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Abstract 

With the rapid spread of COVID-19, there is an urgent need for a framework to accurately 

predict COVID-19 transmission. Recent epidemiological studies have found that a 

prominent feature of COVID-19 is its ability to be transmitted before symptoms occur, 

which is generally not the case for seasonal influenza and SARS. Several COVID-19 

predictive epidemiological models have been proposed; however, they share a common 

drawback—they are unable to capture the unique asymptomatic nature of COVID-19 

transmission. Here, we propose vector autoregression (VAR) as an epidemiological 

county-level prediction model that captures this unique aspect of COVID-19 transmission 

by introducing newly infected cases in other counties as lagged explanatory variables. 

Using the number of new COVID-19 cases in seven New York State counties, we 

predicted new COVID-19 cases in the counties over the next 4 weeks. We then compared 

our prediction results with those of 11 other state-of-the-art prediction models proposed 

by leading research institutes and academic groups. The results showed that VAR 

prediction is superior to other epidemiological prediction models in terms of the root 

mean square error of prediction. Thus, we strongly recommend the simple VAR model as 

a framework to accurately predict COVID-19 transmission. (195 words) 
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1. INTRODUCTION 
 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), identified in 2019, has 

caused the coronavirus disease 2019 (COVID-19) pandemic. With the rapid spread of 

COVID-19, there is an urgent need for a framework to accurately forecast COVID-19 

progression. To this end, a variety of COVID-19 epidemiological forecasting models have 

been proposed by major research institutes. Wang et al. (2020) classified forecasting 

models into three categories: a) mechanistic models, b) time series models, and c) models 

based on deep learning. Examples of mechanistic models are the susceptible–infected–

recovered (SIR) model and the modified susceptible–exposed–infected–recovered 

(SEIR) population propagation model. The majority of deep learning models extend 

mechanistic models with deep learning methods. In this study, we compared the 

forecasting accuracy of our model to that of 11 state-of-the-art forecasting models 

proposed by major research institutes and academic groups. 

  To predict the number of new COVID-19 cases by county, Shang et al. (2021) recently 

proposed a data-driven regression model called the vector autoregression (VAR) 

epidemiological model1. VAR is a time series model and contrasts with mechanistic and 

deep learning models in two aspects: 1) VAR solely uses county-level new COVID-19 

cases as the forecasting data; and 2) VAR captures COVID-19 cross-county transmission 

by introducing other counties’ COVID-19 case data as lagged explanatory variables. The 

second point is important, because to predict COVID-19 cases at the county level, it is 

necessary to consider cross-county infection as a transmission mechanism of SARS-CoV-

2. This is different from that of other viral infections such as seasonal influenza and SARS. 

To characterize the transmission dynamics of COVID-19, two important epidemiological 

terms were introduced: the incubation period (the time between infection and the onset of 

symptoms) and the serial interval (the time between the onset of disease in the primary 

infected person and the onset of disease in the secondary infected person). As estimated 

by Nishiura et al. (2020), He et al. (2020), and Alene et al. (2021), the estimated mean 

serial interval and the incubation period of COVID-19 are 5.2 and 6.5 days, respectively. 

Notably, the estimated serial interval is shorter than the estimated incubation period2. For 

seasonal influenza and SARS, the serial interval is longer than the incubation period. This 

indicates the following important feature of COVID-19—in contrast to seasonal influenza 

 
1 Wang et al. (2021) also proposed the VAR model to predict the nationwide daily number of newly COVID-19 
cases in the United States. Contrastingly, they used variables potentially correlated to the number of COVID-19 
positive cases such as average temperature, precipitation, wind speed, humidity, population density and so on. 
2 Note that the serial interval can be negative if a person becomes infected before symptoms appear in the individual 
who infected them, that is, if the infected person develops symptoms before the person that infected them does.  
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and SARS, a significant number of COVID-19 cases are caused by asymptomatic or pre-

symptomatic infection. 

Owing to this feature of COVID-19, SARS-CoV-2 is not only transmitted among 

residents of the same county but also to residents of other counties through cross-county 

transmission, even before symptom onset. Shang et al. (2021) notes that the 

epidemiological models based on SIR or SEIR cannot capture this phenomenon3 . By 

contrast, the VAR epidemiological model proposed herein does capture this feature by 

introducing new COVID-19 cases in other counties as a lagged explanatory variable. 

