoprotein. Lastly, 

the pLTBR4 level in the male LRRK2 PD group was positively correlated with MoCA.  

Furthermore, we assessed the correlations of UPDRS-III scores with the protein and 

phosphoprotein intensities in iPD and LRRK2 PD patients versus those in the healthy individuals. 

We found several proteins and phosphoproteins depicted in Figure 3a and Supplementary Fig. 

7 to be positively and negatively correlated with UPDRS-III, and many that are moderately 

correlated with the UPDRS-III (0.5 < Pearson correlation < 0.7). Lastly, Figure 3b shows three 

potential biomarkers, PEBP4, NEDD4L, and KLK6, with higher than 0.7 Pearson correlation 

scores, denoting a strong correlation with UPDRS-III. These correlation data need to be further 

validated, and their relevance to PD evaluated in a translational manner.  
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Figure 3. Correlations with clinical parameter, UPDRS-III. a) Pearson correlation scores and associated P-values [-

log10] of all protein intensities with the UPDRS-III score. LRRK2 PD patients were included. Significantly correlated 

proteins with an FDR of 5% after Benjamin-Hochberg correction are labeled. b) The scatterplots of three biomarkers 

with strong Pearson correlation scores (> 0.7). 

 

Disease-related EV protein and phosphoprotein biomarkers are prominently involved in 

the autophagy pathway. 

 As potential disease markers, HNRNPA1, IDE, and STK11 proteins are shown to be 

involved in certain pathways that are important in PD progressions, such as protein targeting to 

peroxisome, AMPK signaling pathway, leukocyte activation, and mRNA splicing (Figure 4a). 

These markers also interact closely with PRKACA, VDAC1, VDAC2, and VDAC3, known to be 

PD related59. Moreover, five disease markers, PCSK1N, HNRNPA1, FUT6, pPLA2G4A, and 

pLTB4R, are known to be involved in such important PD pathways as neuronal cell death, 
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neuroinflammation, autophagy, and formation of amyloid fibrils (Figure 4b). From the Ingenuity 

Pathway Analysis (IPA), the upregulation of IDE leads to neuronal cell death activation, while the 

upregulation of STK11 indirectly leads to autophagy activation. PLA2G4A and LTB4R 

phosphoproteins were shown to be involved in downstream GPCRs and MAPK signaling 

pathways (Supplementary Fig. 8a). Meanwhile, the presence of NEU1, a lysosomal enzyme and 

a disease marker, supports the emerging concept that PD is a lysosomal disorder60 

(Supplementary Fig. 8b). Furthermore, the overexpression of PLA2G4A, LTB4R, and NEU 

phosphoproteins can trigger the autophagy pathway, one of the hallmark pathways in PD 

(Supplementary Fig. 8c). Interestingly, NEU1 showed two contradicting downstream effects. The 

overexpression of low-density lipoprotein (LDL)-cholesterol by NEU1 inhibited autophagy. On the 

other hand, the inhibited expression of high-density lipoprotein (HDL)-cholesterol by NEU1 

triggered autophagy. In Supplementary Fig. 8c, PLA2G4A is shown to indirectly activate 

autophagy, supporting the fact that PLA2G4A activation leads to the impairment of autophagy 

flux by directly increasing lysosomal membrane permeabilization (LMP)61. The interactions of 

LTB4R/RAC1/PAK1/p38 MAPK are also known to activate autophagy.  

 Additionally, Figure 4c depicts the pathways on how risk markers, ALDH1L1, pRECK, 

and pFKBP15 proteins, could trigger PD. The upregulated MAP2K1 causes the upregulation of 

ALDH1L1 and MAOB, which further activates PD. Selegiline, an inhibitor of MAOB protein, has 

been approved by the FDA to treat PD. ALDH1L1 has been developed as one of the astrocyte 

markers and is homogenously expressed throughout the brain62. From our study, this novel 

marker by itself appears to be sufficient enough to act as the risk biomarker for PD. The 

upregulation of APOE inhibits the expression of ADAM10; consequently, pFKBP15 is 

overexpressed, and EGFR expression is downregulated. 

Meanwhile, pRECK overexpression also inhibits EGFR expression. EGFR downregulation 

has been shown in postmortem brains of patients63. HNF4A can inhibit SPP1 and activate APOM, 

which leads to HDL-cholesterol activation. High-plasma HDL is associated with increased PD risk 
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and duration64,65. The overexpressed ALPL also inhibits SPP1, a glycosylated phosphoprotein 

expressed in neurons, and appears to play the role of a double-edged sword in neurodegenerative 

diseases66. SPP1 may be toxic to neurons, lead to cell death in some cases, and have potent 

neuroprotective effects in others67.  

 

Figure 4. Protein and phosphoprotein biomarker network and pathway analysis. A circos plot (a) and the IPA 

pathway analysis of the protein and phosphoprotein disease markers (b) and risk markers (c). see Supplementary Fig. 

11 for a complete figure legend.  

 

Top disease and risk biomarkers were selected and evaluated using ten-fold cross-

validation 
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The discovery experiment, which included samples from 21 healthy individuals (control), 

13 healthy individuals with G2019S mutation in the LRRK2 gene (non-manifesting carrier/NMC), 

28 PD individuals without G2019S mutation (idiopathic PD/iPD), and 20 PD individuals with 

G2019S mutation (LRRK2 PD), were randomly divided into two groups: 70% training set and 30% 

test set for biomarker selection and predictive ability estimation (Figure 1). We developed and 

employed a robust bioinformatics workflow to identify potential PD biomarkers. The median 

normalization was performed on the training set so that all abundances in the four groups had the 

same median. After passing thresholds and robust normalizations, we obtained and quantified a 

total of 2,128 qualified unique proteins and 1,154 qualified unique phosphoproteins.  

