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Abstract  

 

Background 

This study evaluates longitudinal associations between glycaemic control (mean and within-

patient variability of glycated haemaglobin (HbA1c) levels) in individuals with type 2 

diabetes (T2D) and major depressive disorder (MDD), focusing on the timings of these 

diagnoses. 

 

Methods 

In UK Biobank, T2D was defined using self-report and linked health outcome data, then 

validated using polygenic scores. Repeated HbA1c measurements (mmol/mol) over the 10 

years following T2D diagnosis were outcomes in mixed effects models, with T2D disease 

duration included using restricted cubic splines. Four MDD exposures were considered: 

MDD diagnosis prior to T2D diagnosis (pre-T2D MDD), time between pre-T2D MDD 

diagnosis and T2D, new MDD diagnosis during follow-up (post-T2D MDD) and time since 

post-T2D MDD diagnosis. Models with and without covariate adjustment were considered. 

 

Results 

T2D diagnostic criteria were robustly associated with T2D polygenic scores. In 11,837 T2D 

cases (6.9 year median follow-up), pre-T2D MDD was associated with a 0.92 increase in 

HbA1c (95% CI: [0.00, 1.84]), but earlier pre-T2D MDD diagnosis correlated with lower 

HbA1c. These pre-T2D MDD effects became non-significant after covariate adjustment. 

Post-T2D MDD individuals demonstrated increasing HbA1c with years since MDD 

diagnosis (� � 0.51, 95% CI: [0.17, 0.86]). Retrospectively, looking across all follow-up, 
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within-patient variability in HbA1c was 1.16 (95% CI: 1.13-1.19) times higher in post-T2D 

MDD.  

 

Conclusions  

The timing of MDD diagnosis is important for understanding glycaemic control in T2D. 

Poorer control was observed in MDD diagnosed post-T2D, highlighting the importance of 

depression screening in T2D, and closer monitoring for individuals who develop MDD after 

T2D. 
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Background 

  

Major depressive disorder (MDD) and type 2 diabetes (T2D) are substantial global health 

burdens, occurring together at twice the frequency expected by chance1. Adults with MDD 

have a 37% higher risk of developing T2D2, and people with T2D face a 15% higher risk of 

developing MDD3.  

 

For individuals with T2D, comorbid depression is associated with elevated risk of diabetic 

complications4 and all-cause mortality5. The underlying mechanisms between these disorders 

and outcomes remain poorly understood, but could include lifestyle factors, non-adherence to 

T2D treatment, use of antidepressant medication or genetic factors1.  

 

One potential link between MDD and adverse outcomes in T2D is glycaemic control, with 

glycated haemoglobin (HbA1c) representing a reliable measure of long-term glycemia. 

Elevated and more variable HbA1c levels are associated with increased risk of long-term 

diabetic complications, such as stroke and cardiovascular disease6–8. Prior studies have shown 

mixed support for the association between MDD and HbA1c1,9, but many are limited to a 

cross-sectional design. A meta-analysis that considered longitudinal effects of depressive 

symptoms on HbA1c found that depressive symptoms associated with higher HbA1c, and so 

poorer glycaemic control, across a mean follow-up of 3 years (n=3683 across six studies)9.  

 

Furthermore, the relative timing of MDD and T2D diagnoses may also impact T2D clinical 

characteristics.  A cross-sectional study showed that depression diagnosed after T2D is linked 

with poorer glycaemic control and a higher prevalence of diabetic complications, compared 

to T2D patients with no or with pre-existing depression10.  
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Understanding the impact of MDD on glycaemic control across time is crucial for delivering 

appropriate clinical care to individuals living with both MDD and T2D. Longitudinal studies 

to date have not explored the relationship between the relative diagnostic timings of these 

disorders and HbA1c trends over time. To address this gap, our study uses UK Biobank 

(UKB) primary care records to perform extensive longitudinal modelling of HbA1c in people 

with T2D in a retrospective, observational study, using information on MDD diagnosis. In 

the UK, HbA1c is measured by a general practitioner (GP) every 3-6 months in individuals 

with T2D11. Therefore, the linked primary care data available in UKB provides a unique 

opportunity to test the longitudinal relationship between HbA1c (mean levels and variability) 

and MDD over a 10-year period following T2D diagnosis. Our analysis incorporates four 

MDD exposures:  

1) pre-T2D MDD diagnosis (ever diagnosed with MDD prior to T2D),  

2) time between pre-T2D MDD diagnosis and T2D,  

3) time-varying post-T2D MDD (newly diagnosed with MDD during follow-up period), and 

4) time since post-T2D MDD diagnosis.  

By considering these exposures, we aim to gain a deeper understanding of how MDD and its 

timing in relation to T2D affect glycaemic control. 

 

Methods 

 

Study population 

The UK Biobank (UKB) is a health study of ~500,000 individuals recruited between 2006 

and 2010 in the United Kingdom, aged 40-7012. Linked primary care records are available for 
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~230,000 individuals (46%), encompassing clinical events, blood test results and 

prescriptions, providing longitudinal patient information13.  

 

T2D Classification and Validation 

UKB participants with primary care records were classified into T2D cases and controls. T2D 

cases met specific T2D diagnostic criteria (detailed below), while controls did not. The T2D 

diagnostic criteria were validated using T2D polygenic scores (PGSs) in European ancestry 

participants meeting genetic quality control criteria14 (Supplementary Methods 

(SuppMethods) 1).  

