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Abstract 

Introduction 

Sudden cardiac death (SCD) is a devastating consequence often without antecedent expectation. 

Current risk stratification methods derived from baseline independently modeled risk factors are 

insufficient. Novel random forest machine learning (ML) approach incorporating time-dependent 

variables and complex interactions may improve SCD risk prediction.  

 

Methods 

Atherosclerosis Risk in Communities (ARIC) study participants were followed for adjudicated 

SCD. ML models were compared to standard Poisson regression models for interval data, an 

approximation to Cox regression, with stepwise variable selection. Eighty-two time-varying 

variables (demographics, lifestyle factors, clinical characteristics, biomarkers, etc.) collected at 

four visits over 12 years (1987-98) were used as candidate predictors. Predictive accuracy was 

assessed by area under the receiver operating characteristic curve (AUC) through out-of-bag 

prediction for ML models and 5-fold cross validation for the Poisson regression models. 

 

Results  

Over a median follow-up time of 23.5 years, 583 SCD events occurred among 15,661 ARIC 

participants (mean age 54 years and 55% women). Compared to different Poisson regression 

models (AUC at 6-year ranges from 0.77-0.83), the ML model improved prediction (AUC at 6-

year 0.89). Top predictors identified by ML model included prior coronary heart disease, which 

explained 47.9% of the total phenotypic variance, diabetes mellitus, hypertension, and T 

wave abnormality in any of leads I, aVL, or V6. Using the top ML predictors to select variables, 
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the Poisson regression model AUC at 6-year was 0.77 suggesting that the non-linear 

dependencies and interactions captured by ML, are the main reasons for its improved prediction 

performance.  

 

Conclusions 

Applying novel ML approach with time-varying predictors improves the prediction of SCD. 

Interactions of dynamic clinical characteristics are important for risk-stratifying SCD in the 

general population.  
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Introduction 

Sudden cardiac death (SCD) accounts for approximately 400,000 adult deaths in the United 

States each year.1-3 Risk stratification for SCD continues to lag contributing to the significant 

public health burden.4 Current guidelines directing the use of primary prevention, implanted 

cardioverter defibrillator (ICD), largely rely on a single parameter: reduced left ventricular 

ejection fraction (LVEF). Using LVEF alone is inadequate for two main reasons: (1) it does not 

account for dynamic factors including interim clinical events;5 and (2) it is seldom measured for 

approximately 50% of SCD victims who did not have a prior diagnosis of heart disease.1,4 

Previous efforts to expand the list of SCD predictors examined single or small numbers of static 

predictors, or were conducted among patients with known existing cardiovascular disease.6-11 

   

By combining data from a general population cohort with dense phenotyping and a novel 

machine learning (ML) approach capable of handling large number of time-dependent variables 

and incorporating non-linear relationships as well as complex interactions between risk factors, 

we aimed to develop a population-based approach to identify individuals at high SCD risk.   

 

Methods 

Study Cohort 

The Atherosclerosis Risk in Communities (ARIC) study is an ongoing longitudinal cohort of 

15,792 middle-aged men and women recruited from four communities in the U.S.: Forsyth 

County, North Carolina; Jackson, Mississippi; suburbs of Minneapolis, Minnesota; and 

Washington County, Maryland at 1987-1989 (visit 1). The 3 short-term follow-up visits occurred 

approximately three years apart: 1990-1992 (visit 2), 1993-1995 (visit 3), 1996-1998 (visit 4). 
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Each study visit consisted of a comprehensive examination, which included physical and clinical 

examination, blood and urine specimens’ collection for laboratory testing, administration of 

extensive questionnaires, and a 12-lead electrocardiogram (ECG). In addition, participants were 

contacted by phone annually for hospitalizations and death information during the prior year. If 

any clinical events happened, hospital records and death certificates would be obtained for 

ascertainment by physicians.12 In the current study, participants with ICD (N=131) were 

excluded from the analysis. Study protocols were approved by the Institutional Review Boards 

and all study participants provided informed consent. 

