
Estimating the relative proportions1

of SARS-CoV-2 strains from2

wastewater samples3

Lenore Pipes1*†, Zihao Chen2†, Svetlana Afanaseva3, Rasmus Nielsen1,3,4*4

*For correspondence:
rasmus_nielsen@berkeley.edu (RN);
lpipes@berkeley.edu (LP)
†These authors contributed
equally to this work

1Department of Integrative Biology, University of California-Berkeley; 2School of5

Mathematical Sciences, Peking University; 3Department of Statistics, University of6

California-Berkeley; 4GLOBE Institute, University of Copenhagen7

8

Abstract Wastewater surveillance has become essential for monitoring the spread of9

SARS-CoV-2. The quantification of SARS-CoV-2 RNA in wastewater correlates with the Covid-1910

caseload in a community. However, estimating the proportions of different SARS-CoV-2 strains11

has remained technically difficult. We present a method for estimating the relative proportions of12

SARS-CoV-2 strains from wastewater samples. The method uses an initial step to remove unlikely13

strains, imputation of missing nucleotides using the global SARS-CoV-2 phylogeny, and an14

Expectation-Maximization (EM) algorithm for obtaining maximum likelihood estimates of the15

proportions of different strains in a sample. Using simulations with a reference database of >316

million SARS-CoV-2 genomes, we show that the estimated proportions accurately reflect the true17

proportions given sufficiently high sequencing depth and that the phylogenetic imputation is18

highly accurate and substantially improves the reference database.19

20

Introduction21

The ongoing pandemic of coronavirus disease of 2019 (Covid-19) caused by severe acute respira-22

tory syndrome coronavirus 2 (SARS-CoV-2) continues to be the world’s worst public health emer-23

gency in the last century. There is an emerging need to identify the initiation of outbreaks, dis-24

tribution, and changing trends of Covid-19 in near real-time (Korber et al., 2020; Rockett et al.,25

2020). Wastewater-based epidemiology (WBE) has become an effective monitoring strategy for26

early detection of SARS-CoV-2 in communities as well as being an important method for informing27

public health interventions aimed at containing and mitigating Covid-19 outbreaks (Ahmed et al.,28

2020). WBE for SARS-CoV-2 can detect the virus excreted by both symptomatic and asymptomatic29

individuals alike thus making it an effective approach for modeling the disease signature of entire30

communities. WBE data also strongly correlates with the Covid-19 case rates in the community31

(Medema et al., 2020a; Farkas et al., 2020).32

Currently, most analyses of WBE data for SARS-CoV-2 focus on identifying presence/absence as33

well as quantifying the abundance of the virus (Kumar et al., 2020; Crits-Christoph et al., 2021;Wu34

et al., 2020; Medema et al., 2020b). However, identifying and profiling multiple SARS-CoV-2 geno-35

types in a single sample can provide additional information for understanding the dynamics and36

transmission of certain strains. The alarming continued emergence of novel variants such as the37

Delta variant, B.1.617.2, and the Omicron variant, B.1.1.529, underscores the urgency and need38

for quantification of the abundance of different viral strains across communities. Unfortunately,39

it is difficult to precisely quantify the proportions of different strains of a virus in an environmen-40
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tal sample, such as wastewater, using standard sequencing technologies given the low quality and41

highly uneven depth of sequencing data. Adding to these challenges is thatmany strains are nearly42

identical differing by only one or a few mutations across approximately ∼30,000 nucleotides. With43

millions of possible candidate strain the combinatorial challenge of identifying the correct strains44

is large, particularly when strains are not identified by individual diagnostic mutations, but rather45

by sets of mutations that jointly helps distinguish the strains from each other. Nonetheless, quan-46

tification of strain composition in WBE data has the potential to become a cost-effective method47

to identify changes in viral comumnity composition as SARS-CoV-2 becomes an endemic virus.48