From these curated training data, we generated six volcano plots for comparisons 

between NMC, iPD, and LRRK2 PD groups against the control samples (Supplementary Fig. 9a 

and 9b). The upregulated proteins and phosphoproteins were overlapped in Venn diagrams. As 

mentioned previously, we investigated potential biomarkers in two different groups, identified as 

disease markers and risk markers. We denoted disease markers as upregulated in PD regardless 

of the LRRK2-G2019S mutation. Risk markers were labeled as upregulated in both NMC and iPD 

groups. A single protein biomarker might be involved in several already known diseases. To offer 

a better diagnostic value, we proposed to quantify a set of several biomarkers rather than a single 

diagnostic protein. 

We first performed feature selection to select the top disease and risk biomarkers. Instead 

of using a simple one-shot feature selection technique that usually yields a sub-optimal solution, 

we used a two-step feature selection process that generates better performance: backward 

feature elimination followed by exhaustive feature selection68. We deployed backward feature 

elimination which removes, one feature at a time, those features that do not have a significant 

effect on the dependent variable or prediction of output. Then, we deployed exhaustive feature 

selection to find the best performing feature subset by searching across all possible feature 

combinations (a brute-force method), until the desired number of features is left. Specifically, this 
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number is determined by observing the increase in performance (accuracy) with the increase in 

the number of final selected features (in which it is diminishing return). By utilizing this two-layer 

method, we could identify the top 6 disease biomarkers and 3 risk biomarkers. The final selected 

markers are shown in Figure 5a and 5b and listed in Figure 5c. The violin plots of the selected 

disease and risk biomarkers are shown in Figures 5d and 5e, respectively (see Supplementary 

Fig. 10 for additional top biomarkers). After discovering the top disease and risk biomarkers, we 

optimized our hyperparameters and trained our model using the random forest classifier. Lastly, 

we trained our model by utilizing the ten-fold cross-validation.  
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Figure 5. The selected top disease and risk biomarkers acquired from the training set. a) The training set's 

heatmap of top potential protein and phosphoprotein biomarkers. b) The heatmap of top potential protein and 

phosphoprotein biomarkers in the test set. c) The table summary of the top disease and risk biomarkers. Violin plots of 

the statistically upregulated proteins and phosphoproteins from the training set in (d) PD regardless of the LRRK2-

G2019S mutation (disease markers) and (e) in both NMC and iPD groups (risk markers) (see Supplementary Fig. 10 

for additional biomarkers). 

 

Disease biomarkers were substantiated using classification models, PRM-MS targeted 

mass spectrometry, and Western blot experiments. 

After the careful feature selection and hyperparameters as described above, we tested 

our constructed model using accuracy scores, confusion matrixes, and receiver operating 

characteristic (ROC) curves, as depicted in Figure 6. A confusion matrix evaluates one classifier 

with a fixed threshold, while the ROC evaluates that classifier over all possible thresholds. The 

area under the ROC curve (AUC) provides the performance measurement across the 

classification threshold. A higher true positive percentage and a lower false-positive percentage 

will produce better AUC results. Normally, in the medical field, an AUC of 70-80% is considered 

acceptable, 80-90% is considered good, and 90-100% is considered excellent. For example, the 

AUC for the top six disease biomarkers is 95.9%, with 85.52% confusion matrix accuracy (Figure 

6a and 6c). This panel would result in a 95.9% likelihood that the doctor will correctly distinguish 

a PD patient from a healthy patient based on finding the six biomarkers at an elevated level in the 

urinary EVs. Furthermore, we found that using all three protein and phosphoprotein risk 

biomarkers resulted in an AUC of 99.80% with 95.56% accuracy for the confusion matrix (Figure 

6b and 6d). Certainly, these findings need to be verified with a much more expanded validation 

cohort.  
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Figure 6. Unbiased estimation of predictive ability of urinary proteomes and phosphoproteomes on the test 

set. Receiver operating characteristic (ROC) curves and the confusion matrixes for the Random Forest Classifier model 

to classify (a) Parkinson’s Disease (PD) vs. Normal (N) individuals and (b) Risk (R) vs. Nonrisk (NR) individuals. The 

dotted diagonal line indicates random performance, and the light blue area represents the 95% confidence interval. 

The accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) scores with 

their 95% confidence intervals are shown for both (c) the PD vs. N and (d) the R vs. NR. 

 

Parallel Reaction Monitoring-Mass Spectrometry (PRM-MS) and Western blot are both 

commonly used for the initial validation of potential biomarkers. We selected several of our top 
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disease biomarkers and urinary exosome markers for further validation. Quantitative assays 

based on PRM-MS were performed with a new set of urine EV samples from 28 patients with PD 

and 11 healthy individuals. All of the samples used in the validation experiments came from a 

new cohort of patients. Two disease markers, HNRNPA1 and HAO2, were observed to be 

significantly upregulated in patients with PD compared to healthy individuals (Figure 7a). 

Interestingly, FN1, one of the urinary exosome markers, was also upregulated in PD 

patients (P < 0.01). We further performed immunoassay with this new cohort of urine EV samples 

from 10 patients with PD and 10 healthy individuals. Three disease markers, HNRNPA1, PCSK1N, 

and STK11, were noticeably upregulated in patients with PD compared to healthy individuals 

(Figure 7b, see Supplementary Fig. 11 for the original Western blot images).  