 

Assessment of Candidate Predictors 

Clinical predictors were measured and updated during the first four ARIC visits from 1987-89 to 

1996-98.  At visit 1, demographics variables including age at the time of the visit, sex, race, 

center, education level, income, and family history (mother and father) of diseases were collected 

using an interviewer-administered questionnaire. Anthropometric variables including height, 

weight, and waist circumstances were measured by standard protocol at all visits, and body mass 

index (BMI) was calculated as weight (in kilograms) divided by the square of height (in meters). 

Lifestyle factors including smoking status, alcohol intake, physical activity [intensity and 

meeting American Heart Association (AHA) recommendations or not], and dietary quality were 

evaluated using questionnaires that assess each participant’s self-reported information at all visits 

(alcohol intake and smoking status) or visit 1 and 3 (physical activity and dietary quality).13-16 

Clinical factors included systolic and diastolic blood pressure, hypertension, diabetes mellitus, 

coronary heart disease (CHD), stroke, atrial fibrillation, heart failure, and hospitalizations 

(yes/no and number of hospitalizations). These variables were evaluated at all visits.  
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The definitions and ascertainment of the clinical factors are described as follows. Blood pressure 

was measured in seated participants after a 5-minute rest. Hypertension was defined as systolic 

blood pressure ≥ 140 mm Hg, diastolic blood pressure ≥ 90 mm Hg, or use of antihypertensive 

medication in the 2 weeks prior to visits.17 Diabetes mellitus was defined as fasting blood 

glucose ≥ 126 mg/dL, non-fasting glucose ≥ 200 mg/dL, self-reported doctor-diagnosed diabetes, 

or use of diabetes medication in the 2 weeks prior to visits. CHD, at visit 1, was defined as 

myocardial infarction (MI) observed on ECG, self-reported history of MI, self-reported heart or 

arterial surgery, coronary bypass, balloon angioplasty, and coronary angioplasty and, at visit 2-4, 

additionally included CHD cases occurring after visit 1 but before the relevant visit which were 

identified based on hospitalization records and death records and adjudicated by physicians. 

Stroke, at visit 1, was defined self-reported stroke and, at visit 2-4, additionally included stroke 

cases occurring after visit 1 but before the relevant visit which were identified by a computer 

diagnostic algorithm detailed elsewhere and adjudicated by physicians.18 Atrial fibrillation was 

identified through ECGs from follow-up exams, hospital discharge records, and death 

certificates. Heart failure, at visit 1, was defined as use of heart failure medication or evidence of 

symptoms defined by stage 3 of the Gothenburg criteria and, at visit 2-4, additionally included 

heart failure cases occurring between visit 1 and the relevant visit which were identified though 

ICD codes in hospitalization and death records.19 For clinical events including diabetes, CHD, 

stroke, atrial fibrillation, and heart failure, incidences were only considered until visit 4. All-

cause hospitalizations, cardiac-related hospitalization, and pulmonary-related hospitalization 

were ascertained through hospitalization records obtained from annual telephone contact with 

participants and active surveillance in the study community hospitals. Use of medication, such as 
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anti-hypertensive, anti-arrhythmic, lipid-lowering, anti-diabetic medication, were obtained by 

extracting medication names or codes from the lists transcribed from the medication containers 

study participants brought to the study visits.  

 

Laboratory values or biomarkers included C-reactive protein (CRP), white blood cells (WBC) 

count, hematocrit, hemoglobin, N-terminal pro-brain natriuretic peptide (NT-proBNP), troponin 

I, troponin T, fibrinogen, total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-

density lipoprotein cholesterol (LDL-C), triglycerides, serum creatinine, estimated glomerular 

filtration rate (eGFR), serum albumin, urine albumin, blood glucose (fasting and non-fasting), 

serum sodium, serum potassium, blood urea nitrogen, and serum magnesium. Definition of each 

marker and at which visit(s) each marker was measured are described in detail in the 

Supplemental Table 1.  