We present a method for estimating the proportion of different SARS-CoV-2 strains from shot-49

gun wastewater allowing researchers to obtain results on sequencing samples in real-time. The50

method is based on an initial filtering step, phylogenetic imputation of missing nucleotides, and51

an Expectation-Maximization (EM) algorithm for obtaining maximum likelihood estimates of the52

proportions of different strains in the sample. Using simulations, we show that the estimated pro-53

portions are close to the true proportions and that the phylogenetic imputation is highly accurate54

and improves the reference strains. We also apply this method to wastewater samples collected55

across the San Francisco Bay Area.56

Results57

Imputation58

Many SARS-CoV-2 sequences submitted to public databases contain missing data (i.e., bases that59

are not coded as A, G, C, or T). This poses a problem when estimating the fraction of different60

SARS-CoV-2 strains, as strains with a high proportion of missing data in average will contain fewer61

nucleotide differences when compared to sequencing reads. We solve this problem using an impu-62

tation approach thereby allowing for a like-to-like comparison of reads against all reference strains.63

Thismethod is in spirit similar to imputation approaches used in human genetics (e.g.Marchini and64

Howie, 2010), although as we will show, due to the strong phylogenetic structure in the SARS-CoV-265

data, imputation ismuchmore accurate than usually observed in diploid organisms. Themethod is66

based on calculating the posterior probability of each nucleotide in the leaf node of a phylogenetic67

tree and imputing based on the maximum posterior probability (see Methods and Materials). We68

compare the method (Tree imputation) to a naive imputation approach based on simply replacing69

missing nucleotides with the most frequent nucleotide observed in the alignment in that position70

(Common allele imputation). We evaluate the methods by first removing sequenced nucleotides in71

a real data set of 3,117,131 SARS-CoV-2 sequences and then re-imputing them using either Tree72

imputation or Common allele imputation.73

For the vast majority of sites, Tree imputation has an error rate of < 5 × 10−4 although a few74

sites have imputation errors between 10−3 and 3 × 10−3 (Figure 1). The imputation error can be75

substantially higher for the naive Common allele imputationmethod with many sites showing error76

rates > 0.02 (Figure 1B). These are sites with high heterozygosity (Figure 1C) where substituting77

with the most common allele leads to high error rates. While the error rates for the Common78

allele imputationmethod naturally is predicted by the heterozygosity, the pattern is somewhat dif-79

ferent for the Tree imputation method. The sites with highest imputation error are not the sites80

with highest heterozygosity, suggesting a high degree of homoplasy in these sites not directly pre-81

dictable by the heterozygosity. These may be sites that switch allelic state often, i.e. have high82

mutation rates, but where the minor allele never increases substantially in frequency due to selec-83

tion. An alternative explanation is sequencing errors. In fact, the site with the highest amount of84

apparent imputation error (position 24,410) is a site known to have a high proportion of sequenc-85

ing errors (https://github.com/W-L/ProblematicSites_SARS-CoV2). It is located in a primer bind-86

ing site where sequences containing the non-reference allele, A, often erroneously are assigned87

back to the reference allele, G, as a result of failed primer trimming during consensus building88

(https://github.com/W-L/ProblematicSites_SARS-CoV2). The A allele is one of the defining muta-89
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Figure 1. Proportion of missassigned bases along SARS-CoV-2 using the tree imputation method (A) and thecommon allele imputation method (B) against heterozygosity (C) using 3,117,131 SARS-CoV-2 genomes.Notice the difference in the scaling of the Y-axis of A and B.

tions of the delta strain and the apparent repeated re-emergence of the G allele within the delta90

clade (Figure S1) is likely a consequence of this common sequencing error. Most other sites, in-91

cluding the site with the highest heterozygosity, position 23,604 (Figure 1C), do not show a similar92

pattern of homoplasy (Figure S2). This suggests that the sites with the highest apparent imputa-93

tion error rate, might in fact have a much lower true imputation error; the Tree imputationmethod94

may provide a more accurate assignment of alleles than the reported sequencing data for some95

problematic sequencing sites.96

Simulations97

In the Methods and Materials section, we describe an algorithm for estimating the proportion of98

different SARS-CoV-2 strains in an environmental sample using maximum likelihood. To evaluate99

the performance of the method, we simulate several sets of reads (single-end 300bp, paired-end100