 

Figure 7. Targeted quantitation of potential disease biomarkers. a) One top disease biomarker, HNRNPA1, was 

validated in 28 patients with PD and 11 healthy individuals, using PRM-MS (P < 0.1). HAO2 and FN1 were also 

significantly upregulated in PD (P < 0.01). b) Two top disease biomarkers, HNRNPA1 and PCSK1N, and a potential 
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disease biomarker, STK11, were validated in 10 patients with PD and 10 healthy individuals using Western blot (P < 

0.1). The student’s t-test calculated all P values. 

 

LRRK2 and its Rab Substrates Signaling are altered but not significant PD biomarkers. 

Finally, we also focused our efforts on the direct LRRK2 activation in these urine EV 

samples in addition to new biomarker discovery. LRRK2 is known to phosphorylate a subgroup 

of Rab proteins, and LRRK2-G2019S mutation has been previously shown to increase the 

phosphorylation of its Rab substrates16. Rab proteins are master regulators of membrane 

trafficking, orchestrating vesicle formation and vesicle movement along actin and tubulin networks, 

as well as membrane docking and fusion - all critical aspects of autophagy and lysosome biology16. 

First, we performed Western blot analyses of all 82 urine samples, quantifying CD9 (common 

exosome marker), LRRK2, and pSer1292-LRRK2 signal in the EVs captured by EVtrap 

(Supplementary Fig. 12a). pSer1292, a LRRK2 autophosphorylation site, indirectly reflects 

LRRK2 activation69. We normalized and compared the signal between all samples using a 

recombinant autophosphorylated LRRK2 protein as an internal standard39. As expected, the 

normalized CD9 signal did not show a significant difference between the sample groups 

(Supplementary Fig. 12b), while the expression of LRRK2 in LRRK2 PD was significantly higher 

than in the control samples (P=0.028). Unfortunately, it was challenging to detect the pSer1292-

LRRK2 signal in most samples, caused by a meager amount of this modified protein in the 

samples and/or a lower antibody sensitivity. Due to undetectable signals in most samples, we did 

not find any significant difference in the pSer1292-LRRK2 phosphorylation level itself 

(Supplementary Fig. 12b). We also compared the Western blot quantitative result with the mass 

spectrometry data (Supplementary Fig. 12c). While not all of the differences observed in these 

Western Blot and mass spectrometry experiments showed statistically significant changes, there 

was an apparent trend of higher LRRK2 signal in the G2019S groups (NMC and LRRK2 PD) in 

both the Western blot and mass spectrometry data. Interestingly, the LRRK2 overall 



23 
 

phosphorylation level (sites other than Ser1292) is lower in NMC and significantly lower in LRRK2 

PD than in the control group. Indeed, the low level of phosphorylated LRRK2 in EVs might explain 

why it was challenging to detect pSer1292-LRRK2 signals in the Western Blot. 

  From the urine EV LC-MS analyses, we identified 34 Rab GTPases, 12 of which are known 

LRRK2 substrates, and eight phosphorylated Rab GTPases (Supplementary Table. 1). After in-

depth statistical normalization and qualification, we quantified 15 Rab GTPases (10 LRRK2 

substrates) and four phosphorylated Rab GTPases. We observed that Rab2A (P<0.003) and 

Rab10 (P=0.037) were significantly upregulated in LRRK2 PD compared to the control samples 

(Supplementary Fig. 13a). Rab2A's involvement in retrograde trafficking and particle recycling 

from Golgi back to the endoplasmic reticulum (ER) shows the role of this protein in the organellar 

homeostasis pathway to prevent misfolded proteins from entering the Golgi apparatus6. Thus, the 

upregulation of Rab2A in LRRK2 PD, which may promote retrograde trafficking machinery, may 

be the α-syn aggregation stress response.  

Rab10 is a well-known substrate of LRRK2, and in vitro assays suggested that PD-related 

neurodegeneration may start by LRRK2-G2019S increasing phosphorylation of Rab1070. It is also 

known that Rab10 is involved in LRRK2 and other Rabs relocalization71. Therefore, it is not 

surprising that Rab10 was present at higher levels in the LRRK2 PD group EVs (Supplementary 

Fig. 13a). Interestingly, Rab17 protein was qualified to be one of our progression markers, 

although currently, the role of Rab17 in PD progression is not fully understood. At the 

phosphoprotein level, only Rab12 (P<0.005) was significantly upregulated in LRRK2 PD 

(Supplementary Fig. 13a). Rab12 is a LRRK2 endogenous substrate that plays a role in 

endosomal lysosome sorting, degradation, and autophagy71. 

We also investigated the correlation of the identified Rab GTPase expression levels with 

age, gender, disease duration, and MoCA scores with the new biomarkers. As seen in 

Supplementary Figure 13b, the expression of Rab1A protein in females was significantly higher 

than in males with P<1e-12. In contrast, Rab1B (P<0.0005), Rab3D (P<0.005), and Rab7A 
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(P<0.05) were expressed at higher levels in males than females. We also observed that the 

expression level of Rab2A protein in female iPD individuals was positively correlated with age 

(R2=0.68, P<0.001) (Supplementary Fig. 13c). Meanwhile, the expression of Rab17 protein in 

female iPD individuals was positively correlated with MoCA (R2=0.63, P<0.005) (Supplementary 

Fig. 13d). As noted before, these correlations need to be reproduced and evaluated further to 

better understand their significance. 