 

ECG variables were derived based on the 12-lead ECGs results measured at all visits. Details of 

the ECG measuring protocol, data processing, monitoring, and quality control have been 

described elsewhere.20 Twenty-one variables of ECG patterns classified by Minnesota Code, 

which utilized a series of measurement rules to assign numerical codes based on the location and 

severity of ECG findings, were included.21,22 The presence of diagnostic Q-wave, QRS duration, 

QT duration, and heart rate observed from ECG were also used as candidate predictors. Cornell 

voltage (S in V3+R in aVL) calculated from ECG results for evaluating left ventricular 

thickness, as well as left ventricular hypertrophy (LVH) defined by Cornell voltage criteria.23  

 

Assessment of Outcome 
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SCD was defined as a sudden pulseless condition presumed due to a ventricular tachyarrhythmia 

in a previously stable individual without evidence of a non-cardiac cause of cardiac arrest 

occurring out of the hospital or in the emergency department. Details regarding the ascertainment 

of SCD events in ARIC have been described elsewhere.24  Briefly, all fatal CHD events 

documented in death certificates, informant interviews, physician questionnaires, coroner 

reports, prior medical history, or hospital discharge summaries that occurred through 2012 were 

reviewed and independently adjudicated by 2 physicians. Cases were classified as definite 

sudden arrhythmic death, possible sudden arrhythmic death, not sudden arrhythmic death, or 

unclassifiable. For the current analysis, we defined SCD as adjudicated definite or possible 

sudden arrhythmic death that occurred by December 31, 2012.  

 

Statistical Analysis 

We used the Random Forest for Survival, Longitudinal, and Multivariate data analysis (RF-

SLAM) methods for SCD risk prediction. Details of this method have been described 

elsewhere.25 Briefly, random forest is an ensemble learning method that combines multiple 

decision trees trained on uncorrelated bootstrap replications of the original training data and 

outputs the averaged prediction across all trees.26 RF-SLAM uses data partitioned into discrete 

intervals (also known as person-time intervals) and uses a Poisson regression log-likelihood as 

the split statistic thus allowing for modeling time-varying predictor variables. In this analysis, we 

followed the recommended settings of 1,000 as the number of trees, 10% of the total number of 

intervals as the minimum terminal node size, and the square root of the number of input variables 

as the number of predictors for each tree.25 To simplify the interpretation of the RF‐SLAM 

predictions, we grew a single regression tree that best approximates the RF-SLAM predictions 
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among those that explained at least 90% of the variation in the RF‐SLAM predictions.27 We 

grew a second tree that explained at least 80% of the variation for facilitating visualization and 

discussion of key predictors and their interactions.  

 

We compared the performance of RF-SLAM to a series of standard Poisson regression models 

that share the interval event indicator as the outcome and differ by their specific variable 

selection approach. Missing data was handled through imputation by randomly drawing from 

non-missing data by RF-SLAM and by multivariate imputation by chained equations for the 

Poisson regression models.28-30 The RF-SLAM and the Poisson regression models shared the 

same pool of 82 potential (dynamic) predictor variables collected at the four visits including 

demographics, anthropometric variables, lifestyle factors, clinical characteristics, medication, 

laboratory values and biomarkers, ECG variables, and other cardiac functional indices. To 

evaluate the importance of time-varying covariates, we additionally include a random forest 

survival (RFS) model incorporating only baseline covariates.31  

 

We considered the following pools of predictor variables for the Poisson regressions: (1) using 

the top predictors as selected in the summary regression tree that explained at least 80% of the 

variation of RF-SLAM (referred to as top predictors of RF-SLAM);  (2) using top predictors of 

RF-SLAM as candidate predictors with selection by stepwise regression, (3) using top predictors 

of RF-SLAM plus interactions formed by parent-child node pairs identified from the summary 

regression tree of RF-SLAM and modeled based on the tree structure (referred to as top 

interactions of RF-SLAM) as predictors, and (4) using top predictors of RF-SLAM plus top 

interactions of RF-SLAM as candidate predictors with selection by stepwise regression. 
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Predictive accuracy was assessed at 3, 6, 9, and 25 years by time-dependent area under the 

receiver operating characteristic curve (AUC) through out-of-bag prediction for RF-SLAM and 

RFS models and 5-fold cross validation for Poisson regression models.32 The comparison 

between the RF-SLAM model, RFS model, and Poisson regression models is also summarized in 

Supplemental Table 2. Since multiple variables were measured in only one or two out of the 

total four visits resulting in substantial missingness we excluded all variables with greater than 

50% missingness in sensitivity analysis to test the robustness of our results. Also, as CHD 

appeared to be the key predictor of SCD in our main model, as shown below, we excluded all 

participants with existing CHD at baseline as a sensitivity analysis. Analyses were conducted 

with R version 3.6.3 (https://www.r‐project.org). Statistical significance was defined 

as P value < 0.05. 