 

Type 2 diabetes (T2D) diagnostic criteria 

T2D cases were identified based on the presence of any two of the following: 1) a primary 

care diagnosis code for T2D (Supplementary Table (SuppTable) S1), 2) an ICD9/ICD10 

diagnosis code for T2D (SuppTable S2), 3) any HbA1c measurement > 48 mmol/mol (6.5%), 

4) any prescription for glucose lowering medication (SuppMethods 2), and 5) a self-reported 

diagnosis for T2D with reported age at onset > 35 years. T2D diagnosis date was then the 

earliest occurrence (Figure 2). T2D cases were excluded if they had a primary care code 

specific to type 1 diabetes, an insulin prescription within a year of T2D diagnosis, or a 

prescription for multiple diabetic medications at T2D diagnosis (SuppMethods 2-3). 

Individuals prescribed one diabetic medication (monotherapy) at T2D diagnosis were not 

excluded. 

 

Exclusion criteria for longitudinal analysis 

For the longitudinal analysis, we excluded participants meeting any of the following criteria: 

1) were a T2D control, 2) had fewer than two HbA1c measurements after T2D diagnosis, 3) 
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had age at T2D diagnosis < 18 years, 4) had no recorded HbA1c measurements > 38 

mmol/mol (3.5%)15 within a six-month window of T2D diagnosis, 5) had diagnostic codes 

for bipolar, psychotic or substance-use disorders16, 6) had a MDD diagnosis without a 

specified diagnosis date, or 7) were missing self-reported ethnicity (Figure 1). 

 

Outcome measures 

For the T2D diagnostic criteria validation, the outcome was T2D case-control status for UKB 

participants of European ancestry with primary care records available. For the longitudinal 

analysis, the outcome was repeated measures of HbA1c (mmol/mol) after T2D diagnosis. 

HbA1c data were taken from: 1) primary care records up to 2017 (SuppTable S4), where 

older observations recorded in %-units were converted to mmol/mol17, and 2) all UKB 

biomarker assessments (2006-2016), where a validated correction was applied to account for 

lower average HbA1c values from the UKB biomarker panel compared to primary care18 

(SuppMethods 4). The indexing date was T2D diagnosis, with a maximum follow-up period 

of 10 years. 

 

Exposures 

In the longitudinal analysis, four MDD exposure variables were considered simultaneously. 

Two were related to individuals diagnosed with MDD prior to T2D (pre-T2D MDD), and two 

were related to individuals diagnosed with MDD after their T2D diagnosis (post-T2D MDD).  

Pre-T2D MDD exposures: (1) History of MDD at T2D diagnosis (MDD_index). This binary 

variable indicates whether an individual had ever received a MDD diagnosis at the index 

date. (2) Pre-T2D MDD duration at index (years). This semi-continuous variable quantifies 

the time between MDD diagnosis and T2D diagnosis when MDD_index equals 1, and is 0 
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otherwise. These time-invariant exposures were used to examine the impact of pre-T2D 

MDD on HbA1c, including interactions with T2D disease duration.  

Post-T2D MDD exposures: (1) Change in MDD diagnosis (MDD_change). A time-varying 

binary variable indicating, at each observation time (t), whether an individual has been 

diagnosed with MDD between t and the index date. It captures information about individuals 

diagnosed with MDD during follow-up. For individuals with no MDD diagnosis occurring 

before t, and those diagnosed prior to T2D diagnosis, this variable is set to 0. (2) Post-T2D 

MDD duration (years). A semi-continuous, time-varying covariate equalling the time 

between MDD diagnosis and t if MDD_change equals 1, and 0 otherwise. This variable 

allows post-T2D MDD participants to have different HbA1c time-slopes after their MDD 

diagnosis. Note, UKB participants classified as having a MDD diagnosis required at least two 

diagnostic codes for a depressive disorder or episode diagnosis in the linked primary care 

records16. 

 

Covariates  

Covariates were extracted from UKB assessments and/or primary care data. Covariates 

extracted from UKB initial assessments were: sex, assessment centre, self-reported ethnicity, 

Townend Deprivation Index (TDI), qualifications, ever smoked, and never consumed 

alcohol. Covariates extracted from both UKB assessments and primary care data were: age at 

T2D diagnosis, HbA1c at T2D diagnosis, body mass index (BMI) at T2D diagnosis 

(SuppMethods 6), systolic (SBP) and diastolic (DBP) blood pressure at T2D diagnosis 

(SuppMethods 6), number of HbA1c, BMI and blood pressure measurements taken prior to 

T2D diagnosis, and T2D disease duration (time). Covariates extracted from primary care only 

were diabetic medications. Glucose lowering medication at each HbA1c observation was 

identified using prescription records up to three months prior to HbA1c measurement 
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(SuppMethods 2). This information was grouped into four medication categories: 1) M0 (‘no 

medication’), 2) M1 (‘metformin or a single medication’/ monotherapy), 3) M2 (‘two 

medications’/ dual-therapy), and 4) M3 (either ‘3 or more medications’ or ‘insulin’). Two 

medication variables were then created. Firstly, a binary variable indicating monotherapy at 

T2D diagnosis versus no prescribed T2D medication (M0 vs M1 at diagnosis). Secondly, a 

time-varying medication variable using the four categories M0–M3.  

