
SCARF: Auto-Segmentation Clinical Acceptability & 

Reproducibility Framework for Benchmarking Essential 

Radiation Therapy Targets in Head and Neck Cancer 
 

Joseph Marsilla1,2, Jun Won Kim1,3, Denis Tkachuck1, Sejin Kim1,2, Joshua Siraj1,2, John Cho1,4,5, 
Ezra Hahn1,4,5, Ali Hosni1,4,5, Kristine Jacinto1,4,5, Mattea L. Welch1, Michal Kazmierski 1,2, 
Katrina Rey-McIntyre4,5, Shao Hui Huang4,5, Tirth Patel1,4,5, Tony Tadic1,4,5, Fei-Fei Liu1,2,4,5, 
Scott Bratman1,2,4,5 , Andrew Hope1,2,4,5,$, Benjamin Haibe-Kains1,2,6,7,8,$ 

 
1Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada 
2Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada 
3Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University 

College of Medicine, Seoul, Korea 
4Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada 
5Radiation Medicine Program, Princess Margaret Cancer Center, University Health 

Network, Toronto, Ontario, Canada 
6Department of Computer Science, University of Toronto, Toronto, Ontario, Canada 
7Vector Institute, Toronto, Ontario, Canada 
8Ontario Institute for Cancer Research, Toronto, Ontario, Canada 

 
$ Co-corresponding authors 

Benjamin Haibe-Kains: benjamin.haibe-kains@uhn.ca 

Andrew Hope: andrew.hope@rmp.uhn.ca 
 

Editable Figures  

Figure Descriptions 

Supplementary Data  

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2023. ; https://doi.org/10.1101/2022.01.15.22269276doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.01.15.22269276
http://creativecommons.org/licenses/by-nc/4.0/


 

Highlights: 

● Our study highlights the significance of both quantitative and qualitative controls for 

benchmarking new auto-segmentation systems effectively, promoting a more robust 

evaluation process of AI tools. 

● We address the lack of baseline models for medical image segmentation 

benchmarking by presenting SCARF, a comprehensive and reproducible six-stage 

framework, which serves as a valuable resource for advancing auto-segmentation 

research and contributing to the foundation of AI tools in radiation therapy planning. 

● SCARF enables benchmarking of 11 open-source convolutional neural networks 

(CNN) against 19 essential organs-at-risk (OARs) for radiation therapy in head and 

neck cancer, fostering transparency and facilitating external validation. 

● To accurately assess the performance of auto-segmentation models, we introduce a 

clinical assessment toolkit based on the open-source QUANNOTATE platform, further 

promoting the use of external validation tools and expert assessment. 

● Our study emphasises the importance of clinical acceptability testing and advocates its 

integration into developing validated AI tools for radiation therapy planning and 

beyond, bridging the gap between AI research and clinical practice. 

Abstract 
Background and Purpose: Auto-segmentation of organs at risk (OAR) in cancer patients is 

essential for enhancing radiotherapy planning efficacy and reducing inter-observer variability. 

Deep learning auto-segmentation models have shown promise, but their lack of transparency 

and reproducibility hinders their generalizability and clinical acceptability, limiting their use in 

clinical settings. Materials and Methods: This study introduces SCARF (auto-Segmentation 

Clinical Acceptability & Reproducibility Framework), a comprehensive six-stage reproducible 

framework designed to benchmark open-source convolutional neural networks for auto-

segmentation of 19 essential OARs in head and neck cancer (HNC). Results: SCARF offers an 

easily implementable framework for designing and reproducibly benchmarking auto-

segmentation tools, along with thorough expert assessment capabilities. Expert assessment 

labelled 16/19 AI-generated OAR categories as acceptable with minor revisions. Boundary 
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distance metrics, such as 95th Percentile Hausdorff Distance (95HD), were found to be 2x more 

correlated to Mean Acceptability Rating (MAR) than volumetric overlap metrics (DICE). 

Conclusions: The introduction of SCARF, our auto-Segmentation Clinical Acceptability & 

Reproducibility Framework, represents a significant step forward in systematically assessing the 

performance of  AI models for auto-segmentation in radiation therapy planning. By providing a 

comprehensive and reproducible framework, SCARF facilitates benchmarking and expert 

assessment of AI-driven auto-segmentation tools, addressing the need for transparency and 

reproducibility in this domain. The robust foundation laid by SCARF enables the progression 

towards the creation of usable AI tools in the field of radiation therapy. Through its emphasis on 

clinical acceptability and expert assessment, SCARF fosters the integration of AI models into 

clinical environments, paving the way for more randomised clinical trials to evaluate their real-

world impact. 