2x150bp, and paired-end 2x75bp) from 1, 3, 5, and 10 strains with an average depths of 100X, 500X,101

1000X and a sequencing error rate of 0% and 0.5% (see Methods and Materials). We then apply102

the method to these sets of reads using a database of 3,117,131 strains and report the estimated103
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Figure 2. Estimated proportions for simulated 300 bp single-end reads with five replicates for when thesample truly contains 1 (A), 3 (B), 5 (C), or 10 (D) strains out of a total of 1,499,078 non-redundant candidatestrains in the database. The red dashed lines indicate the true proportion of each strain. ’Other’ indicates thesum of estimated proportions for all strains that are not truly represented in the sample.

proportions of each candidate strains and compare them with the truth (Figure 2 , 3 and 4).104

In most cases, the estimates are close to the true proportions, however, with a low coverage105

and high error rate, the proportions of the true strains will tend to be underestimated and strains106

that truly are not present will tend to be estimated as present in the sample. With one true strain in107

the sample, the proportion of this strain is always estimated to be 100%. For sufficiently high depth,108

e.g. 1000X corresponding to roughly a total of 30 Mb of data, the estimates of strain proportions109

are quite accurate, even when 10 strains are present and for strains with a proportion as low as 5%.110

There is similarly very little probability mass assigned to strains that are not truly in the sample. For111

example, for 150 bp paired-end reads with a +25 bp insert and 1000X average sequencing depth,112

the estimate of the cumulative average proportion of all strains not truly in the sample is 0.63%.113

The speed of the method is highly dependent on the number of true strains and the average114

depth (Figure 5), but for realistic sized data sets with a reference database of 3,117,131 strains, the115

typical computational time is between 15 minutes and two hours using a single core. This includes116

the initial time cost of ∼10.5 minutes for reading the large panel of reference strains into mem-117

ory. There is no appreciable difference in speed between the different sequencing strategies used,118

except that paired-end 2x75bp sequences tends to take longer at higher average coverage. Simu-119

lations using the higher error rate (0.5%) are slower than simulations with no error. The average120

time for all sets of simulations with 5 or fewer true strains is <30 minutes for all coverages, while121

the average time for 10 true strains varies between ∼24 to ∼83 minutes depending on the average122

depth.123

In order to quantify the statistical evidence for the presence of a candidate strain in the sample,124

we propose a likelihood ratio test, LLR, formed by comparing the maximum likelihood value calcu-125

lated when the candidate strain is eliminated from the sample (p = 0) to the maximum likelihood126
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Figure 3. Estimated proportions for simulated paired-end reads (2x150 bp with an insert size of +25 bp) withfive replicates for when the sample truly contains 1 (A), 3 (B), 5 (C), or 10 (D) strains out of a total of 1,499,078non-redundant candidate strains in the database. The red dashed lines indicate the true proportion of eachstrain. ’Other’ indicates the sum of estimated proportions for all strains that are not truly represented in thesample.
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Figure 4. Estimated proportions for simulated paired-end reads (2x75 bp with an insert size of +25 bp) withfive replicates for when the sample truly contains 1 (A), 3 (B), 5 (C), or 10 (D) strains out of a total of 1,499,078non-redundant candidate strains in the database. The red dashed lines indicate the true proportion of eachstrain. ’Other’ indicates the sum of estimated proportions for all strains that are not truly represented in thesample.
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Figure 5. Average run times for single-end 300 bp (A), paired-end 2x150 bp (B), and paired-end 2x75 bp (C)read simulations using 100X, 500X, and 1000X average depth with an error rate of 0% and 0.5%. Each averagerun time reported is based on 5 replicates. Times were calculated using an AMD EPYC 7742tetrahexaconta-core 2.25-3.40 GHz processor.