 

With the exception of time and time-varying medication, covariates were treated as baseline 

measurements. However, it is important to note that the index date and UKB assessment 

dates are different. For example, measurements from UKB initial assessments (TDI, 

qualifications, etc) were collected between 2006 and 2010, and 56% of individuals were 

diagnosed outside of this time-frame. However, results from models with and without UKB 

initial assessment covariates yielded similar conclusions (SuppTable S10). Further details on 

covariates are available in SuppTable 5A. 

 

Statistical analysis 

All analyses were performed using R version 4.2.2, and visualised using ggplot2.  

Validation of T2D diagnostic criteria: To validate the T2D definition, we tested whether 

PGSs for T2D19 predicted T2D case-control status. PGSs, calculated using PRSice v220,21 at 

eleven P-value thresholds, were tested for association with T2D case-control status, adjusting 

for six genetic ancestry principal components, assessment centre and genetic batch effect 

(SuppMethods 7).  

Longitudinal analysis: We employed linear mixed effects models (MEMs) to investigate 

longitudinal associations between HbA1c and MDD using the nlme package22,23. All models 

incorporated random intercepts and time slopes, with a continuous-time autoregressive 1 
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(CAR1) residual correlation structure to account for autocorrelation. A series of three 

analyses were performed.  

(1) Unadjusted model with selection. This analysis focused on the primary fixed effects of 

time and the MDD exposures. Time (T2D disease duration) was modelled using a restricted 

cubic spline (RCS) with four knots to allow for a non-linear temporal trend in mean HbA1c  

24,25. Interactions between the pre-T2D MDD exposures and time-splines were considered, 

with the impact of post-T2D MDD on HbA1c time-slopes captured by post-T2D MDD 

duration. Selection of the final model was determined by Akaike Information Criterion (AIC) 

and likelihood ratio tests (LRTs). Models with semi-continuous exposures required their 

corresponding binary indicator to be included.  

(2) Adjusted model. The selected unadjusted model was extended to include covariates, plus 

interactions between the time-splines and HbA1c at T2D diagnosis, BMI at T2D diagnosis 

and the medication variables.  

(3) Residual within-subject variation in HbA1c. To explore the association between 

within-subject variation and MDD, the adjusted model was updated to allow residual 

variation to differ by MDD diagnosis variables. Firstly, we assessed if pre-T2D MDD 

(MDD_index) individuals had different residual variation compared to other participants. 

Secondly, we used MDD_change to investigate if post-T2D MDD individuals had different 

residual variation after their MDD diagnosis. Thirdly, a restrospective, time-invariant binary 

indicator for post-T2D MDD individuals was introduced to assess any differences in within-

subject variation over all follow-up. Likelihood ratio tests (LRTs) were used to test for MDD 

diagnosis-related heterogeneity in residual variation.  

 

HbA1c at T2D diagnosis had a high level of missingness (40%), but all included participants 

had a HbA1c measurement within a six-month window of this date. Multiple imputation (MI) 
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with the Amelia package26 generated 50 MI datasets (SuppMethods 8) that were used in 

analyses (2) and (3). MEM estimates were pooled using Rubins method, with pooled Wald-

like P-values presented for the fixed effects27,28. Parameter estimates for RCSs are difficult to 

interpret. Therefore, in addition to a summary of the MDD exposure fixed effects (including 

p-values from t-tests), results are presented using plots of predicted HbA1c29,30. Details of 

covariates included in MI and/ or MEMs are given in SuppTables S5A and 5B.  

 

Results 

 

Validation of T2D diagnostic criteria 

The eligible UKB sample consisted of 17,712 individuals with T2D (Figure 2), with 24% of 

individuals having evidence of T2D from all five data sources considered. Participants with 

T2D tend to be male (61%) with an average age at T2D diagnosis of 57 years (IQR: 51-64 

years). Applying genetic quality control criteria to participants of European ancestry provided 

13,799 T2D cases and 73,002 controls. T2D PGSs were significantly associated with T2D 

case-control status at all PGS P-value thresholds and explained up to 2.8% of T2D liability 

(SuppTable S6).  

 

Longitudinal analysis 

In total, 11,837 T2D cases met inclusion criteria for longitudinal analysis. Median follow-up 

time was 6.9 years (IQR: 3.5–9.3 years). Table 1 presents sample characteristics stratified by 

MDD subgroup: ‘no MDD’ (89% without an MDD diagnosis), ‘pre-T2D MDD’ (9% with 

MDD diagnosed prior to T2D) and ‘post-T2D MDD’ (2% diagnosed with MDD during the 

10 year follow-up). Groups with a diagnosis of MDD include a higher proportion of females 

and have higher median TDI, which is particularly notable in the post-T2D MDD group. 
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Additionally, the post-T2D MDD group had an earlier median age at T2D diagnosis, leading 

to a longer median follow-up time. This group also had the highest proportion of patients in 

medication group M3 (insulin and/or three or more T2D medications) by the end of follow-

up. A higher proportion of the post-T2D MDD group are missing HbA1c at diagnosis (52% 

compared to 43% for the pre-T2D MDD group and 42% for the no MDD group).  

 

Unadjusted model 

The selected unadjusted model included time-splines and the four MDD exposures, with no 

significant interaction between the pre-T2D MDD exposures and time (p = 0.3072; Table 2). 