Introduction 
In recent years, deep-learning based architectures have dominated the field of automated 

segmentation of organs at risk (OAR) in the head and neck region [1–13]. However, the lack of 

transparency in publishing auto-segmentation methods, particularly regarding the release of 

code and data used for model training, has been a persistent issue [14]. While some studies 

have demonstrated the potential of deep learning-based auto-segmentation (DLAS) methods for 

optimising clinical contouring workflows, there remains a gap in understanding whether 

predicted contours gain clinician approval [8,12]. Some studies have placed an emphasis on 

clinical assessment of contours produced by these auto segmentation models without providing 

insight into whether the predicted contours actually receive clinician approval. Studies 

publishing auto-segmentation solutions across a wide range of medical image segmentation 

tasks have a tendency to disregard both reproducibility of their methods and the subsequent 

evaluation of their methods in a clinical setting to validate their findings. There have been a 

large number of guidelines and other papers describing requirements for publishing sufficient 

information to assess model performance [15,16]. However, these guidelines rarely provide a 

ready-made infrastructure or systematic code-base to realise the intent of the guidelines.  

 

To address these challenges and promote both reproducibility and clinical evaluation of 

segmentation methods, we developed the auto-Segmentation Clinical Acceptability & 

Reproducibility Framework (SCARF). This six-step framework empowers researchers and 

clinicians to build and robustly evaluate open-source networks for various segmentation tasks 
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related to radiation therapy and beyond. SCARF's steps can be easily adapted to improve 

existing open-source segmentation repositories and checklists focused on leveraging artificial 

intelligence modelling for clinical applications [15,17]. 

 

Emphasising transparency through reproducibility of data, code, and tools, SCARF provides an 

intuitive framework for packaging research outputs, ensuring transparency, reproducibility, and 

reusability of medical imaging models. Moreover, it offers a collection of published auto-

segmentation models and their corresponding training and evaluation protocols, facilitating 

robust benchmarking of baseline performance for medical segmentation tasks. To address the 

critical aspect of clinical acceptability, SCARF leverages the open-source QUANNOTATE 

platform [18], enabling internal and external evaluation of segmentation methods by clinical 

experts.  

 

We demonstrate the application of SCARF in the development of deep learning models for the 

delineation of 19 essential OARs in head and neck cancer radiation therapy. In summary, 

SCARF, with its compendium of open-source and reproducible auto-segmentation models, 

curated datasets, and clinical acceptability testing toolkit, lays a strong foundation for the 

advancement and benchmarking of the next generation of deep learning models in medical 

imaging segmentation. 

Materials and Methods 

Dataset Curation 

Radiological and clinical data extracted from institutional databases or public repositories, such 

as The Cancer Imaging Archive (TCIA) [19], often requires a high level of curation to harmonise 

the data and make them ready for deep learning. In this study, we used  a large institutional 

imaging dataset of 3211 HNC patients whose radiological and clinical data were available 

(https://doi.org/10.7937/J47W-NM11) [20] .  A UHN institutional review board approved our 

study (REB 17-5871); we performed all experiments in accordance with relevant guidelines and 

ethical regulations of Princess Margaret Cancer Centre (PM). The associated clinical data have 

been collected prospectively as part of the PM Anthology of Outcomes [21]. We used Med-

ImageTools [22] to collect the meta-data and curate the radiation therapy structure files (RT-

STRUCT).  
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Curation of Auto-Segmentation Models 

We have identified a set of auto-segmentation models that have been published between 2016 

and 2020 for which sufficient data, code and documentation have been released to allow re-

implementation. A literature search was conducted from January 2016 to April 2020 to find 

medical image segmentation studies using deep learning-based modelling approaches. We 

reviewed 75 studies with a medical image segmentation theme in the conducted literary search 

to augment networks we could test during our analysis. We refactored all tested models into a 

Pytorch Lightning framework [23] to increase readability, reusability and shareability of the re-

implementation code. 