Discussion 

Mass spectrometry (MS)-based biofluid proteome analysis and quantitation have recently 

gained renewed interest and excitement in disease profiling efforts. The approach offers 

immeasurable potential for innovative biomarker discovery. However, successful translation from 

MS data to human disease profiling remains limited. This limitation is partly due to the complexity 

of biofluids, which have a very large dynamic range and are typically dominated by a few highly 

abundant proteins. To date, scientists have been concentrating on finding PD biomarkers in 

biofluids such as CSF, plasma, and urine without paying much attention to the importance of EVs 

as a potential source of biomarkers72. Here, we report in-depth analyses of proteome and 

phosphoproteome in urinary EVs and demonstrate the viability of developing proteins and 

phosphoproteins as potential disease biomarkers. We present an MS-based strategy that 

includes isolating EV particles from human urine utilizing EVtrap, enrichment of EV 

phosphopeptides, in-depth LC/MS analysis, and robust bioinformatics evaluation for biomarker 

discovery and qualitative verification. We analyzed EV samples from patients with LRRK2-

G2019S mutation (NMC), idiopathic-PD (iPD), and LRRK2 PD compared to healthy individuals to 

identify candidate disease and risk biomarkers.  

In total, we discovered two panels of high-confidence biomarkers, which were 

substantiated using ROC, machine learning, and in-depth network analysis. Several disease 

biomarkers have also been validated using targeted approaches - PRM and Western blot 

(Figures 7a and 7b). The disease biomarkers could be employed for PD detection in a non-
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invasive way using a simple urine collection. The risk markers can be further investigated for 

early-onset PD detection and prognosis. Together, the extensive data on these potential 

biomarkers might serve as a future of PD detection in a non-invasive and more cost-effective 

manner and as a resource to the research community for further studies. In other words, this 

platform represents a foundational resource for the emerging field of accurate and reproducible 

proteomic biomarker discovery. We also showed that some biomarkers sustained positive or 

negative correlations with gender, age, disease duration, MoCA, and UPDRS-III. However, we 

need to emphasize that these correlations do not automatically mean causation. Some relevant 

correlations should be studied further to provide more information about the corresponding 

biomarkers. Furthermore, the emerging system/network analysis has revolutionized novel 

mechanism discovery and promising drug targets. Our network analysis of the gene expression 

involving these potential biomarkers has revealed the connections between our biomarkers and 

critical pathways that could lead to PD development.  

We also directed significant attention to LRRK2 kinase and its Rab substrate proteins. 

This project involved two groups of patients with LRRK2-G2019S mutation, a feature present in 

some PD patients. However, it is known that the mutated LRRK2 does not necessarily lead to PD 

onset, and many individuals live with this mutation without developing Parkinson’s disease. This 

study found a minor increase in LRRK2 protein amount and its overall phosphorylation level in 

PD patients’ urine EVs (Supplementary Fig. 12). Similarly, a few select Rab proteins showed an 

increased EV signal in total protein amount and phosphorylation level in PD cases (Rab2A, Rab10, 

Rab12; Supplementary Fig. 13). However, none were selected as the optimal potential 

biomarkers for PD diagnosis or prognosis. This finding further underscores the reality that 

Parkinson’s disease is highly complicated, with multiple signaling pathways involved in its 

pathology. While LRRK2 kinase is known to be involved in PD progression, detecting LRRK2 and 

its direct substrates may not provide sufficient differentiation between cases. As carried out here, 

a more global analysis is needed to determine the most statistically significant biomarkers that 
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may or may not be directly influenced by LRRK2 activity. We advocate that such a comprehensive 

analysis with highly stringent bioinformatics data validation gives us the best opportunity to 

discover the most optimal differentiating markers. 

In summary, we have developed several comprehensive biomarker panels of proteins and 

phosphoproteins in urinary extracellular vesicles as biosignatures for Parkinson's disease 

diagnosis and prognosis. The study highlights our ability to isolate and identify thousands of 

unique proteins and phosphoproteins from relatively small volumes of urine samples by utilizing 

the EVtrap EV enrichment approach. These findings further validate the underlying principle that 

this strategy could be valuable for exploring existing resources in a wide range of diseases. Finally, 

we expect our immediate results, followed by extensive evaluation and validation of the new 

markers in the clinical setting, could improve these patients' medical outcomes and quality of life. 

Methods 

Sample Collection 

All 82 urine samples used in the discovery LC-MS study and 59 urine samples used in the 

validation experiments were collected at Columbia University Irving Medical Center (CUIMC) and 

sent to our lab blindly. The samples were collected from March 2016 to April 2017 under a Michael 

J. Fox Foundation (MJFF)-funded LRRK2 biomarker project27. Each sample has been uniquely 

curated for LRRK2 genotype and PD activity effects. For the initial comprehensive discovery 

experiments, the urine samples were collected from 21 healthy individuals (Control), 13 healthy 

individuals with G2019S mutation (non-Manifesting Carrier/NMC), 28 PD individuals without 

G2019S mutation (idiopathic-PD/iPD), and 20 PD individuals with G2019S mutation (LRRK2 PD). 