This implies the difference in mean HbA1c between pre-T2D MDD individuals and 

individuals without MDD depends on the time between MDD and T2D diagnoses, the effect 

of which is constant over T2D disease duration. Having a history of MDD prior to T2D is 

associated with a 0.92 mmol/mol increase (95% CI: [0.00, 1.84]) in HbA1c, but earlier onset 

of pre-T2D MDD is associated with lower HbA1c (Table 3). To illustrate this, Figure 3 plots 

predicted HbA1c (mmol/mol) over time for four example individuals with either no MDD or 

with MDD diagnosed 2.2 years, 10.7 years or 27.5 years before T2D (10th, 50th and 90th 

percentile of pre-T2D MDD duration at index respectively). Differences in HbA1c between 

these three pre-T2D MDD individuals and the no MDD individual at any point during 

follow-up are 0.72 (95% CI: [-0.11, 1.55]), -0.06 (95% CI: [-0.65, 0.54]) and -1.60 (95 CI: [-

2.63, -0.57]) for the 10th, 50th and 90th percentile of pre-T2D MDD duration respectively. 

Those diagnosed with MDD ~10 years before T2D have HbA1c levels over time equivalent 

to those without MDD, with those diagnosed earlier having lower HbA1c and those 

diagnosed closer to their T2D diagnosis having higher HbA1c. Our example shows that only 

individuals diagnosed with MDD many decades before T2D have a 95% CI for difference in 

HbA1c relative to no MDD that excludes 0 (SuppTable S8a). 
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For post-T2D MDD individuals, the unadjusted model included a small, non-significant 

decrease in HbA1c of -0.50 mmol/mol (95% CI: [-1.63, 0.64]) upon MDD diagnosis (Table 

3). This initial MDD diagnosis effect is retained in the model due to the significant semi-

continuous post-T2D MDD duration variable, capturing time since post-T2D MDD diagnosis 

(Table 3). For two post-T2D MDD individuals where MDD is diagnosed one year apart, 

HbA1c is expected to be 0.53 mmol/mol higher (95% CI: [0.19, 0.87]) in the individual 

diagnosed with MDD one year earlier (Table 3).  

 

Figure 4 presents predicted HbA1c over time for an individual without MDD and three 

example individuals diagnosed with MDD 1 year, 3.8 years and 7.1 years after T2D (10th, 

50th and 90th percentile respectively). The smaller sample size for the post-T2D MDD group 

is reflected in wider 95% CI after MDD diagnosis. An initial decrease in HbA1c at MDD 

diagnosis is followed by a steeper increase in HbA1c, so that a post-MDD individual will 

have a higher HbA1c three years after MDD diagnoisis compared to an individual with no 

MDD diagnosis (i.e. the 95% CI for the difference between predicted HbA1c for a post-T2D 

MDD individual and an individual without MDD is expected to exclude 0 after three years).  

Indivduals diagnosed with MDD earlier in their follow-up are expected to have higher 

HbA1c levels after a 10-year T2D disease duration compared to those with later onset MDD 

or those without MDD diagnoses (SuppTable S8b). For example, at the end of the 10-year 

follow-up, an individual diagnosed with MDD one year after T2D is predicted to have a 

HbA1c of 60.49 (95% CI: [57.83, 63.15]) compared to 56.19 (95% CI: [55.78, 56.61]) for 

those without MDD. 

 

Adjusted model 
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After adjustment for all covariates, the absolute effect size for all MDD exposure variables 

are reduced (Table 3). In particular, after adjustment, the pre-T2D MDD duration effect size 

is no longer significant (p = 0.1637) suggesting that, given the included covariates, a history 

of MDD prior to T2D has no effect on HbA1c trends over T2D disease duration. 

 

The pooled results from the adjusted model are similar to those from the unadjusted model 

for the post-T2D MDD exposures. The adjusted model suggests a small decrease in HbA1c 

after a diagnosis with MDD during follow-up (post-T2D MDD). As in the unadjusted results, 

this effect is non-significant (p = 0.2555). The adjusted effect size for post-T2D MDD 

duration is 0.51 (95% CI: [0.17, 0.86]), showing that earlier MDD diagnosis during follow-up 

is still associated with higher HbA1c. Full model summaries can be found in SuppTable S7 

and S9 for the unadjusted and adjusted model respectively. 

 

Within-patient HbA1c variability 

Non-convergence was common for models allowing residual variation to differ by 

MDD_index (24%) and MDD_change (48%). Pooled results from converged models showed 

that within-patient variability in HbA1c was approximately the same when comparing pre-

T2D MDD individuals (using MDD_index) to all others, and post-T2D MDD (using 

MDD_change) to all others (Table 4). However, when looking retrospectively for post-T2D 

MDD individuals (i.e. looking across all follow-up rather than only after MDD diagnosis), 

we found that within-patient HbA1c variation was 1.16 times higher (95% CI: [1.13. 1.19]) 

for the post-T2D MDD group compared to no MDD and pre-T2D MDD. This suggests that 

differences in HbA1c for those who develop MDD after T2D, compared to those with no or 

pre-existing MDD, start prior to MDD diagnosis. 
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Discussion 
 

This study tested the hypothesis that people with both T2D and MDD have poorer diabetic 

control over the course of T2D, as assessed by routine primary care monitoring of HbA1c, 

focusing on the role of timing and history of MDD diagnosis relative to T2D. We examined 

whether UKB participants with T2D and MDD have higher and more variable HbA1c levels 

over time compared to those with T2D alone. To do so, we utilised exposure variables that 

differentiated between individuals with a history of MDD before their T2D diagnosis (pre-

T2D MDD) and those who received their MDD diagnosis after their T2D diagnosis (post-

T2D MDD), while also incorporating time since MDD diagnosis. 