  Shang et al. (2021) proposed VAR as a promising COVID-19 forecasting model, but 

the authors did not demonstrate that the predictions made by VAR outperform those of 

other epidemiological models. The purpose of this study was to show that the county-

level prediction of new COVID-19 cases by VAR is superior to that of other 

epidemiological models.  

  This paper is organized as follows. Section 2 describes the methodology; Section 2.1 

introduces the VAR model, Section 2.2 describes the data, and Section 2.3 describes the 

estimation. In Section 3, we describe three forecasting scenarios and evaluate other 

forecasting models. Section 3.1 explains VAR forecasting, Section 3.2 describes the 

forecast results, and Section 3.3 provides a comparison of our results to those of 11 other 

forecasting models. We provide a brief conclusion in Section 4. 

 

2. METHODOLOGY 
 

In macroeconomics, economic forecasting is important for planning and evaluating 

government economic policies. In the 1970s, macroeconomists used large-scale models 

with hundreds of equations to make economic forecasts. However, since Sims (1980) 

proposed VAR as a new macroeconomic method, no macroeconomist has used such large-

scale models. VAR is a multi-equation system in which each variable is a linear function 

of the past lags of itself and the other variables. The popularity of VAR in economics is 

owing to its simple forecasting framework 4  while outperforming other forecasting 

frameworks. Here, we show that VAR performs similarly for predicting COVID-19 cases. 

 
2.1 Vector autoregression (VAR) 

The regular VAR model with p lags, denoted by VAR(p), can be written as follows: 

 
3 Some forecasting models attempt to incorporate the mobility behavior of individuals into the SRI-based model using 
a deep learning-based approach. 
4 For a comprehensive introduction to VAR estimation, Stock and Watson (2007) is recommended. 
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0 1 1 2 2t t t p t p t t        y A A y A y A y Cx u  

where  

 𝒚௧: 𝑛 ൈ 1 column vector of endogenous variables 

 𝒙௧: 𝑚 ൈ 1 column vector of exogenous variables 

 𝑨଴: 𝑛 ൈ 1 column vector of constant term 

 𝑨௜: 𝑛 ൈ 𝑛 matrix of lag coefficients to be estimated ሺ𝑖 ൌ 1,2,⋯ ,𝑝ሻ 

 𝑪: 𝑛 ൈ𝑚 matrix of exogenous variable coefficients to be estimated 

 𝒖௧: 𝑛 ൈ 1  column vector of disturbances. 

 

In our model, the column vector is defined as follows: 

  '
, , , , , , ,, , , , , ,t B t K t N t NY t Q t R t W ty y y y y y yy

 

 

where “ ‘ “ denotes transposition of a vector, .i ty indicates the number of newly confirmed 

COVID-19 cases in county i on day t, and B, K, N, NYC, Q, R, and W stand for the New 

York State counties Bronx, Kings, Nassau, New York City, Queens, Rockland, and 

Westchester, respectively. 

Under the assumption that the time path ty is stationary5, tu satisfies the following 

white noise disturbance process: 

' ') ( ) , ) ( ) ( ) , ) ( ) for 0.t t t t t t si E ii V E iii E s     u 0 u u u u u 0  

Assumptions i) through iii) imply that the vector of disturbances is contemporaneously 

correlated with full rank matrix   , but uncorrelated with the leads and lags of the 

disturbances and uncorrelated with all of the right-hand side variables. Furthermore, each 

equation is estimated by the ordinary least squares method.  

  Again, VAR is a multi-equation system in which each variable is a linear function of 

the past lags of itself and the other variables. Such a framework allows VAR to adequately 

capture the nature of SARS-CoV-2 transmission at the county level and asymptomatic 

transmission between counties, which more accurately reflects the cross-county 

transmission that occurs through the cross-county movement of people.  