Training of Auto-Segmentation Models 

Models were trained using a combined loss scheme to address the heavy pixel-wise class 

imbalance present within our dataset between the individual classes of OARs. For each 

experiment we used the same 80%/10%/10% split, corresponding to 479, 44, and 59 scans for 

training, tuning, and testing, respectively. Each model was trained on 4 NVIDIA Tesla P100 

GPUs for 3 days or until convergence. Early stopping was implemented if no significant change 

(0.1 decrease in loss magnitude) was made in tuning loss minimization after 50 epochs. More 

information regarding specifics in configuring our training pipeline can be found in Appendix A. 

Performance Evaluation 

The performance of each model was estimated by averaging volumetric overlap indices (Dice 

similarity coefficient - DICE, jaccard index) with boundary distance metric (95th% Hausdorff 

Distance - 95HD) on the independent testing set of patients (Supplementary Figure 1) 

[24].Taking this into consideration, after fine tuning the winning model in a second round of 

training, four other quantitative performance metrics were calculated. Additional metrics 

calculated include boundary metrics (Surface Distance [SD], Added path length [APL]) , and 

false negative metrics (False Negative Volume and False Negative Length) [25]. Multiple 

metrics are essential during validation of any segmentation task as overlap-based metrics such 

as DICE do not take the correctness (or complexity) of an object’s boundaries into account. 

Additionally, properties of the target structure need to be considered when evaluating the scores 

for each OAR. For example, a small pixel deviation in a low volume OAR like the chiasm, can 

have a substantial effect on DICE and other volumetric based overlap metrics that are 

calculated for it [26]. More information regarding model finetuning and selection can be found in 

Appendix A. 
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Clinical Evaluation 

We employed an enhanced QUANNOTATE interface to facilitate the review and evaluation of 

clinical acceptability by multiple physician observers. They rated AI-generated and Ground Truth 

OAR contour pairs while remaining blinded to the source of origin for each contour. 

(Supplementary Figure 2)  [24]. Mean Acceptability Rating (MAR) was calculated for each 

contour examined by averaging ratings across all observers. After inference, segmentation 

network performance was assessed by calculating six different performance metrics listed in 

Performance Evaluation. These metrics were extracted for each OAR contour. To determine 

the weight each metric should have when assessing acceptability, we computed the correlation 

between each performance metric and MAR using Pearson to identify which metrics best align 

with clinical acceptability [27–29]. Overlap metrics were considered ‘more clinically acceptable’ if 

they showed significantly positive correlation with MAR, while boundary distance metrics were 

considered ‘more clinically acceptable’ if they showed significantly negative correlation with 

MAR. Suggestions will be made as to how these metrics can be used to optimise a network’s 

segmentations for clinical acceptability. 

Statistical Analysis 

To evaluate the statistical power of our study, a continuous endpoint, two independent sample 

study power analysis was conducted for each OAR group. The MAR from each of the 4 

observers can be averaged and separated into two distinct study groups for each OAR 

category. (Group A: MAR of Ground-Truth contours; Group B: MAR of  AI-Generated contours). 

Because no analysis has been conducted to this effect for each OAR category previously, the 

MAR and standard deviation for each OAR category were taken from the final calculated MAR 

after clinical acceptability testing was completed. Post-hoc power (PHP) analysis was also 

conducted for each OAR category. We will use these preliminary acceptability testing results to 

further refine sample size in future clinical acceptability testing experiments.  

Generalizability Assessment 

Our model was trained using RADCURE as the primary dataset. Due to the inevitable biases 

intrinsic to demographics of patients treated at our centre, we tested whether our model 

performed accurately on data collected at external institutions with varying patient populations. 

A model’s generalizability, in this context, is the ability of a model to perform as trained when 

applied to external data collected at different institutions. To assess model generalizability, 

seven publically available datasets were collected and curated (Supplementary Table 1).  
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Data Availability 

Raw imaging data and corresponding contours are available on The Cancer Imaging Archive 

(TCIA) [19] (Supplementary Table 1). Processed external datasets and predictions using our 

model on those datasets are publicly available via the ptl-oar-segmentation GitHub repository 

(https://github.com/bhklab/ptl-oar-segmentation). 

Code Availability 

The computer code for the reimplementation and evaluation of all the auto-segmentation 

models reimplemented in this study is available via https://github.com/bhklab/ptl-oar-

segmentation. The code for the QUANNOTATE clinical acceptability testing interface is 

available via the Quannotate GitHub repository (https://github.com/bhklab/quannotate). 