 

For individuals with pre-T2D MDD, longitudinal modelling across 10 years of follow-up 

found that the time between MDD and T2D diagnoses was informative about HbA1c levels 

across T2D disease duration. Specifically, individuals diagnosed with MDD decades prior to 

T2D had lower HbA1c over time compared to individuals without MDD and those diagnosed 

closer to their T2D diagnosis date. After adjusting for covariates, the pre-T2D MDD 

variables became non-significant, which may be partly ascribed to the correlation between 

the time gap from pre-T2D MDD diagnosis to T2D and the age at T2D diagnosis 

(Spearman’s � � 0.23). Here, a longer gap between MDD and T2D diagnoses correlates with 

a later age at T2D diagnosis (SuppTable S11). However, the non-significance of pre-T2D 

MDD exposures after covariate adjustment may also be partly attributed to mediation rather 

than confounding. For example, increased numbers of pre-T2D measurements for blood 

pressure, BMI and HbA1c (a proxy for history of healthcare utilisation) were associated with 

lower HbA1c at T2D diagnosis (SuppTable S12). Given that an earlier diagnosis with MDD 

relative to T2D leads to more pre-T2D measurements (SuppTable S11), it is plausible that 

mediation is partially responsible for the loss of significance for pre-T2D MDD duration, 
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through increased contact with healthcare professionals. Further work on the impact of pre-

T2D MDD is therefore warranted, with extension to additional features of MDD beyond 

timing of initial diagnosis (e.g. most recent episode, anti-depressant prescriptions and number 

of episodes). 

 

For individuals diagnosed with MDD after T2D, both the unadjusted and adjusted models 

found that time since MDD diagnosis was important in shaping the trajectory of HbA1c. The 

earlier the diagnosis of MDD during follow-up, the greater the expected difference in HbA1c 

between post-T2D MDD individuals and those without MDD at the end of follow-up. Post-

T2D individuals also demonstrated some differences in within-patient HbA1c variation. 

Results suggest that, given the model considered, after diagnosis with MDD during follow-

up, within-patient variation does not differ from no MDD and pre-T2D MDD. However, if 

we look retrospectively across all follow-up and compare post-T2D MDD individuals to all 

others, we observe that within-patient HbA1c variation is 1.16 times higher for the post-T2D 

MDD individuals. This greater variability in HbA1c, driven by observations before MDD 

diagnosis, warrants further investigation to ensure appropriate public health and clinical 

advice is available. Post-T2D MDD individuals may indeed have higher HbA1c variability 

before MDD diagnosis. This is important because increased variability is associated with 

increased likelihood of adverse outcomes, including microvascular disease31. However, this 

result may also arise from mean HbA1c trends for post-T2D MDD individuals deviating from 

those with no or pre-existing MDD before their MDD diagnosis. Given that MDD diagnosis 

requires the presence of symptoms for two or more weeks, it is plausible that the impact of 

MDD symptoms on HbA1c begin before formal diagnosis. Additionally, diagnostic delays, 

as demonstrated in a study of primary care records in Spain (mean delay of 9.89 weeks)32 
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may be present. Therefore, exploring the feasibility of using HbA1c trends for MDD 

prediction in individuals with T2D could be an interesting avenue of research.  

 

Previous work on mean HbA1c has provided inconclusive evidence for the impact of MDD9. 

Nevertheless, in line with our results, two larger studies did find associations between mean 

HbA1c over time and depression. A meta-analysis found a modest association between 

depressive symptoms and HbA1c (3-year mean follow-up)9, and a prospective study in 

veterans with T2D found that HbA1c was slightly higher for individuals with depression (5-

year follow-up)33.  

 

A previous study10 showed differences in T2D clinical characteristics by timing of MDD and 

T2D diagnoses, with a higher rate of diabetic complications in the post-T2D MDD group, but 

not the pre-TDD MDD group, compared to the no MDD group. Differences in glycaemic 

control between these MDD subgroups is a possible explanation for the observed clinical 

differences. The observed increase in HbA1c levels with time since MDD diagnosis for post-

T2D MDD individuals, along with the retrospectively identified higher variability across 

follow-up, supports this hypothesis, demonstrating the potential importance of the relative 

timing of MDD onset. 

 

Our analysis revealed a linear effect for time since post-T2D MDD diagnosis, meaning the 

impact of post-T2D MDD increases with years since MDD diagnosis. Due to the smaller 

sample size of the post-T2D MDD group (n=226), this study may have been underpowered to 

detect non-linear trends for this post-T2D MDD duration variable (SuppMethods 10). Future 

work using larger samples and different methods of capturing the time between T2D and 

MDD diagnoses (e.g. joint models for HbA1c over time and time-to-MDD diagnosis) may 
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identify such trends, and determine if patients diagnosed with MDD after T2D require closer 

monitoring, or whether a specific time window is crucial for glycaemic control.  

 

MDD episodes after T2D diagnosis are hypothesised to have a greater effect on glycaemic 

control, which we have confirmed by showing greater mean and within-subject variability in 

HbA1c levels for post-T2D MDD individuals. These individuals visited their GP after their 

T2D diagnosis and had a MDD code recorded. Multiple pathways, particularly behavioural, 

could explain this association. Several studies have shown that patients with both MDD and 

T2D have worse T2D self-management, are less able to keep the medical appointments, are 

less physically active and less able to adhere to dietary requirements, possibly leading to 

hyperglycaemia34–36. Our study highlights the importance of diagnosis timing, with possible 

need for targeted interventions based on clinical history.  