value calculated when allowing the strain to be present in the sample (p ≥ 0), where p is the pro-127

portion of the strain in the sample (see Methods and Materials). Standard asymptotic theory for128

the distribution of the likelihood ratio statistics does not apply to this situation for several reasons,129

most importantly, a search is first made to find the strains that provide the largest increase in the130

likelihood among many strains, and we only calculate the likelihood ratio for the strains with esti-131

mates of p > 0. We, therefore, use simulations to evaluate the distribution of the likelihood ratio132

test statistics under varying conditions. We simulated 1,000 data sets with different numbers of133

true strains, coverage, read length and error rate and calculated the likelihood ratio for all strains134

that were falsely inferred to be present in the sample (Figure 6). Since the frequency of LLR > 2135

and LLR > 4 is about 0.001 and 0.0005, respectively, we recommend using 2 and 4 as thresholds136

for strong and extremely strong evidence for presence of the strain in the sample.137

138
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Figure 6. Distribution of log-likelihood ratios from 1,000 data sets of simulated 100 ∼ 300bp single-end reads.Those simulated data sets include 3 ∼ 10 strains with proportions ranging from 5% to 50% and averagedepths ranging from 50X to 300X. The error rate varies from 0% to 0.5%.

Application to wastewater data from Crits-Christoph et al. (2021)139

To apply ourmethod to a published data set, we estimated the composition of SARS-CoV-2 lineages140

using wastewater shotgun sequencing data from Crits-Christoph et al. (2021) in Figure 7, which141

were all collected in the San Francisco Bay Area. Two out of the top ten strains were collected in142

Alameda county (EPI_ISL_625508, which is identical to EPI_ISL_625520, and EPI_ISL_672326), and143

the top five strains were all collected in North America.144

Discussion145

In order to allow for accurate inferences of strain composition, we first developed a new phylo-146

genetic method for data imputation for SARS-CoV-2 sequences. The method proved to be highly147

accurate with error rates comparable to, or lower, than typical sequencing error rates (Figure1A). In148

fact, apparent wrongly inferred nucleotides may in many cases not be wrongly inferred but rather149

be inferences of the true allele, correcting a sequencing error in the reported sequence. Thus, sim-150

ilarly to imputation-based genotype calling in humans, this method could be used for correcting151

sequencing errors and incorporated formally into an algorithm of imputation-informed sequenc-152

ing where the quality scores from sequencing reads are combined with phylogenetically informed153

nucleotide probabilities to call nucleotides in each position. Computationally, this could be done154

simply by using the phylogenetic posterior probabilities of nucleotides as priors for genotype call-155

ing.156

Our simulation results for the EM algorithm show that the newmethod can accurately estimate157

proportions of SARS-CoV-2 lineages in wastewater samples when up to 10 strains with frequencies158

as low as 5% are represented in the sample. Nonetheless, the estimated proportions for the true159

strains tend to be slightly lower than the actual proportions because the presence of other non-true160

strains is also estimated at alow frequency. In order to have some probability for other non-true161

strains to be estimated, the true proportions for the true strains will naturally in average be slightly162

underestimated. In all sets of simulations of single-end 300bp reads (Figure 2), paired-end 2 x 75bp163

(Figure 3), and paired-end 2 x 150bp (Figure 4), the estimated proportions of the true strains tend164

to bemore accurate as sequencing depth increases. When there aremany strains (i.e., when there165

are 10 true strains) and sequencing depth is low (i.e., 100X), there is a high degree of noise in the166

data set. However, as the total sequencing depth increases, the estimates become progressively167

more accurate. We recommend that studies focused on identifying different strains of SARS-CoV-2168

in environmental samples aim to achieve an average depth of 1000X. Additionally,the method pre-169

sented here has only been evaluated for the estimation of proportions of strains with a frequency170

of 5% or larger. We recommend that strains identified in the sample at low frequencies are evalu-171
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Figure 7. Estimated proportions of the top 25 strains estimated from wastewater shotgun sequencing datafrom Crits-Christoph et al. (2021) and their log-likelihood ratios. Strains with an asterisk (*) are identical withother strains. EPI_ISL_682010* is identical to EPI_ISL_682025, EPI_ISL_1373628, EPI_ISL_1373632, andEPI_ISL_1373659. EPI_ISL_451226* is identical to EPI_ISL_451227 and EPI_ISL_455983. EPI_ISL_625508* isidentical to EPI_ISL_625520, EPI_ISL_672318, EPI_ISL_672449, EPI_ISL_739003, EPI_ISL_739029, EPI_ISL_739135,EPI_ISL_739161, EPI_ISL_739207, and EPI_ISL_739286. EPI_ISL_1859609* is identical to EPI_ISL_1859762.EPI_ISL_510925* is identical to EPI_ISL_510926. EPI_ISL_426109* is identical to EPI_ISL_486012,EPI_ISL_570168, EPI_ISL_570172, EPI_ISL_576500, and EPI_ISL_576501. EPI_ISL_1074397* is identical toEPI_ISL_2190584. EPI_ISL_517805* is identical to EPI_ISL_527398 and EPI_ISL_137362.
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ated using the likelihood ratio test as they likely could be false positives.172