 

 

Results 

Baseline Characteristics 

Our primary study population included 15,661 participants (mean age 54.2 years; 55% female) in 

ARIC. Over a median follow-up of 23.5 years, there were a total of 583 adjudicated SCD cases, 

with 97, 93, 116, and 277 cases having occurred during the intervals of visit 1 to 2, visit 2 to 3, 

visit 3 to 4, and visit 4 to end of follow-up respectively. At baseline, participants who 

subsequently developed SCD were frequently male, self-identified as Black, had less than a high 

school degree, were current smokers and non-drinkers, and less physically active compared with 

individuals who did not develop SCD. They also had higher mean BMI and blood pressure, less 

favorable lipid profile, and lower kidney function when comparing with those who did not 
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develop SCD. CHD, heart failure, stroke, and diabetes mellitus, were more prevalent among 

participants who developed SCD, which was also reflected by the higher percentage of 

participants taking medications for managing those conditions. ECG parameters among 

participants with SCD included higher prevalence of diagnostic Q wave, atrial fibrillation and 

LVH, and higher Cornell voltage (Table 1). The prevalence of clinical conditions at visit 4 

among participants who attended visit 4 is presented at Supplemental Table 3. Several variables 

were not measured in all four visits and therefore had a high prevalence of missingness 

(Supplemental Table 4). 

 

RF-SLAM prediction 

Using time-varying covariates from visits 1-4 of the ARIC study, the AUCs of RF‐SLAM for 

SCD prediction at 3, 6, 9, and 25 years of follow-up were 0.83, 0.89, 0.83, and 0.77 respectively. 

In comparison, the AUCs for RSF were 0.82, 0.86, 0.80, and 0.75 at 3, 6, 9, and 25 years, 

respectively, when limiting to baseline covariates (Figure 1A). The predicted SCD risk by  RF-

SLAM with time-varying covariates ranged from 5.6×10-2 to 11.9 per 1000 person-years  and 

was significantly different between SCD cases and controls, with the median of predicted risk 

being 3.4 per 1000 person-year ((25th percentile - 75th percentile, 1.7 - 5.4 per 1000 person-year) 

for cases and 1.1 per 1000 person-year (25th percentile - 75th percentile, 0.7 - 1.8 per 1000 

person-year) for controls (p=1.6 × 10-84) (Figure 1B).  

 

Approximately 80% of input candidate covariates were included in the summary tree that 

explain 90.0 % of the RF‐SLAM predictions. Top predictors that explained most of the variation 
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included (1) clinical characteristics: CHD (variation explained: 47.9%), diabetes mellitus 

(12.3%), hypertension (4.9%), and number of cardiac-related hospitalization (2.2%) (2) ECG 

variables: Minnesota Code for T wave abnormality in any of leads I, aVL, or V6 (3.2%) and ST 

junction & segment depression in any of leads I, aVL, or V6 (1.2%), (3) use of medication: anti-

diabetic medications (2.0%), and (4) biomarkers: NT-proBNP (3.3%), as well as sex (1.3%) 

(Table 2). Figure 2 shows the summary tree that explains 80.7% of the variation of the variation 

of the RF-SLAM predictions in Figure 2 for visualizing the dependencies. 

 

Poisson models comparison 

Among all time-varying covariates, the following predictors of SCD were selected in all 5 cross-

validations by stepwise regression, more specifically, a forward-backward search starting from 

the full model with the Akaike information criterion (AIC) for evaluating model fit: CHD, heart 

failure, stroke, number of all-cause hospitalization, number of cardiac-related hospitalization, 

three variables for ECG patterns classified by Minnesota Code (T wave in II, III, aVF, A-V 

conduction defect codes, and QRS transition zone), heart rate, glucose level, systolic blood 

pressure, diastolic blood pressure, estimated glomerular filtration rate, urinary albumin, troponin 

T, troponin I, fibrinogen, visit, and smoking status. Five-fold cross validation yielded AUC of 

0.78, 0.83, 0.74, and 0.70 at 3, 6, 9, and 25 years of follow-up, respectively. Instead of using the 

stepwise variable selection, we also use the predictors selected by RF-SLAM model with and 

without an additional stepwise selection in the Poisson regression mode, which yielded AUC of 

around 0.74, 0.78, 0.73, and 0.73 at 3, 6, 9, and 25 years of follow-up, respectively, for the 

models with or without stepwise selection. Finally, manually adding in the top interactions 
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identified by RF-SLAM improved the AUC at 3 and 6 years of follow-up but not for AUC at 9 

and 25 years (Figure 1A).  