 

Model Availability 

The weights for each trained auto segmentation model trained, and processed versions of each 

external dataset, were saved and made available on the project’s github page. All auto 

segmentation models have been uploaded to mhub.ai to maximise reusability. 

 

Research Reproducibility 

Tutorials were generated for easy re-implementation using Google Collab. Users can use these 

collaborative notebooks provided to get started with easy re-implementation. Users can also 

clone the github repositories, set-up a local anaconda environment based on the one provided, 

set their local variables and train each network using internal resources. Templates have also 

been provided to integrate their own networks and training protocols if desired. 

Results 

Auto-Segmentation Clinical Acceptability & Reproducibility Framework (SCARF) 

To improve the development of auto-segmentation models and their potential clinical impact, we 

propose a framework composed of six main steps: (1) Dataset Curation, (2) Model Selection, (3) 

Model Training, (4) Quantitative Performance Evaluation, (5) Clinical Assessment, and (6) 

Generalizability Assessment. (Figure 1). Successful implementation of this new framework 

requires a reproducible way to extract and curate medical imaging data and metadata. 

Furthermore, providing a reproducible architecture for selection, training and evaluation of open-
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source models can help the community curate “baseline” data for a wide range of segmentation 

tasks. Finally, placing a strong emphasis on clinical acceptance, and providing open-source 

tools to conduct these assessments will help optimise these systems for increased clinical 

benefit, which translates to greater adoption and use of these models by clinicians at large. 

SCARF’s goal is to build a community resource that allows collection, standardisation, testing 

and validation of various segmentation methods made available by the open-source community 

with the intent of establishing baseline quantitative and qualitative data for each region of 

interest being segmented (Figure 1). 

Dataset Curation 

SCARF provides an open-source methodology to rapid dataset curation, model benchmarking 

and clinical performance assessment for radiation oncology specific segmentation tasks. For 

this analysis, we selected 19 OARs that were consistently delineated in a subset of 582 head 

and neck cancer patients in RADCURE (Supplementary Figure 3). Seven external datasets, 

spanning a total of 587 patients [12,55–59], were also collected and curated to assess the 

generalizability of the best auto-segmentation models with variability of overlapping OARs 

(Supplementary Tables 1 and 2). 

Model Curation & Training 

SCARF’s codebase enables rapid integration and training of open-source models coded in 

Pytorch to benchmark these networks on your segmentation task. We selected 11 open-source 

CNNs to train on the segmentation of the 19 OARs of interest [7,30–39]  (Supplementary 

Figure 4, Supplementary Table 3). 

Performance Evaluation 

SCARF enables the comparison and performance validation using multiple metrics which are 

necessary for accurately representing model performance. For initial performance evaluation, 

we use volumetric overlap metrics (DICE) and boundary distance metrics, which assess the 

error at the boundary of two overlapping contours (95HD, SD) for the combined set of OARs 

being segmented [5,10,13]. When analysing the mean performance metrics of all OARs for 

each open source model trained, the top three segmentation models were UNET variants. 

WOLNET (a simple implementation of the standard 3D-UNET) [40,41] performed best among 

the 11 models and achieved the highest average DICE (0.765±0.10) (Figure 2A) and lowest 

average HD (2.63±2.61) (Figure 2B). Altered 3D versions of UNet3+DEEPSUP [34,42] (DICE 
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0.74±0.10; HD 2.98±2.63) and UNet++ [35,42] (DICE 0.73±0.10; HD 3.10±2.83) were the 

second and third top-performing segmentation models, respectively (Supplementary Figure 5). 

Performance Evaluation of the Best Model After Fine Tuning 

SCARF allows for optimisation and versioning of networks, which make tracking improvements 

made by hyperparameter or architecture changes easy. The training scheme of the best 

performing open source network, WOLNET,  was further tuned resulting in a final average test 

DICE of (0.77± 0.09) and a 95HD of (3.42± 4.05) across all OAR(s). (Supplementary Figure 6 A-

C). 

Clinical Evaluation 

In addition to quantitative benchmarking of segmentation methods, SCARF implements an 

open-source web-based toolkit for rating clinical acceptability of contours generated for each 

region of interest being automatically delineated. In our experiment, four experienced 

oncologists from our centre used the QUANNOTATE interface to complete the blinded 

questionnaire defined above for the “Ground Truth” (human) and “AI-Generated” sets of 

contours for each OAR.  When comparing MAR for all OARs, 78% of Ground-Truth contours are 

considered acceptable (Figure 3A) compared with 52% for AI-generated contours (Figure 3B). 