Current strategies for monitoring community composition of SARS-CoV-2 strains include se-173

quencing a large number of clinical samples. As SARS-CoV-2 becomes endemic, tracking the rela-174

tive prevalence in local communities of different SARS-CoV-2 strains will be highly costly. Further-175

more, the use of clinical samples is associated with a lag from infection onset to hospitalization.176

Our results suggest an alternative strategy of monitoring using wastewater samples. Wastewater177

sequencing has already proved effective for tracking SARS-CoV-2 abundance ((Korber et al., 2020;178

Rockett et al., 2020)). With the computational framework developed here, it also promises to be-179

come an important cost-effective strategy for monitoring the local composition of different viral180

strains.181

Methods and Materials182

SARS-CoV-2 Reference Database183

To build the SARS-CoV-2 reference database, a multiple sequence alignment (MSA) of 3,117,131184

SARS-CoV-2 genomes (msa_2021-10-15.tar.xz) and the corresponding phylogenetic tree (GISAID-185

hCoV-19-phylogeny-2021-10-13.zip) was downloaded fromGISAID (www.gisaid.org) onOctober 16,186

2021. We pruned sequence EPI_ISL_4989640 from the tree since it was not present in the MSA. We187

use the function collapse.singles to collapse elbow nodes (i.e., nodes other than the root with188

two degrees) and multi2di to resolve multichotomies in the R ape package (Paradis et al., 2004).189

We impute missing data (i.e., every position in the MSA that did not contain an A, G, C, or T), using190

the phylogenetic tree. To do so, we first scale the branch lengths in terms of substitutions per site191

by dividing each reported branch length by the average sequence length (29618.5). For branch192

lengths that were reported to be 0, we define them to be 0.01 divided by the average sequence193

length. We impute missing nucleotides using the maximum of the posterior probability of each194

nucleotide in the leaf nodes under a standard Jukes and Cantor model (Jukes et al., 1969), using195

standard computational algorithms (Yang, 2014). In brief, because the model is time-reversible,196

the root can be placed in any particular node, and the fractional likelihoods (joint probabilities of a197

fraction of the data in the leaf nodes and the nucleotide state in the node) can be pulled recursively198

towards the node from both the child nodes and the parental node. The posterior probability in199

the leaf nodes of a nucleotide is calculated as the product of the stationary probability of the nu-200

cleotide multiplied by the fractional likelihood in the leaf node conditioned on the data in all other201

leaf nodes. This can be programmed so the calculation is linear in the number of leaf nodes using202

a single pre-order and a single post-order traversal of the tree that will calculate the posterior prob-203

abilities in all nodes. We note that other models than the Jukes and Cantor model could provide204

more accurate estimates, but at a computational cost.205

Since calculating fractional likelihoods for the entire tree requiresmore RAM thanwas computa-206

tionally feasible for us (∼72TB of RAM), we split the tree into partitions, and process each partition207

sequentially as follows:208

Each internal node in the tree corresponds to a partition of leaf nodes into three sets. First, we iden-209

tify the node with the minimum variance in the number of elements among these three partitions,210

i.e. we find211

min
n∈T

(
(na −

n1+n2+na
3

)2 + (n1 −
n1+n2+na

3
)2 + (n2 −

n1+n2+na
3

)2

3
) (1)

where n is a node in the tree, T is the tree, n1 is the number of leaf nodes descending from the212