 

For sensitivity analysis, building summary trees with bootstrapping predicted values of the RF-

SLAM model yield consistent selections of predictors and percentages of total variance 

explained by those predictors (Supplemental Table 5); limiting to variables with less than 50% 

missingness did not change the performance of RF-SLAM prediction (AUC at 3 years: 0.83, 6 

years: 0.88, 9 years: 0.83, 25 years: 0.77) nor the selection of predictors (Supplemental Figure 1 

and Supplemental Table 6); excluding participants with prevalent CHD at baseline resulted in 

slight drop in the performance (AUC at 3 years: 0.81, 6 years: 0.87, 9 years: 0.78, 25 years: 0.75) 

and the predictors other than CHD remained similar (Supplemental Figure 1 and 

Supplemental Table 7). 

 

Discussion 

In this community-based cohort of 15,663 middle-aged adults, we derived a prediction model for 

SCD with a novel ML approach, RF-SLAM using a large number of time-varying covariates. 

Participants who developed SCD had statistically significant higher predicted risk of SCD than 

those who did not. This model substantially outperformed a random forest survival model with 

only baseline covariates as well as Poisson regression models with time-varying predictors 

selected through stepwise regression. Prior CHD was identified as the top predictor for SCD, 

explaining 47.9% of the total phenotypic variance. The combination of these time-varying data 

and ML methods that accommodate dynamic data can contribute to improved risk stratification 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 16, 2022. ; https://doi.org/10.1101/2022.01.12.22269174doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.12.22269174
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

15 
 

for SCD in the generally healthy population and thus aid in targeted primary prevention 

strategies for high-risk individuals.   

 

Our study highlighted the importance of the dynamic dependency of time-varying risk factors on 

SCD prediction. Leveraging novel ML approach that incorporates large number of time-varying 

predictor variables, we generated models that providing continuous a gradient of predicted SCD 

risk with significant differentiation between those who ultimately have versus do not have an 

SCD. This model demonstrated better performance than both using same ML approach but only 

inputting baseline variables and using traditional statistical regression analysis with stepwise 

selection of time-varying variables.  

 

A single summary decision tree facilitates the portability and interpretability of complex clinical 

ML algorithms. The “black box” algorithms of ML methods can limit their clinical or 

epidemiologic utility. To surmount this limitation, we approximated the predictions from the 

complex algorithm into a single summary decision tree with represents the sequential subsetting 

that produces groups of differential risk and mimics clinical reasoning. In this way, we (1) 

identified the key predictors as well as calculated the variation in the risks among people 

explained by each predictor, which can be easily used as predictors by other comparable general 

population cohorts; and (2) visualize the interactions among predictors as reflected in the 

sequences of splitting variables, which facilitate understanding the dependency among risk 

factors. Top time-varying predictors identified using RF-SLAM including CHD, diabetes 

mellitus, hypertension, NT-proBNP, and T wave abnormality in any of leads I, aVL, and V6, , 

which are consistent with existing epidemiological findings.9,33,34 Among them, prior CHD alone 
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explained 47.9% of total variation of the RF-SLAM prediction, which corroborate with the fact 

that approximately 50% of SCD victims have prior diagnosis of heart disease.1  

 

Our identification of key predictors of SCD in a community-based cohort can better inform the 

prevention and management strategy for the general population. In our study, in addition to 

CHD, diabetes, hypertension along with their corresponding biomarkers and medications, 

explained a large proportion of the total variation of SCD prediction. Diabetes and hypertension 

are widely recognized modifiable cardiovascular risk factors. Furthermore, our study indicates 

that clinical surveillance may be appropriate for patients with CHD, diabetes, and hypertension 

for risk of SCD. For instance, monitoring could include serial electrocardiograms to assess 

features such as T wave abnormalities and ST junction & segment depression, as well as cardiac 

biomarkers, such as NT-proBNP, which were selected as top predictors for SCD in our study. A 

multitude of high-risk features may also prompt further risk stratification with echocardiography 

among asymptomatic patients. 