The 59 urine samples used for the validation experiments were classified as 38 patients with PD 

and 21 healthy individuals without genetic differentiation. All 141 samples were processed 

separately by implementing the statistical principles in experimental designs, including replication, 

randomization, and blocking when applicable73. 
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EV Isolation by EVtrap 

For each urine sample, approximately 15-20mL was utilized for EV enrichment by EVtrap. Before 

the EVtrap capture, the urine volume was normalized based on the creatinine levels, a normalizer 

we found to be optimal for EV studies. The EVtrap beads were provided by Tymora Analytical 

and were utilized as described previously44. The frozen urine samples were thawed in a 37°C 

water bath. The samples were then centrifuged at 2,500 x g for 10 min to remove cell debris and 

large apoptotic bodies and diluted with EVtrap loading buffer in a 1:10 v/v ratio. The magnetic 

EVtrap beads were added directly to the diluted at a ratio of 20 uL EVtrap beads per 1 mL urine. 

The mixture was incubated for 1 hour by end-over-end rotation, and the supernatant was removed 

using a magnetic separator rack, the beads were washed with PBS, and the EVs were eluted by 

a 10 min incubation with 100 mM triethylamine (TEA, Millipore-Sigma). The eluted samples were 

dried entirely in a vacuum centrifuge. For Western blot analysis, the dried EV samples were lysed 

directly in LDS buffer (lower volumes of urine (~0.5-2mL) were used for Western blot experiments). 

EV Isolation by Differential Ultracentrifugation (UC) 

Urine samples (~1-2mL) were centrifuged at 10,000 × g at 4°C for 1 h. Supernatants were further 

centrifuged at an ultra-high speed of 100,000 × g (Optima MAX-XP Ultracentrifuge, Beckman 

Coulter) at 4°C for 2 hrs. Pellets were washed with 1x PBS and centrifuged at 100,000 × g for 2 

hrs again. Collected pellets were lysed directly in LDS buffer for Western blot analysis. 

Western Blot Experiments  

A small percentage (approximately 0.5 mL urine sample equivalent for CD9, 1 mL for LRRK2, 

and 2 mL for pSer1292-LRRK2) of each purified EV sample was incubated for 10 min at 95°C in 

LDS sample buffer. The equivalent volume of each sample aliquot was loaded and separated on 

an SDS-PAGE gel (NuPAGE 4-12% Bis-Tris Gel, Thermo Fisher Scientific). Afterward, the 

proteins were transferred onto a low-fluorescence PVDF membrane (Millipore-Sigma), and the 

membrane was blocked with 1% BSA in TBST for 1 hr. The membranes were then incubated with 

rabbit anti-CD9 (clone D3H4P; Cell Signaling Technology) at 1:5,000 ratio, or anti-LRRK2 (clone 
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MJFF2 (c41-2); Abcam) at 1;1,000 ratio, or anti-pSer1292-LRRK2 (clone MJFR-19-7-8; Abcam) 

at 1:500 ratio overnight in 1% BSA in TBST (3% BSA in TBST was used for anti-pSer1292-

LRRK2). For the secondary antibody visualization, Goat anti-Rabbit Alexa-Fluor 800 nm (Thermo 

Fisher Scientific) was used to bind the primary antibodies and incubated for 1 hr in 1% BSA in 

TBST. Lastly, the membrane was scanned by Odyssey near-infrared scanner (Licor) for signal 

detection and quantitation. A total of 8 blots were used for each protein target detection. We 

loaded internal standards at an identical concentration in each blot to normalize the signal 

between the samples and the blots. For CD9 relative quantitation, we extracted EVs from a 

mixture of several unrelated samples as an internal control added as a separate lane into each 

gel to enable gel-to-gel relative quantitation of the signal. For the relative quantitation of LRRK2, 

we used the same amount of the recombinant LRRK2 protein purchased from Thermo Fisher as 

an internal control for gel-to-gel relative quantitation of signal. Finally, for pSer1292-LRRK2 

relative quantitation, we carried out in vitro autophosphorylation assay of the purchased 

recombinant LRRK2 protein, as described previously, and loaded the phosphorylated protein as 

an internal control for all phospho-LRRK2 Western Blot detection experiments. 

For the validation experiments, the membranes were incubated with the following primary 

antibodies: rabbit anti-CD9 (clone D3H4P; Cell Signaling Technology) at 1:5,000 ratio, rabbit anti-

STK11 (clone D60C5; Cell Signaling Technology) at 1:1,000 ratio, or mouse anti-PCSK1N (clone 

NP_037403.1; Millipore-Sigma) at 1:1,000 ratio, or rabbit anti-HNRNPA1 (clone D21H11; Cell 

Signaling Technology) at 1:1,000 ratio. For the secondary antibody visualization, Goat anti-Rabbit 

or Goat anti-Mouse Alexa-Fluor 800 nm (Thermo Fisher Scientific) were used to bind the primary 

antibodies. An equal amount of pooled urine EVs was loaded in lane 1 of each gel to normalize 

the signal between two blots. The signal for each sample was then normalized to CD9. 