left child of n, n2 is the number of leaf nodes descending from the right child, and na = N − n1 − n2,213

where N is the total number of leaf nodes in the tree. We then split the tree into 3 subtrees by214

eliminating the identified node. We then iterate this procedure for the resulting subtrees until all215

trees contain at most 50,000 leaf nodes.216

Using this partitioning procedure, we obtain 121 trees which we use to calculate the posterior217

probabilities at each site. After imputation, we trim the MSA to begin at the start of the Wuhan218

reference sequence (Wuhan-Hu-1), position 55 in the MSA, and we removed every position in the219
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MSA that contains a gap in Wuhan-Hu-1. After this trimming and imputation process, we save non-220

informative invariant sites (856 sites), in order to reduce running time when eliminating unlikely221

strains. We also remove all identical sequences, resulting in 1,499,078 non-redundant genomes.222

Estimating the proportions of SARS-CoV-2 genomes223

All sequencing reads are aligned to Wuhan-Hu-1 (NC_045512.2) using bowtie2 (Langmead and224

Salzberg, 2012) with the following command for single-end reads, bowtie2 –all -f -x wuhCor1225

-U, and for paired-end reads, bowtie2 –all -f -x wuhCor1 -1 -2. For each read data set, we first226

remove unlikely genomes from the candidate strain alignment by eliminating genomes with SNP227

alleles that have an allele frequency in the read data less than a user-defined frequency thresh-228

old. For the analyses in this data, that threshold was set to 0.01. This typically reduced the size of229

the alignment to < 1, 000 relevant genomes. Using this reduced set of SARS-CoV-2 genomes, we230

calculate a matrix of dimensions (number of reads)×(number of genomes) containing the number231

of mismatches between each sequencing read and each genome, d = {dij}. For paired-end reads232

with reads that overlap, we use the consensus nuleotide. If there is a conflict at any position in the233

overlap of the paired-end reads, we omit this site. Based on the mismatch matrix, d, we first calcu-234

late the probability of observing read j given that it comes from strain i, denoted as qij . Assuming235

that the reads are independent (PCR clones removed) and a user-defined error rate � (default =236

0.005) at each nucleotide, this probability is given by237

qij = �dij × (1 − �)nj−dij

where nj is the length of read j and dij is the number of mismatches in read j given that it comes238

from strain i. The log-likelihood is then given by239

logL(p1,⋯ , pk) =
n
∑

j=1
log

k
∑

i=1
qijpi, (2)

where pi (i = 1,⋯ , k) is the proportion of strain i, i.e. the parameters we wish to estimate. We then240

use the standard ExpectationMaximization (EM) algorithm (Dempster et al., 1977) to maximize the241

likelihood function with respect to these parameters 1:242

Algorithm 1 EM algorithm for estimating the proportions of candidate strains
Input: The probability of observing read j given that it comes from strain i, qij , for all i and j.
Output: The proportion of each candidate strain, pi, for all i.
1: Initialize the proportions of each strain pi(0), i = 1...k, with uniform probabilitiesU (0, 1) and then
re-scaled to 1.

2: Compute the log-likelihood l0 =
∑n

j=1 log
∑k

i=1 qijpi(0);
3: repeat
4: Compute the proportion of each candidate strain at iteration t as pi(t) = 1

n

∑n
j=1

pi(t−1)qij
∑k
l=1 pl (t−1)qlj

;
5: Compute the log-likelihood at iteration t as lt = ∑n

j=1 log
∑k

i=1 qijpi(t);
6: until lt − lt−1 < ", where " is a pre-defined stopping criterion.
However, Algorithm 1 usually has a slow convergence rate, especially when the number of can-243

didate strains k is large. Therefore, to accelerate the Algorithm 1, we use the SQUAREM algorithm244

proposed by Varadhan and Roland (2008) with its implementation in the R package turboEM (Bobb245

and Varadhan, 2020).246

Determining unidentifiable strains247

Note that if two stains have the same qij ’s, say there exist i and i′ such that qij = qi′j for all j = 1,⋯ , n,248

the log-likelihood (2) becomes249

logL =
n
∑

j=1
log

[(

∑

r∈{1,...,k}∖{i,i′}

qrjpr

)