When analysing individual OAR categories, Ground-Truth contours were considered more 

acceptable than AI-generated contours for 15 out of the 19 OARs assessed. Experts rated 

16/19 AI-Generated OARs as acceptable for planning with minor edits (3 < MAR < 3.5)  

(Table 1). Only three OAR categories (brainstem, larynx, and the right optic nerve) were shown 

to be rated more clinically acceptable than their paired deep learning contour with sufficient 

post-hoc power (PHP > 80%). Ten OAR categories had no significant differences in MAR (PHP 

< 20%) indicating that the WOLNET network can currently delineate these OARs with human 

level accuracy. The MAR between the remaining six OAR categories (20% < PHP < 0.8%) may 

be significantly different if more samples are analysed for each group (Table 1). Mean 

acceptability rating correlation with 6 common segmentation metrics was extracted. Mean 

acceptability rating showed significant negative correlation with boundary distance metrics like 

95HD and Surface distances. (~-0.26 for 95HD and ~-0.30 for Surface Distance). A less 

significant positive correlation with DICE was also observed (~0.14) (Appendix B, 

Supplementary Figure 7). 
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Generalizability Assessment 

To assess the generalizability of the WOLNET model, we used 7 external datasets that have 

been generated in different institutions (Figure 1, Supplementary Table 1). While external 

datasets are valuable to assess generalizability of AI methods, these datasets released by 

external centres had variable labels of OARs that overlapped with our analysis (Supplementary 

Table 2). In addition to this, the quality of the “Ground-Truth'' labels for each dataset are only as 

good as the observer generating the labels, and therefore it is important to note that there may 

exist variability within contouring protocols for multiple OARs generated at these independent 

centres. We found extensive variability of ground truth information extracted from each external 

dataset and only a subset of OARs segmented in this study overlapped with any given dataset 

(Supplementary Table 2). One dataset Radiomics-HN1 (RHN1) had the most overlapping OAR 

categories with our RADCURE dataset (17 out of 19 OARs successfully overlapped). TCIA-

HNSCC (TCHN) had the least overlapping categories (5 out of 19 OARs). Results for each 

external dataset can be found in Appendix B (Supplementary Figure 8, Supplementary Tables 4 

and 5) [5,20,43–52]. 

Discussion 
In this study, we introduce SCARF, a six-step benchmarking framework for evaluating open-

source AI models' performance and clinical acceptability in auto-segmentation of essential 

radiation therapy targets for head and neck cancer treatment. Our results show the majority of 

OARs generated by the best model tested required only minor edits for use in radiation therapy 

plans. SCARF proves to be a valuable framework for open-source resources' curation, model 

training, performance evaluation, and clinical acceptability testing, providing a protocol for 

recording baseline results for each OAR category's segmentation performance. 

 

SCARF, with its focus on easy and reproducible benchmarking of auto-segmentation systems, 

can significantly improve the AI evidence pyramid in the context of radiation therapy planning. 

By providing open access to all data and methods used in the analysis, SCARF addresses 

some of the key challenges faced in the field of radiation therapy and AI integration. In the 

context of the AI evidence pyramid [16], SCARF can play a vital role in the external validation of 

AI models for auto-segmentation in radiation therapy as shown in the context of OAR 

segmentation for HNC. The availability of preprocessed datasets and open access to all 

relevant information ensures that AI models can be rigorously evaluated using different patient 
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populations and clinical scenarios. This process enhances the reliability and generalizability of 

AI models, moving them closer to the third step of the AI evidence pyramid. 

 

Moreover, the transparency provided by SCARF enables better assessment and benchmarking 

of segmentation systems, which is crucial in moving towards the creation of usable AI tools (the 

fourth step of the pyramid) in radiation therapy planning. Researchers and clinicians can 

examine the methods and results of the study, enabling them to build upon the findings and 

implement the technology in clinical practice more confidently. Furthermore, SCARF's emphasis 

on clinical acceptability testing aligns with the notion of optimising networks not only for model 

performance but also for their practicality in a clinical environment. This focus is in line with the 

goal of increasing the number of randomised clinical trials (the penultimate step of the pyramid) 

to evaluate the true impact of AI-driven auto-segmentation systems in real-world radiation 

therapy scenarios. By ensuring that AI models are not only accurate but also meet the 

requirements of clinical experts, SCARF facilitates the integration of AI technology into routine 

clinical workflows and can be used as an introductory code base to facilitate compliance with 

the checklists governing proposing AI interventions for auto-segmentation in radiation therapy of 

head and neck cancer (Table 2) providing an allotted time savings of over 450 developer hours. 