 

2.2 Data 

We analyzed daily new COVID-19 cases in the seven New York State counties assessed 

by Shang et al. (2021) (Bronx, Kings, Nassau, New York City, Queens, Rockland, and 

 
5 See, in detail, Key Concept 14.5 in Stock and Watson (2007).  
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Westchester). Bronx, Kings, and Queens are regarded as regions adjacent to New York 

City, and this area is classified as a “large central metro” by the Centers for Disease 

Control and Prevention (CDC). By contrast, Nassau, Westchester, and Rockland have 

fewer direct connections to New York City; these counties are classified as a “large fringe 

metro” by the CDC. The data used in this study were downloaded from the following 

website: US COVID-19 cases and deaths by state | USAFacts6. The number of COVID-

19 cases reflects the daily cumulative values for each county from March 1, 2020, through 

August 8, 2021. Based on the accumulated daily counts by county, the daily number of 

newly infected individuals was calculated by taking the difference. We used newly 

infected individuals from the county-level daily data for our estimations. There were some 

days when the number of new cases was recorded as zero, such as February 6 and 26, and 

March 12, 2021. The reason why the number of new cases was marked as zero is probably 

due to a delay in recording. It is assumed that the actual number of new cases on these 

days was added into the new cases of the next day. Therefore, the number of new cases 

on days with zero new cases was assumed to be half of the number of new cases on the 

following day. For all days with zero new cases, we took half of the next day's value as 

the number of new cases. 

To investigate the stationarity of the data, the augmented Dickey–Fuller unit root test7 

was employed to the new case data of each county. We found that all of the level series 

had a unit root and were integrated of order one, denoted by I(1)8. Consequently, the time 

path ty was concluded to be nonstationary. 

 

2.3 Estimation 

We used the popular econometric package EViews 129  from IHS Markit. First, we 

determined the lag order of the VAR model based on the VAR system information criteria, 

which were the Akaike information criterion (AIC), the Schwarz information criterion 

(SC), and the Hanna–Quinn information criterion (HQ). The formulae for calculating the 

AIC, SC, and HQ are defined as (1) through (3) below: 
22( )

( ) 2( / ) ,
n p

AIC p l T
T

                         (1) 

 
6 County-level data was confirmed by referencing state and local agencies. 
7 See, in detail, Key Concept 14.8 in Stock and Watson (2007). 
8 If ity is nonstationary and the first difference of ity , ity , is stationary, then ity is the integrated one process, 

denoted by I(1). 
9 In addition to EViews, Estima's RATS is a well-known econometric package specialized for time series analysis. 
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2( ) log( )
( ) 2( / ) ,

n p T
SC p l T

T
                        (2) 

22( ) log(log( ))
( ) 2( / ) .

n p T
HQ p l T

T
                   (3) 

where n is the number of explanatory variables, p is the lag length, T is the sample size, 

and l is the value of the log of the system likelihood function with 2( )n p  parameters 

estimated using T observations. The information criteria were calculated with a maximum 

lag length of 14. AIC is the most commonly used criterion. However, because the sample 

size (T) was large (greater than 500), the AIC defined by (1) did not properly select the 

lag order. Thus, we applied the SC or the HQ. The SC recommended a lag length of 3, 

while HQ recommended a lag length of 8. The test results are reported in Appendix Table 

1. According to Alene et al. (2021), the estimated average serial interval is 5.2 days (95% 

CI: 4.9–5.5), which was estimated based on the data of individual infector–infectee pairs. 

However, the number of new COVID-19 cases was aggregated at the county level, and 

specific infector–infectee pairs were not able to be identified. Because the data were from 

online reports of confirmed cases, there was a confirmation lag between symptom onset 

and confirmation of a positive test result. Assuming that this average serial interval held 

at the county level, and that we could add the average confirmation lag of 3 to 4 days to 

the 95% CI of the above serial interval, we could thus regard the duration of infection 

(the infectious period) as 7.9 to 8.5 days. Based on this duration, a lag order of 8 was 

selected. We established VAR (8) as the benchmark model for forecasting. The number 

of estimated coefficients was quite large—more than 500 estimated coefficients—which 

are not reported here. 