 

Other features of the ML approach favor it use over classical regression methods.  In random 

forest, each tree is built from a bootstrap sample of the observations in the training data. As a 

result of the bootstrapping, roughly one in three observations is randomly left out in a particular 

bootstrap. We can predict these "out-of-bag" observations from the model fit to the "in-bag” 

values and obtain a cross-validated estimate of prediction error along the way. Another key 

feature is that missing data imputation can be integrated within random forests but must be 

handled as separate steps for regression analysis.25 Particularly in our study, through randomly 

drawing from the non-missing “in-bag” data within the current node during the tree growing 
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process, RF-SLAM demonstrated its robustness to missingness, a common and important issue 

in real-world longitudinal data, compared to conventional methods.  

 

Several limitations should be considered when interpreting our findings. First, ECG has long 

offered valuable insights into cardiac health and disease.35,36 Several ECG abnormalities have 

been associated with SCD risk37 and our models also selected some of them as predictors. We 

used the Minnesota code for ECG variables while recent advances in deep-learning 

convolutional neural networks (CNNs) have been used to extract information beyond that being 

captured  by Minnesota code.38 We will incorporate these additional ECG features generated 

through CNNs when they become available in the study population. Second, there is a time gap 

between visit 4 and the end of follow-up of our study, limiting the incorporation of features 

during this interval and likely contributing to the modest AUC decline during this interval. Third, 

for important clinical events predictors such as CHD and heart failure, we updated them just at 

each ARIC visit but not for events during each interval.  Fourth, some candidate covariates in our 

study were not measured in all four visits resulting in substantial missingness. These include 

important cardiac biomarkers NT-proBNP and troponin T that have been associated with risk of 

multiple cardiovascular events including SCD.39-44 To address this, we conducted sensitivity 

analysis with excluding those covariates, and observed results consistent with our main analysis. 

Finally, cross-validation was performed in the diverse ARIC cohort and future research is needed 

to confirm generalizability in external cohorts.  

 

In conclusion, our study highlighted the improved prediction for SCD of using a novel machine-

learning approach with time-varying predictors, as well as the feasibility of applying this 
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approach in large cohorts and biobanks. Our findings allow identification of higher-risk 

individuals appropriate for targeted interventions designed to reduce the burden of SCD in the 

general population. 
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Table 1. Baseline characteristics of Atherosclerosis Risk in Communities (ARIC) study participants. 

Metric* No SCD (N = 15,078) SCD (N = 583) P-value 

Demographics & anthropometric variables    

   Age (years) 54.1 (5.8) 56.2 (5.6) <0.001 

   Male 6623 (43.9) 365 (62.6) <0.001 

   White 11048 (73.5) 338 (58.0) <0.001 

   At least high school degree 11546 (76.7%) 358 (61.5%) <0.001 

   Body mass index (kg/m2) 27.7 (5.3) 29.3 (6.0) <0.001 

Lifestyle factors    

   Current smoker 3886 (25.8) 216 (37.0) <0.001 

   Current alcohol drinker 8422 (56.1) 273 (47.2) <0.001 

   Physical activity (MET-min/week) 611.8 (764.7) 502.2 (684.1) 0.001 

Clinical factors    

   Systolic blood pressure (mmHg) 120.9 (18.7) 131.0 (22.6) <0.001 

   Diastolic blood pressure (mmHg) 73.6 (11.2) 76.9 (13.3) <0.001 

   Hypertension 5086 (33.9) 351 (60.6) <0.001 

   Coronary heart disease 600 (4.1) 133 (23.5) <0.001 

   Heart failure 683 (4.6) 61 (10.7) <0.001 

   Stroke 239 (1.6) 43 (7.4) <0.001 

   Diabetes mellitus 1089 (7.2) 131 (22.5) <0.001 

Medication classes    

   Anti-hypertensive 4455 (29.6) 319 (54.7) <0.001 

   Lipid-lowering 423 (2.8) 23 (4.0) 0.129 

   Anti-diabetic 774 (6.1) 100 (19.6) <0.001 

   Anti-arrhythmic 104 (0.7) 14 (2.4) <0.001 
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Laboratory values or biomarkers    