LC-MS Sample Preparation 

Phase-transfer surfactant (PTS) aided procedure was used to lyse the dried EVs and extract 

proteins74. First, EVs were resuspended in the lysis solution containing 12 mM sodium 
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deoxycholate, 12 mM sodium lauroyl sarcosinate, 10 mM TCEP, 40 mM CAA, and phosphatase 

inhibitor cocktail (Millipore-Sigma) in 50 mM Tris·HCl, pH 8.5 by incubating 10 min at 95°C. During 

this step, the proteins were also denatured, reduced, and alkylated. The samples were diluted 

fivefold with 50 mM triethylammonium bicarbonate and digested with Lys-C (Wako) at 1:100 

(wt/wt) enzyme-to-protein ratio for 3 h at 37°C. For further protein digestion, trypsin was added to 

a final 1:50 (wt/wt) enzyme-to-protein ratio for overnight digestion at 37°C. Then, the samples 

were acidified with trifluoroacetic acid (TFA) to a final concentration of 1% TFA. An ethyl acetate 

solution was added at a 1:1 ratio to the samples. The mixture was vortexed for 2 min and then 

centrifuged at 20,000 × g for 2 min to obtain aqueous and organic phases. The organic phase 

(top layer) was removed, and the aqueous phase was collected, dried down to <10% original 

volume in a vacuum centrifuge, and desalted using TopTip C18 tips (Glygen) according to the 

manufacturer's instructions. Each sample was split into 99% and 1% aliquots for 

phosphoproteomic and proteomic experiments, respectively. The samples were dried entirely in 

a vacuum centrifuge and stored at -80°C. For phosphoproteome analysis, the 99% portion of each 

sample was subjected to phosphopeptide enrichment using PolyMAC Phosphopeptide 

Enrichment kit (Tymora Analytical) according to manufacturer's instructions, and the eluted 

phosphopeptides dried completely in a vacuum centrifuge. The whole enriched sample was 

loaded onto LC-MS for phosphoproteomics analysis, while only 50% of each sample was injected 

for proteomics. 

LC-MS Analysis  

Both proteomic and phosphoproteomic samples were spiked with an 11-peptide indexed Retention 

Time internal standard mixture (Biognosys) to normalize the LC-MS signal between the samples. 

All samples were captured on a 2-cm Acclaim PepMap trap column and separated on a heated 50-

cm Acclaim PepMap column (Thermo Fisher Scientific) containing C18 resin. The mobile phase 

buffer consisted of 0.1% formic acid in HPLC grade water (buffer A) with an eluting buffer containing 

0.1% formic acid in 80% (vol/vol) acetonitrile (buffer B) run with a linear 60-min gradient of 6–30% 
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buffer B at a flow rate of 300 nL/min. The UHPLC was coupled online with a Q-Exactive HF-X mass 

spectrometer (Thermo Fisher Scientific). The mass spectrometer was run in the data-dependent 

mode, in which a full-scan MS (from m/z 375 to 1,500 with the resolution of 60,000) was followed 

by MS/MS of the 15 most intense ions (30,000 resolution; normalized collision energy - 28%; 

automatic gain control target (AGC) - 2E4, maximum injection time - 200 ms; 60sec exclusion]. 

Parallel Reaction Monitoring 

Peptide samples were dissolved in 10.8 μL 0.05% TFA & 2% ACN and injected 10 μL into the 

UHPLC coupled with a Q-Exactive HF-X mass spectrometer (Thermo Fisher Scientific). The mobile 

phase buffer consisted of 0.1% formic acid in HPLC grade water (buffer A) with an eluting buffer 

containing 0.1% formic acid in 80% (vol/vol) acetonitrile (buffer B) run with a linear 60-min gradient 

of 5–35% buffer B at a flow rate of 300 nL/min. Each sample was analyzed under PRM with an 

isolation width of ±0.8 Th. In these PRM experiments, an MS2 level at 30,000 resolution relative to 

m/z 200 (AGC target 2E5, 200 ms maximum injection time) was run as triggered by a scheduled 

inclusion list. Higher-energy collisional dissociation was used with 28 eV normalized collision energy. 

PRM data were manually curated within Skyline-daily (64-bit) 20.2.1.404 (32d27b598)75. 

LC-MS Data Processing 

The raw files were searched directly against the human Swiss-Prot database with no redundant 

entries, using Byonic (Protein Metrics) and Sequest search engines loaded into Proteome 

Discoverer 2.3 software (Thermo Fisher Scientific). MS1 precursor mass tolerance was set at 10 

ppm, and MS2 fragment tolerance was set at 20 ppm. In the processing workflow, search criteria 

for both search engines were performed with full trypsin/P digestion, a maximum of two missed 

cleavages allowed on the peptides analyzed from the sequence database, a static modification of 

carbamidomethylation on cysteines (+57.0214 Da), and variable modifications of oxidation 

(+15.9949 Da) on methionine residues and acetylation (+42.011 Da) at N terminus of proteins. 

Phosphorylation (+79.996 Da) on serine, threonine, or tyrosine residues was included as the 

variable modification for phosphoproteome analysis. The false-discovery rates of proteins and 
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peptides were set at 0.01. All protein and peptide identifications were grouped, and any redundant 

entries were removed. Unique peptides and unique master proteins were reported. Finally, the 

proteomic results were further normalized against common urine EV proteins to account for any 

other variations in urine concentration. 

Label-free Quantitation Analysis 

The label-free quantitation node of Precursor Ions Quantifier in the consensus workflow through the 

Proteome Discoverer v2.3 (Thermo Fisher Scientific) was used to quantify all data. For the 

quantification of proteomic and phosphoproteomic data, the intensities of peptides were extracted 

with initial precursor mass tolerance set at 10 ppm, fragment mass tolerance at 0.02 Da, minimum 

peak count as 1, maximum RT shift as 5 min, PSM confidence FDR of 0.01 as strict and 0.05 as 

relaxed, with hypothesis test of t-test (background based), maximum RT shift of 5 min, protein 

abundance based ratio calculation, 100 as the maximum allowed fold change, and site probability 

threshold of 75. The abundance levels of all peptides and proteins were normalized to the spiked-

in internal iRT standard. For calculations of protein abundance, the sum of sample abundances of 

the connected peptide groups was added together and used for downstream analysis. 