 

Our study has several limitations. Firstly, primary care data are collected when patients visit 

their GP, and between-patient differences in this visiting process can bias results37,38. 

Individuals with T2D should see their GP every 3-6 months11 and differences may affect 

results. For example, less healthy individuals may interact with GPs more frequently and 

contribute more observations. The models used attempted to reduce this potential bias, as the 

CAR1 error structure ensured that observations measured closely in time provided less 

information than those taken far apart. However, T2D cases with MDD may miss more 

scheduled appointments, and our analysis does not account for this. 

 

Secondly, as a retrospective observational study, confounding may bias results. For example, 

antidepressant medication can lead to weight gain39, which can negatively affect HbA1c 

levels40. While we adjusted for confounders such as BMI and blood pressure, these covariates 
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were time invariant and the timing of measurement differed for each participant 

(SuppMethods 6). Future studies could consider time-varying confounding and include 

additional risk factors (e.g. antidepressant medications, cardiovascular conditions).   

 

Thirdly, HbA1c at T2D diagnosis had a high level of missingness, which disproportionately 

affected individuals in the post-T2D MDD group, and highlights the challenges of working 

with real-world data. While we utilised MI, this approach has limitations and depends on the 

model selected and data availability. However, results for the post-T2D MDD exposures 

were similar in the unadjusted model (no MI required) and the adjusted model (MI used). 

 

The validity of the age at MDD onset, determined using the date of the first MDD diagnostic 

code, presents a further limitation. For older individuals the validity of their MDD onset is 

unknown, given primary care records are only available after 1990, while mean age at 

diagnosis of MDD is around 30 years41. Replication in the Clinical Practice Research 

Datalink, which has GP records from 1987 and no age limits, would therefore be useful42.  

 

Conclusions 

 

This study, utilising UKB primary care records, highlights the importance of considering the 

temporal relationships between T2D and MDD in the context of glycaemic control. Findings 

reveal a non-linear trend in HbA1c levels over time and demonstrated that within a 10-year 

window, those who develop MDD after T2D diagnosis had increased HbA1c levels and, prior 

to MDD diagnosis, greater variability, supporting the finding that individuals with both 

conditions have poorer health outcomes. Regular routine screening for depression, integrated 
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mental health support and closer monitoring may reduce the adverse consequences associated 

with both T2D and MDD. 

 

List of abbreviations 

 

HbA1c: Glycated haemaglobin 

T2D: Type 2 diabetes 

MDD: Major depressive disorder 

UKB: UK Biobank 

GP: General practioner 

PGS: Polygenic score 

BMI: Body mass index 

SBP: Systolic blood pressure 

DBP: Diastolic blood pressure 

MEM: Mixed effects model 

CAR1: Continuous-time autoregressive 1 

LRT: Likelihood ratio test 

MI: Multiple imputation 

CI: Confidence interval 

IQR: Interquartile range 

HES: Hospital episode statistics 
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Tables 

Table 1. Characteristics of the longitudinal analysis study participants at T2D diagnosis, stratified by 
MDD subgroups. Columns present N (%) for categorical variables and median (IQR) for continuous 
variables. 

 
Total 

(N=11,837) 
No MDD 

(N=10,492, 89%) 
Pre-T2D MDD 
(N=1119, 9%) 

Post-T2D MDD 
(N=226, 2%) 

Female 4775 (40.34) 4038 (38.49) 634 (56.66) 103 (45.58) 

Year of birth  1948 (1943, 1954) 1947 (1943, 1953) 1949 (1945, 1955) 1950 (1945, 1956) 

Genetic ancestry     
European 9953 (84.08) 8797 (83.84) 978 (87.4) 178 (78.76) 

African 229 (1.93) 209 (1.99) 14 (1.25) 6 (2.65) 
Admixed African American 54 (0.46) 48 (0.46) 4 (0.36) 2 (0.88) 

East Asian 76 (0.64) 73 (0.70) 3 (0.27) 0 (0.00) 
South Asian  700 (5.91) 638 (6.08) 43 (3.84) 19 (8.41) 

Missing 825 (6.97) 727 (6.93) 77 (6.88) 21 (9.29) 

Measurements at T2D diagnosis (year of T2D diagnosis range: 1990 – 2017) 

Year 2009 (2006, 2012) 2009 (2006, 2012) 2009 (2007, 2013) 2005 (2003, 2008) 

Age (years) 60.4 (54.4, 65.4) 60.6 (54.6, 65.5) 59.4 (54.2, 64.6) 55.6 (49.2, 60.1) 

HbA1c (mmol/mm)  53 (50, 62.41) 53 (50, 63) 52 (50, 59) 52.91 (50, 67.26) 
Missing  4952 (41.83) 4353 (41.49) 482 (43.07) 117 (51.77) 

No measurement within +/- 
2 weeks 3326 (28.1) 2920 (27.83) 323 (28.87) 83 (36.73) 

Prescribed monotherapy  408 (3.45) 355 (3.38) 44 (3.93) 9 (3.98) 