+ qij(pi + pi′ )

]

. (3)

11 of 16

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 13, 2022. ; https://doi.org/10.1101/2022.01.13.22269236doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.13.22269236
http://creativecommons.org/licenses/by/4.0/


Therefore, as long as pi + pi′ is fixed, (3) remains the same no matter what value pi and pi′ take,250

making the model unidentifiable. To solve this problem, we gather strains with the same {qij}nj=1251

into an unidentifiable group and estimate its overall proportion instead of the proportions of each252

strain in it.253

Quantifying the statistical evidence of the existence of each candidate strain254

Toprovide ameasure of statistical support for the presence of strain i0, i.e. pi0 > 0, we remove strain255

i0 from the candidate set of strains and re-run Algorithm 1 providing a new estimate {p̃i}ki=1 with256

p̃i0 = 0. Using (2), we can then calculate the difference in log likelihood before and after removing257

strain i0, denoted as LLRi0 . From our simulations (see Results), we recommend using LLRi0 ≥ 4 as258

strong statistical evidence in favor of existence of strain i0 in the sample.259

Simulating missing data for imputation260

For every SARS-CoV-2 genome (out of a total of 3,117,131 genomes), we randomly remove 1% of261

nucleotides, and save the true nucleotide at each position that was removed. We then use the Tree262

imputationmethod and the Common allelemethod to impute the nucleotides that are missing.263

Simulating reads from SARS-CoV-2 genomes264

We choose 10 strains among 1,499,078 strains uniformly at random. Then, to simulate single-end
reads from a strain, we choose a starting point uniformly at random and let it extendm0 bps, where
m0 is the read length. For paired-end reads, we similarly choose a starting point at random and let
it extend m0 bps. Then, starting from the end of this read, if the insert size is m1 is positive, wesimulate the start of the reverse read m1 bps forward with length m0; if m1 is negative, we simulate
the start of the reverse read m1 bps backwards. We then add sequencing errors independently
with probability � = 0.005 at each site. Errors are induced by relabeling the nucleotide to any of the
other three possible nucleotides with the following probability s:

A G C T
⎡

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎦

− s ≤ 0.3754 s ≤ 0.5238 s ≤ 0.2505 A
0.4918 < s ≤ 0.8295 − 0.5238 < s ≤ 0.7899 s > 0.5057 G

s ≤ 0.4918 0.3754 < s ≤ 0.6109 − 0.2505 < s ≤ 0.5057 C
s > 0.8295 s > 0.6109 s > 0.7899 − T

Calculating time cost265

To calculate running timeof themethodweuse /usr/bin/timeonanAMDEPYC7742 tetrahexaconta-266

core 2.25-3.40 GHz processor and report real time in the results (Figure 5). The running time that267

we calculate includes running the method from start (reading in the reference strains) to finish268

(reporting proportions) and includes the filtering step for eliminating unlikely strains. We report269

times that do not include calculating the log-likelihood ratio.270

Applying the method to wastewater data from Crits-Christoph et al. (2021)271

Wastewater shotgun sequencing data from Crits-Christoph et al. (2021) was downloaded from272

NCBI BioProject ID PRJNA661613 (https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA661613).273

All samples were pooled together and aligned against Wuhan-Hu-1 using BWA-MEM (Li, 2013) to274

identify SARS-CoV-2 reads.275

Data availability276

Simulations used in thismanuscript canbedownloaded at https://doi.org/10.5281/zenodo.5838942.277

The imputedMSA canbedownloaded at https://doi.org/10.5281/zenodo.5838946. Identical strains278

are contained in the headers of the MSA separated by colons. Software for the method is available279

for download at https://github.com/lpipes/SARS_CoV_2_wastewater_surveillance.280
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Supplementary Material352

Figure S1. Screenshot of SARS-CoV-2 phylogeny from nextstrain.org for nucleotide position 24,410 taken onJanuary 5, 2022.
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Figure S2. Screenshot of SARS-CoV-2 phylogeny from nextstrain.org for nucleotide position 23,604 taken onJanuary 5, 2022.
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