 

This study has several limitations. The open-source repositories used in the analysis were 

collected and trained up to April 2020, missing potential newer models and opportunities for 

further analysis. The primary focus was on proposing a reproducible training framework for 

auto-segmentation pipelines, not on quantitative superiority. The clinical assessment step 

involved only four radiation oncologists due to resource constraints, limiting statistical 

significance. Acceptability ratings showed significant differences in only three out of thirteen 

organ-at-risk categories, suggesting the need for further analysis with more clinicians. The 

Quannotate clinical testing interface provided valuable insights but may benefit from exploring 

other assessment methods. The models trained were restricted to datasets with complete 

ground truth labels, limiting their usability with datasets containing partial labels. Future work 

should address this limitation and explore improvement opportunities using SCARF as a 

benchmark for effectiveness. 

Conclusion 
In conclusion, SCARF, our open-source and reproducibility framework for auto-segmentation in 

radiation therapy planning, significantly enhances the AI evidence pyramid in this medical 
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domain. By promoting transparency, facilitating external validation, and emphasising clinical 

acceptability, SCARF enables robust validation studies by multidisciplinary teams, bridging the 

gap between AI research and clinical practice. This advancement can lead to improved 

standards of care for radiation therapy patients and open up new avenues for research and 

advancements in the field. Our study also highlights the importance of incorporating both 

quantitative and qualitative controls in benchmarking auto-segmentation systems. With SCARF, 

we provide a comprehensive six-stage framework that enables benchmarking state-of-the-art 

convolutional neural networks against essential organs-at-risk in head and neck cancer. The 

availability of SCARF and the clinical assessment toolkit fosters transparency, reproducibility, 

and acceptance of auto-segmentation systems in clinical practice, accelerating the adoption of 

reliable and efficient models in radiation therapy planning and beyond. 
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Figure 1: SCARF Overview: auto-Segmentation Clinical Acceptability & Reproducibility 

Framework. Reproducibility: The first half of the cycle emphasizes reproducible development 

of code and software used during dataset curation, model selection and model training 

stages. Acceptability: In the second half of the cycle, emphasis is placed on development of 

an acceptability standard, that uses “clinician focused” evaluation protocols to identify relevant 

performance metrics and build quality assurance tools that focus on recording data that will 

aid model optimization to maximize expert approval ratings.  
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Figure 2: Performance Evaluation Of Model Training. Eleven open-source networks were 

selected based on availability, complexity and adaptability. Model(s) were each trained with 

523 patient scans for 3 days on 4xTesla P100 GPU(s) or until convergence using PyTorch-

lighting. Barplots of classical metrics (DICE and 95HD) plotted for all OAR(s) for each model 

when applied to a hold out set of 59 scans. Average values of Brainstem (BSTEM), Larynx, L 

Brachial-Plexus, and Optic Chiasm are plotted for each model. One simple 3D UNET 

architecture performed best across all OAR(s) segmented for both metrics. This network 

(labeled WOLNET, after its author) was chosen for retraining and use in clinical acceptability 

testing. 
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Figure 3: Results Of Clinical Evaluation Recording Using Quannotate QA Tool. Results 
of the acceptability test by representing mean acceptability rating (MAR) counts for each OAR 
in a heat-map for (A) Ground-Truth contours (GT) and (B) AI-generate contours (AI). The 
higher the value of a box the more contours of that given OAR (row) had any given MAR 
value (column) and the lighter that box will be. Notice a shift to the left when examining the 
heat-map of mean acceptability ratings for deep learning contours examined for each OAR 
indicating a greater degree of clinical acceptance for manual contours as depicted by figure 
4D. GT contours received a significantly higher mean rating of 3.75 than AI contours which 
were rated 3.23 when all OARs were considered (3.75 ± 0.77 vs. 3.23 ± 0.86, p <0.01). 
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Figure 4: Performance differences of WOLNET ensemble for select OARs on external 
datasets. Beeplot to show variation of 3D Volumetric DICE performance of WOLNET 
ensemble for select OARs (L/R Acoustics, Larynx, Oesophagus, L/R Lens, Spinal Cord, L/R 
Parotids) across different datasets. Broad spectrum in contouring protocols of the acoustics 
across different centers. 