BMI (kg/m^2) 31.2 (27.96, 35.2) 31 (27.83, 35) 32.7 (28.93, 37.25) 31.42 (28.25, 36.7) 
Missing  595 (5.03) 541 (5.16) 43 (3.84) 11 (4.87) 

Systolic blood pressure  139 (130, 149) 139 (130, 150) 138 (128, 148) 138 (130, 149) 
Missing  511 (4.32) 478 (4.56) 26 (2.32) 7 (3.1) 

Diastolic blood pressure 81 (76, 89.5) 81 (76, 89) 81.5 (76, 90) 82 (76.75, 90) 
Missing 511 (4.32) 478 (4.56) 26 (2.32) 7 (3.1) 

Prior no. of observations  14 (6, 28) 13 (5, 27) 20 (11, 35) 10 (4, 22) 

Measurements at UK Biobank initial assessment (year of initial assessment range: 2006 – 2010) 

Self-reported ethnicity     
White  10596 (89.52) 9364 (89.25) 1042 (93.12) 190 (84.07) 
Black  251 (2.12) 226 (2.15) 19 (1.7) 6 (2.65) 
Asian  707 (5.97) 647 (6.17) 37 (3.31) 23 (10.18) 

Chinese  40 (0.34) 37 (0.35) 3 (0.27) 0 (0) 
Mixed race  77 (0.65) 65 (0.62) 10 (0.89) 2 (0.88) 

Other  166 (1.4) 153 (1.46) 8 (0.71) 5 (2.21) 

TDI  -1.35 (-3.19, 1.78) -1.38 (-3.21, 1.76) -1.28 (-3.15, 1.78) -0.08 (-2.35, 3.3) 
Missing 32 (0.27) 29 (0.28) 3 (0.27) 0 (0) 

Qualifications     
College or University  2459 (20.77) 2205 (21.02) 222 (19.84) 32 (14.16) 

Alevels/ASlevels/equivalent  1036 (8.75) 898 (8.56) 112 (10.01) 26 (11.5) 
O levels/GCSEs/equivalent  2352 (19.87) 2089 (19.91) 216 (19.3) 47 (20.8) 
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CSEs/equivalent  581 (4.91) 503 (4.79) 64 (5.72) 14 (6.19) 
NVQ/HND/HNC/equivalent  1066 (9.01) 942 (8.98) 102 (9.12) 22 (9.73) 

Other 680 (5.74) 612 (5.83) 61 (5.45) 7 (3.1) 
None of the above  3436 (29.03) 3044 (29.01) 318 (28.42) 74 (32.74) 

Missing 227 (1.92) 199 (1.9) 24 (2.14) 4 (1.77) 

Ever smoked  7505 (63.4) 6637 (63.26) 722 (64.52) 146 (64.6) 
Missing 66 (0.56) 59 (0.56) 6 (0.54) 1 (0.44) 

Never consumed alcohol  963 (8.14) 865 (8.24) 80 (7.15) 18 (7.96) 
Missing  28 (0.24) 24 (0.23) 2 (0.18) 2 (0.88) 

MDD diagnosis 

Age (years)   47.15 (39.59, 54.29) 58.32 (53.35, 63
Absolute time between MDD 
and T2D diagnosis (years) 

  
10.69 (4.89, 17.63) 3.24 (1.32, 5.1

Follow-up variables 

Follow-up time (years) 6.89 (3.54, 9.31) 6.89 (3.54, 9.3) 6.33 (3.17, 8.98) 9.29 (7.16, 9.7
No. of HbA1c observations 
during follow-up 12 (6, 18) 11 (6, 18) 11 (6, 18) 17.5 (13, 23)

Ever been prescribed the following medications from diagnosis to end of follow-up 
M1 (monotherapy) 8286 (70) 7317 (69.74) 791 (70.69) 178 (78.76) 
M2 (dual therapy) 3894 (32.9) 3403 (32.43) 375 (33.51) 116 (51.33) 

M3 1678 (14.18) 1451 (13.83) 161 (14.39) 66 (29.2) 
Insulin 682 (5.76) 582 (5.55) 66 (5.9) 34 (15.04) 

     
IQR: interquartile range. Genetic ancestry: defined as one of the five 1000 Genome super populations, genetically inferred 
using the ukbkings R package. Prior no. of observations: total number of HbA1c, BMI and BP records observed prior to 
T2D diagnosis. UK Biobank initial assessment is not typically the same as T2D diagnosis date. Follow-up: Last available 
HbA1c measurement observed during the first 10 years since T2D diagnosis (up to 2017). 

 
Table 2. Unadjusted model selection summary. Model 2, with mean HbA1c being a function of time 
(4 knots splines for T2D disease duration), the pre-T2D MDD exposures and the post-T2D exposures, 
has the lowest AIC and is selected using likelihood ratio tests (LRTs). 