Bioinformatics Analysis 

All clinical sample data were analyzed using the Perseus software (version 1.6.1.5)76. The 

normalized intensities of proteins and phosphoproteins were extracted from Proteome Discoverer 

search results and log-based 2 transformed for quantifying both proteomic and phosphoproteomic 

data. The abundances were categorized into four different categories: Control, NMC, iPD, and 

LRRK2 PD. The proteins or phosphoproteins with detected abundances of more than 70% in each 

category were kept. It was done to keep the proteins and phosphoproteins detected in at least one 

category. The imputation for the missing abundances was performed by assigning small random 

values from the normal distribution with a downshift of 1.8 SDs and a width of 0.3 SDs. Very low 

abundances normally cause missing values. 
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All abundances for each protein or phosphoproteins were further normalized by subtracting the 

median from each protein or phosphoprotein abundance. Then, the unpaired two-tail student t-test 

was performed, and the difference in averages was calculated for the three comparisons. Various 

packages in R 3.5.077, including but not limited to ggplot2 3.3.178, ggpubr 0.3.079, EnhancedVolcano 

1.7.680, pROC81, Vennerable 3.082, and Circlize 0.4.983, and also Cytoscape 3.8.084 (an open-source 

software platform for visualizing complex networks) were used to visualize the data. For the volcano 

plots, the x-axis is the log(2) difference on averages, and the y-axis is the log(10) of the p-value. 

Volcano plots were created for each of comparison with cut-off values of p-value = 0.05 (-

log10(0.05)=1.30) and log base 2 difference = 0.5, which equals to ~1.414 fold-change. The Venn 

diagrams were created based on the upregulated proteins or phosphoproteins in the volcano plots. 

The violin plots were generated by focusing on significant proteins and phosphoproteins from the 

overlapped area in the Venn diagrams, which represented 2 different categories: disease markers 

and risk markers. The two-tail t-test p-values and the one-way ANOVA p-value were included on 

each of the violin plots. The correlations between potential biomarker expressions with gender, age, 

disease duration, and MoCA were created with a minimal 0.6 for R2 and a maximal 0.05 for p-value 

as thresholds. Gene ontology analysis was performed using Gene Ontology enRIchment anaLysis 

and visuaLizAtion tool (GOrilla)47. Lastly, STRING v1185 and IPA86 (QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis) were used to analyze 

the protein-protein interactions and validate their respective protein roles in hallmark PD pathways. 

Division Into Training Set and Test Set, Feature Selection, and Predictive Analysis 

One hundred forty-one unique subjects were divided randomly into the discovery and validation 

experiments. In total, 82 subjects were categorized into the main experiment, further divided into 

training (57 subjects) and test sets (25 subjects). Fifty-nine subjects were used for the validation 

experiments, consisting of parallel reaction monitoring and Western Blot experiments. For the 

discovery experiment, we first performed feature selection on the biomarker candidates obtained 

from Supplementary Figure 9. Instead of using a simple one-shot feature selection technique 
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that usually yields a sub-optimal solution, we used a two-step feature selection process that 

generates better performance: backward feature elimination followed by exhaustive feature 

selection68. We deployed backward feature elimination which removes, one feature at a time, 

those features that did not have a significant effect on the dependent variable or prediction of 

output. Then, we deployed exhaustive feature selection, which aims at finding the best performing 

feature subset by searching across all possible feature combinations (a brute-force method) until 

the desired number of features is left. Specifically, this number was determined by observing the 

increase in performance (accuracy) with the increase in the number of final selected features (in 

which it is diminishing return). 

Next, we performed a hyperparameters selection process which included a randomized search 

followed by an exhaustive search on a random forest classifier. In particular, we searched over 

the following set of hyperparameters: ‘n_estimators,’ ‘max_features,’ ‘max_depth,’ 

‘min_samples_split,’ ‘min_samples_leaf,’ and ‘bootstrap’ in which we validated the result by using 

ten-fold cross-validation. In randomized search, we searched across 200 different combinations 

of hyperparameters and then created the hyperparameter grid encompassing the optimal 

sampled hyperparameter combination from the randomized search. An exhaustive search was 

used to select the best performing set of hyperparameters from the generated grid. Finally, we 

tested our constructed model (with carefully chosen features and hyperparameters described 

above) 50 times and evaluated it by considering the accuracy, confusion matrix, and ROC curve. 

Finally, we repeatedly trained a Random Forest Classifier with the selected features and 

hyperparameters obtained from the above processes 50 times. After that, we evaluated each 

constructed model using accuracy, confusion matrix, and ROC curve. To summarize the results 

over all trials, we computed each evaluation metric's mean and 95% confidence interval.  
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Supplementary Figure 1 

 

Supplementary Figure 1. Comparison of EVtrap and ultracentrifugation for EV capture from 

urine. TRPS analysis of EVs captured by a) ultracentrifugation or b) EVtrap. c) Western blot 

detection of CD9 and LRRK2 proteins of 5 urine EV samples isolated by EVtrap or 

ultracentrifugation. 
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Supplementary Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2. The reproducibility evaluation of our complete urine EV analysis 

protocol and the analytical sample preparation workflow. To evaluate the procedural 

reproducibility, a single urine sample was separated into six aliquots and processed with our 

EVtrap-LCMS protocol as six technical replicates. a) We created a multi-scatter plot accompanied 

by Pearson correlation coefficients and a distribution plot of proteins by a coefficient of variation 