All of the data had to be stationary for the VAR estimator to work. As we discussed in 

Section 2.2, the new COVID-19 case data were nonstationary. Therefore, the VAR 

estimator did not meet consistency and would be biased. The standard way to solve this 

problem is to take the difference. However, Sims et al. (1990) and Stock (1994) proved 

the following useful proposition for large samples: regardless of whether the VAR 

contains an integrated component, the VAR has consistent ordinary least squares 

estimators in large samples. Because our sample size was large (greater than 500), the 

above proposition held for our estimation. In other words, the standard VAR model could 

be directly applied to estimate the number of new COVID-19 cases by county. Therefore, 

there was no need to transform the model to a stationary form by differencing.  
 
3. FORECASTING 
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3.1 VAR forecasting 

As described in Section 2.3, the VAR estimators were consistent in the large sample. 

Therefore, we conducted VAR estimation to predict the number of new COVID-19 cases 

in each county. To make comparisons with the other forecasting models, we performed 4-

week-ahead forecasting for three scenarios. The VAR (8) model was estimated based on 

a daily sample, and dynamic forecasting was performed for an out-of-sample period 

starting on the first forecast day. 

 

A) 6_28 forecast: Estimate VAR (8) from March 1, 2020, through June 27, 2021, 

then conduct the 4-week-ahead forecast for June 28, 2021, through July 24, 2021.  

B) 7_05 forecast: Estimate VAR (8) from March 1, 2020, through July 4, 2021, 

then conduct the 4-week-ahead forecast for July 5 through July 31.  

C) 7_12 forecast: Estimate VAR (8) from March 1, 2020, through July 11, 2021, 

then conduct the 4-week-ahead forecast for July 12 through August 8.  

 

3.2 Results 

The root mean square error (RMSE) and the mean absolute percentage error (MAPE) for 

each of the above three scenarios are reported in Panel (a) and Panel (b) of Appendix 

Table 2. The RMSE and the MAPE are defined as (4) and (5) below: 

 2

1

:
T h

tt
t T

RMSE y y h


 

  ,                       (4) 



1

:100
T h

tt

t T t

y y
MAPE h

y



 


  ,                       (5) 

where  ty  is a predicted value and ty  is the real value at time t. 

Notably, the MAPE values for Rockland and Westchester were larger than the MAPE 

values for the other counties (Bronx, Kings, Nassau, NYC, and Queens) in all of the 

scenarios. The latter counties are classified as large central metro communities in the 

National Center for Health Statistics urban/rural CDC classification, while Rockland and 

Westchester are classified as large fringe metro communities. The number of new 

infections was lower in the fringe metro counties of Rockland and Westchester than in the 

central metro counties. Thus, a shock in the number of new infections is amplified in the 

fringe metro counties; because the VAR model is linear, it failed to capture such nonlinear 

shocks. In fact, the regression of the VAR using log-transformed data gave better 
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predictions, even for Rockland and Westchester. However, it performed poorly for the 

central metro counties. Therefore, the regression of the VAR was done as a level series. 

 

3.3 Comparisons 

As an example, for the Scenario A) 6_28 forecast, the point forecasts at four specific days, 

July 3, July 10, July 17, and July 24, were compared with those of 11 other recently 

proposed forecast models (listed in Appendix Table 3). The point predictions of Scenario 

B) and C) for these four days were also compared with the same four-point predictions of 

the other models. We used these four reported point estimates to make comparisons 

between models. The forecast for July 3 represents a 1-week-ahead forecast based on the 

data obtained up to June 28. Similarly, the forecast for July 10 represents a 2-week-ahead 

forecast based on data obtained up to June 28. The same interpretation applies to July 17 

(a 3-week-ahead forecast) and July 24 (a 4-week-ahead forecast). The county-level 

forecasts for the 11 models were extracted from the following CDC files: 2021-06-28-all-

forecasted-cases-model-data.cvs, 2021-07-05-all-forecasted-cases-model-data.cvs, and 

2021-07-12-all-forecasted-cases-model-data.cvs 10 . To compare the forecast accuracy 

between models, the RMSEs of the four-point forecasts are reported in Panel (a) through 

Panel (g) in Appendix Figure 1. 