Mode
l 

Included fixed effects 

df AIC 

LRT 

Time 
(splines

) 

Pre-T2D MDD  
exposures 

Post-T2D MDD 
exposures 

Models 
compare

d 

P-
value 

MDD_inde
x 

Duration 
MDD_chang

e 
Duratio

n Main Int Mai
n 

Int 

1        1
9 

247790.
8 

  

2        1
3 

247786.
0 

2 vs 1 0.307
2 

3        1
1 

247794.
0 

3 vs 2 0.001
5 

4        1 247793. 4 vs 2 0.002

 

 

63.11) 

.18) 

.74) 

3) 
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2 5 0 
LRT: likelihood ratio test, performed using anova with mixed effects models estimated with maximum likelihood. df: 
degrees of freedom (random effects and covariance parameters included in count). AIC: Akaike Information Criterion 
(smaller is preferred). Int: interaction between exposure and the time splines (4 knots). Pre-T2D MDD exposures: Duration 
is time between MDD and T2D diagnoses for individual with MDD_index equal to 1, and 0 otherwise. Post-T2D MDD 
exposures: Duration is time between HbA1c observation and MDD diagnosis when MDD_change equals 1, and 0 otherwise. 
See Exposures section for details. Bold number in ‘Models compared’ column is the model preferred by the LRT. Stop at 
model 4 because pre-T2D MDD and post-T2D MDD duration variables are selected for inclusion. 

 
 
 
Table 3.  Fixed effect estimates for MDD exposure variables from the unadjusted and pooled adjusted 
linear mixed effects models. 

MDD Exposure Variables Unadjusted model Pooled adjusted model 

Beta 95% CI 
P-

value 
Beta 95% CI P-value 

Pre-T2D MDD exposure variables       
Pre-T2D MDD 0.92 ( 0.00,  1.84) 0.0496 0.84 (-0.06,  1.73) 0.0678 
Pre-T2D MDD duration to index (years) -0.09 (-0.15, -0.04) 0.0015 -0.04 (-0.09,  0.02) 0.1637 

Post-T2D MDD exposure variables       
Post-T2D MDD -0.50 (-1.63,  0.64) 0.3911 -0.63 (-1.73,  0.46) 0.2555 
Post-T2D MDD duration (years) 0.53 ( 0.19,  0.87) 0.0020 0.51 ( 0.17,  0.86) 0.0038 

The unadjusted model contains the MDD exposure variables and T2D disease durations splines as fixed effects. The adjusted 
model includes the following additional fixed effects: sex, UKB assessment centre, age at T2D diagnosis, BMI at T2D 
diagnosis, SBP and DBP at T2D diagnosis, HbA1c at T2D diagnosis, self-reported ethnicity, qualifications at UKB initial 
assessment, number of observations prior to T2D (BMI, BP and HbA1c), ever smoke, never consumed alcohol, T2D 
medications and interactions between T2D diagnosis and HbA1c at T2D, T2D medications and BMI. Presented p-values are 
from t-tests. Model parameters and p-values from the adjusted model were pooled from 50 MI datasets. SuppTabs S7 and S9 
present full model results for the unadjusted and pooled adjusted model respectively. 

 
 
Table 4: Pooled hypothesis testing for within-subject variability in HbA1c differing by MDD 
diagnosis variable. The parameter estimate presented represents the ratio of residual variation 
for MDD diagnosis versus reference level. 
 

MDD diagnosis 
variables 

Reference group(s) 

% of 
MI 

datasets  
used 

Estimate 
(95% CI) 

Median LRT 
P-value 

     
Pre-T2D MDD 
(MDD_index) 

No MDD, post-T2D MDD 76% 0.98 (0.96, 1.00) 0.0126 

Post-T2D MDD 
(MDD_change) 

No MDD, pre-T2D MDD, no 
post-T2D individuals before 
MDD diagnosis 

52% 0.97 (0.95, 1.00) 0.0873 

     
Post-T2D MDD 
(retrospective) 

No MDD, pre-T2D MDD 100% 1.16 (1.13, 1.19) 1.095E-40 
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LRT = likelihood ratio test. Residual variance (within-subject variation, ��
�): ��� = 0.54 (95% CI: [0.54, 0.55]). Reference 

category for each model will have residual variance � ��
�. Residual variance form was specified using the varIdent function 

in the models ‘weights’ input. See SuppMethods 9 and nlme package help documentation for details. Convergence issues 
were common when allowing ��

� to differ by MDD diagnosis variable- % of MI datasets used column shows the percentage 
of the 50 MI datasets with no convergence issues. 
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Figure 4. Predicted HbA1c (mmol/mol) over T2D disease duration (years) from the unadjusted 

model, for four example individuals: no MDD and three post-T2D MDD individuals diagnosed with 

MDD 1 (10
th

 percentile), 3.8 (median) and 7.1 (90
th

 percentile) years after T2D. 
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Figure 3. Predicted HbA1c (mmol/mol) over T2D disease duration (years) from the unadjusted 

model, for four example individuals: no MDD and three pre-T2D MDD individuals diagnosed with 

MDD 2.2 (10
th

 percentile), 10.7 (median) and 27.5 (90
th

 percentile) years before T2D. 
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Figure 2:  Contributions of each input to T2D phenotype definition 
 

 
Horizontal bars indicate the number of individuals who met criteria for the corresponding T2D 
phenotypes. Vertical bars indicate the number of individuals endorsing combinations of the five T2D 
phenotypes.  
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Figure 1. Flow diagram of UK Biobank (UKB) participant selection.  

 
 
T2D = type 2 diabetes. MDD = major depressive disorder. HES = hospital episode statistics. HbA1c = glycated 
haemaglobin. Validation of T2D diagnosis sample = T2D case and controls of European ancestry, meeting eligibility criteria 
outlined in Methods, including individual-level genetic analysis inclusion criteria (described in SuppMethods 1). Imputed 
datasets used for analyses (2) and (3) (adjusted mixed effects model for HbA1c over time and within-individual HbA1c 
variation). 
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