(%). b) Workflow for urine samples processing.  
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Supplementary Figure 3 

 

 

Supplementary Figure 3. The overlap of our identified proteomic and phosphoproteomic 

data with available brain-elevated RNA-seq data downloaded from the Human Protein Atlas 

website. We used 2587 proteins classified as brain-elevated from the Human Protein Atlas for 

comparison with our identified EV proteins and phosphoproteins. 
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Supplementary Figure 4 

 

Supplementary Figure 4. Enriched biological process gene ontology analyses of up-

regulated proteins. GO analyses for a) NMC compared to control; b) iPD compared to control; 

c) LRRK2 PD compared to control; d) LRRK2 PD compared to NMC samples. The analyses 

were carried out with the GOrilla.  
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Supplementary Figure 5 

Supplementary Figure 5. Correlation analysis for select potential protein biomarkers from 

the full data set (training and test sets). a) ENPEP, GDPD3, NAGA, NEDD4L, QPRT, and 

SCAMP3 proteins were expressed higher in males. b) The correlation analysis between FUT6 

and HAO2 protein abundances and age for each group according to gender. c) The correlation 

analysis between ALPL protein abundances and disease duration for each group according to 

gender. d) The correlation analysis between CAPN5, ENPEP, FUT6, GDPD3, GPD1L, HAO2, 
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HNRNPA1, NAGA, and RAB17 protein abundances and MoCA for each group according to the 

gender. The red-bordered areas show either positive or negative correlations. 
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Supplementary Figure 6 

Supplementary Figure 6. Correlation analysis for select potential phosphoprotein 

biomarkers from the full data set (training and test sets). a) The correlation analysis between 

NEU1 phosphoprotein abundances and age for each group according to gender. b) The 
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correlation analysis between ANXA11, CYSRT1, DTD1, HLA-B, LTB4R, and TJP3 

phosphoprotein abundances and MoCA for each group according to the gender. The red-

bordered areas show either positive or negative correlations. 
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Supplementary Figure 7 
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Supplementary Figure 7. Correlations with clinical parameter, UPDRS-III. Pearson 

correlation scores and associated P-values [-log10] of all a) protein and b) phosphoprotein 

intensities with the UPDRS-III score. Either all iPD patients (left) or LRRK2 PD patients (right) 

were included. Significantly correlated proteins with an FDR of 5% after Benjamin-Hochberg 

correction are labeled. 
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Supplementary Figure 8 

 

Supplementary Figure 8. Phosphoprotein disease biomarker network and pathway 

analyses. Enriched networks include a) GPCRs and MAPK signaling pathways and b) lysosome 

regulation and lysosomal disorder. c) IPA pathway analysis of the phosphoprotein disease 

markers related to the autophagy pathway. 
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Supplementary Figure 9 

 

Supplementary Figure 9. Biosignature study design created on the training set. All three 

categories: NMC, iPD, and LRRK2 PD were compared to the Control group for (a) proteins and 

(b) phosphoproteins. Volcano plots were created for each comparison with cut-off values of p-

value = 0.05 and log base 2 difference = 0.5, which equals to ~1.414 fold-change. Significantly 

up-regulated phosphoproteins from the three volcano plots were overlapped in Venn diagrams. 
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Supplementary Figure 10 

Supplementary Figure 10. The additional selected top disease biomarkers acquired from 

the training set. Violin plots of the statistically upregulated proteins and phosphoproteins from 

the training set in PD regardless of the LRRK2-G2019S mutation (disease markers). 
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Supplementary Figure 11 

 

Supplementary Figure 11. Western blot analysis of CD9, STK11, PCSK1N, and HNRNPA1. 

All 20 urine EV samples were analyzed by Western Blot with anti-CD9, anti-STK11, anti-

PCSK1N, and anti-HNRNPA1 antibodies (2 blots for each type). An equal amount of pooled 

urine EVs was loaded in lane 1 of each gel. 
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Supplementary Figure 12 
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Supplementary Figure 12. Western blot analysis of CD9, total LRRK2 and pSer1292-LRRK2. 

All 82 urine EV samples were analyzed by Western Blot with anti-CD9, anti-LRRK2, and anti-

pSer1292-LRRK2 antibodies (8 blots for each type). An equal amount of a spike-in standard was 

loaded in lane 1 of each gel (pooled urine EVs for CD9 blots, recombinant LRRK2 for LRRK2 

blots, and autophosphorylated recombinant LRRK2 for pSer1292-LRRK2 blots). a) Western blots 

from each analyzed target protein. b) Western blot-based quantitative comparison across all 

samples after normalization with an internal standard. c) Mass spectrometry-based quantitative 

comparison across all samples after normalization with an internal standard. 
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Supplementary Figure 13 

 

Supplementary Figure 13. Significantly changing Rab proteins and phosphoproteins. a) 

The EV levels of Rab2A and Rab10 were significantly higher than the control. b) Rab1A was 

expressed at lower levels in males; Rab1B, Rab3D, and Rab7A were expressed at higher levels 

in males. c) The correlation analysis between Rab2A protein abundances and age for each group 

according to gender. d) The correlation analysis between Rab17 protein abundances and MoCA 

for each group according to gender. The red-bordered areas show positive correlations.  
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Supplementary Table 1 

Supplementary Table 1. List of the 34 identified Rab GTPases, 12 of which are known to be 

LRRK2 substrates, and eight phosphorylated Rab GTPases. 