 
 

Table 1: MC v. DLC Acceptability Ratings For Each OAR Category 

ROI MAR (GT) MAR (AI) Pn80 PHP % ROI MAR (GT) MAR (AI) Pn80 

MAND 4.15±0.89 3.53±1.13 32 27.5     

LEYE 3.45±0.71 3.00±0.78 39 27.1 RLENS 4.10±0.78 4.15±0.70 3820 

REYE 3.68±0.62 3.05±0.68 15 58.1 LACOU 3.30±0.91 3.20±0.97 1300 

BSTEM 4.13±0.69 2.8±0.91 4 95.8 RACOU 3.30±0.72 3.38±0.74 1272 

LARYNX 3.95±0.85 2.38±0.90 5 98 LPLEX 3.68±0.76 3.78±0.58 907 

SPCOR 3.93±0.76 3.70±0.56 171 11.7 RPLEX 3.63±0.84* 3.58±0.81 4431 

LPAR 3.80±0.99 3.85±1.02 6154 3.2 LIPS 3.75±0.71 3.33±0.80 45 

RPAR 4.08±1.02* 3.95±1.23 966 4.4 LOPTIC 4.28±0.68 3.50±0.78 12 

ESOPH 3.93±0.80 3.13±0.97 16 52.1 ROPTIC 4.18±0.68 3.20±0.79 8 

LLENS 4.05±0.68 3.65±0.92 45 19.6 CHIASM 3.03±1.27* 2.90±1.06 1498 
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Table 1: MC v. DLC Acceptability Ratings For Each OAR Category 

Pn80 is defined as the minimum power required (number of paired samples) to have a 
significantly different rating between Ground-Truth and AI contours. For example, for our 
analysis of the sample size  When assessing whether certain OAR categories passed the mean 
acceptability cutoff of 3.5, 15 manually delineated OARs on average were considered clinically 
acceptable, requiring no edits for planning purposes, compared with 9 OARs generated by deep 
learning. When analyzing categories of OARs requiring minor edits for their contours to be 
accepted into radiation therapy plans (3.0 < MAR < 3.5), 7 deep learning generated OARs 
compared with 4 manually contoured OARs met this criteria. 
 
 
 

Table 2: SCARF’s toolkit can be used to facilitate compliance to checklists like 
that provided by CONSORT-AI [15] 

SCARF Step SCARF Tool 
Facilitates CONSORT-AI 
Compliance 

Time 
Savings 
(Dev. Hours) 

Data Curation 

1 

MedImg-Tools package 
allows for consistent 
processing of 
internal/external datasets 

Allows standardization and 
processing of data, can be 
used to facilitate compliance to 
section: 

5.ii - 
5.iv 240 

Model Curation 

2 

Suite of open-source 
CNN's modified to train 3D 
auto-segmentation models 
using pyTorch lightning. 
Weights of best model used 
in Clinical Acceptability and 
generalizability assessment 
provided 

Systematic approach to model 
versioning and training 
supervised auto-segmentation 
modes proposed 

5.i, 
5.v 80 

Model Training 

3 

Streamlined PyTorch 
Lightning boilerplate allows 
for easy model integration, 
training & inference in less 
than 10 lines of code 

Performance 
Assessment 

4 

Collection of easy to use 
scripts/notebooks that 
makes performance 
assessment of model easy 

[5.v] Assessment of contours 
generated for 19 OAR(s) used 
in radiation therapy planning of 
HNC. [19] Quantitative metrics 
can be associated with 
qualitative metrics to discuss 
harms/limitations of method 

5.v, 
19 10 
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when segmenting specific 
organs at risk 

Clinical 
Assessment 

5 

Quannotate platform 
enables web-based 
blinded clinical 
assessment of contours 

Clinical assessment of 
contours allows experts to rate 
quality of predictions, and can 
be used for bias assessment 
(How would the expert rating 
change when seeded with the 
name of contour generator?) 

5.vi, 
19-
20 100 

Method 
Generalizability 

6 

Collection of scripts and 
notebooks that makes 
generalizability assessment 
(inference) on external 
datasets using both 
cpus/gpus easy 

Collection and processing of 6 
external datasets allows for 
external validity of best model 
performance, can be used to 
assess 
similarities/discrepancies of 
contouring methods used 
across centers 

21-
22 20 
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