The results indicated that, compared with the other models, the VAR (8) model 

exhibited a much better forecasting performance for the 6_28, 7_05, and 7_12 forecasts 

for Bronx, Kings, Nassau, New York City, and Queens, but not for Rockland and 

Westchester. For the latter two counties, the forecasting results were comparable with 

those of the other models. Although not reported here, the mean absolute error and the mean 

absolute percentage error, which are other forecast error measures, also indicated similar results.  

 
4. CONCLUSION 
 

As shown in Section 3, the VAR prediction outperformed the predictions of other state-

of-the-art models. The reason for this is that the VAR prediction adequately captures the 

pre-symptomatic and asymptomatic transmissibility of COVID-19 by introducing data 

from other counties as lagged explanatory variables. Thus, we strongly recommend the 

simple VAR model as a framework to accurately predict the regional transmission of 

COVID-19. 

 

 

 
10 Downloadable from: Previous COVID-19 Forecasts: Cases | CDC. 
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APPENDIX 
 

 

  

 

TABLE 1: LAG-ORDER TEST 

 

 

 

      
Panel (a): 4-Weeks-Ahead-Forecast RMSE    Panel (b): 4-Weeks-Ahead-Forecast MAPE 

for Level                                (%) for Level 

 

TABLE 2: 4-WEEK-AHEAD-FORECAST ERROR 

 

 

 Lag AIC SC HQ

0 86.34921 86.40786 86.37221

1 81.48394 81.95311 81.66798

2 80.94121 81.82091 81.28628

3 80.39166   81.68189* 80.89777

4 80.05987 81.76063 80.72701

5 79.80185 81.91314 80.63004

6 79.52028 82.0421 80.5095

7 79.16858 82.10092 80.31883

8 78.96539 82.30827   80.27668*

9 78.84535 82.59875 80.31768

10 78.68297 82.8469 80.31634

11 78.54261 83.11707 80.33701

12 78.37722 83.3622 80.33265

13 78.23603 83.63154 80.3525

14   78.13154* 83.93758 80.40905

 * indicates lag order selected by the criterion

Sinario A B C
Bronx 18 31 60

Kings 42 92 159

Nassau 31 15 56

NYC 43 72 117

Queens 34 34 74

Rockland 28 25 17

Westchester 62 52 30

Sinario A B C
Bronx 26 22 29

Kings 31 29 34

Nassau 34 13 29

NYC 38 34 39

Queens 24 17 22

Rockland 230 145 69

Westchester 200 102 35
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TABLE 3: MODEL DESCRIPTIONS 

 

Model Name Methods Classification
Var_Lag8 Model Kitaoka &Takahashi Vector Autoregression with 8 lags Time_series

CMU Carnegie Mellon U. Autoregressive time series model Time_series

Columbia Columbia U. Metapopulation SEIR model Mechanistic method

Ensemble
U. of Massachusetts,
Amherst

Combination of 4 to 20 models
depending on the availability of
forecasts for each location.

Mechanistic method

Facebook Facebook AI Research
A machine learning model with an
auto-regressive model

Deep_learning based

FRBSF-Wilson
Federal Reserve Bank of
San Francisco/ Wilson

A SIR-derived econometric county
panel data model with
transmission rate assumed to be
function of weather and mobility

Mechanistic method

JHU-APL
Johns Hopkins U., Applied
Physics Lab

Metapopulation SEIR model Mechanistic method

JHU-UNC-Google
Johns Hopkins U., U. of
North Carolina, and Google

An ensemble of two different
models: A multiplicative growth
model and a curve fitting model.

Deep_learning based

LANL
Los Alamos National
Laboratoly

Statistical dynamical growth model
accounting for population
susceptibility.

Mechanistic method

PandemicCentral Pandemic Central
Random forest machine learning
model

Deep_learning based

UGA-CEID
U. of Georgia, Center for
the Ecology of Infectiou
Disease

Statistical random walk model Time_series

UVA U. of Virginia

An ensemble of three different
models: An auto-regressive model,
a machine learning (long short-
memory) model , and a SEIR
model.

Deep_learning based
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Panel (a) 

 
Panel (b) 

 
Panel (c) 
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200
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Panel (d) 

 
Panel (e) 

 

Panel (f) 
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Panel (g) 

 

FIGURE 1: Forecast errors for seven New York counties 
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