   HDL-C, md/dL 49.1 [39.5, 61.6] 43.3 [35.6, 53.7] <0.001 

   LDL-C, md/dL 134.9 [110.8, 160.8] 146.3 [119.3, 174.9] <0.001 

   Triglyceride, md/dL 109.0 [78.0, 156.0] 124.0 [88.0, 188.8] <0.001 

   Total cholesterol, md/dL 212.0 [186.0, 239.0] 219.0 [193.0, 251.0] <0.001 

   eGFR, mL/min/1.73 m2 102.6 (15.7) 99.6 (19.2) <0.001 

Electrocardiogram variables    

   Atrial fibrillation 34 (0.2) 3 (0.5) 0.324 

   Heart rate, beats per minute 66.7 (10.3) 67.8 (11.5) 0.015 

   Presence of diagnostic Q wave 131 (0.9) 44 (7.7) <0.001 

   Cornell voltage (S in V3+R in aVL), uV 1245.8 (556.6) 1556.1 (650.1) <0.001 

   Left ventricular hypertrophy 308 (2.1) 33 (5.9) <0.001 

*Values are expressed as mean (SD) or median [IQR] for continuous variables and N (%) for categorical 

variables. 

eGFR: Estimated glomerular filtration rate; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density 

lipoprotein cholesterol.  
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(A)                                                                                                      (B) 

Figure 1. Performance of the RF-SLAM model. (A) AUC performances for predicting sudden cardiac death by RF-SLAM model 

incorporating time-varying covariates comparing with RFS model incorporating baseline covariates and five Poisson regression models 

incorporating time-varying covariates. Random forest models are in red; the model using time-varying covariates is shown as a solid 

line and the one using baseline covariates is shown as dashed lines with lighter color. For the five Poisson regression models, models 

with all candidate covariates, with predictors that accounted for > 80% of the RF-SLAM prediction, and with predictors that accounted 

for > 80% of the RF-SLAM prediction and their interactions are in yellow, blue, and green respectively. Models with stepwise selection 
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are shown as solid lines and those without are shown as dashed lines with lighter colors. (B) Predicted sudden cardiac death risk per 

1,000 person-year by RF-SLAM among cases and controls. Predicted risk was calculated as the mean of predicted annual risks (unit: 

1,000 person-year) of all follow-up time units. Red box indicates cases and blue box indicates controls. AUC: area under the curve; RF-

SLAM: random forest statistical method for survival, longitudinal, and multivariable outcomes. RFS: random forest survival. 
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Figure 2. Summary tree of RF‐SLAM depicting the time-varying predictors for sudden cardiac death that accounted for > 80% 

of the prediction. The number in each node indicate the mean predicted sudden cardiac death risk (unit: 1,000 person-year) of that 
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node. Red nodes indicate high risk and blue nodes indicate low risk. The darker the color, the higher/lower the risk. RF-SLAM: random 

forest statistical method for survival, longitudinal, and multivariable outcomes. CHD: coronary heart disease, CV: cardiovascular, DM: 

diabetes mellitus, HTN: hypertension, NT-proBNP: N-terminal pro-brain natriuretic peptide.
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Table 2. Predictors that together explained > 90% of the RF-SLAM prediction for sudden cardiac death.  

 
Variable Category 

% of total 
variation 
explained 

1 Prior coronary heart disease* Clinical factors 47.95% 

2 Diabetes mellitus* Clinical factors 12.29% 

3 Hypertension* Clinical factors 4.97% 

4 N-terminal pro-brain natriuretic peptide* Laboratory values or biomarkers 3.78% 

5 
T wave abnormality in any of leads I, 
aVL, and V6* 

Electrophysiologic variables 3.61% 

6 
Number of cardiac-related 
hospitalization* 

Clinical factors 2.39% 

7 Use of anti-diabetic medications* Medications 2.13% 

8 
ST junction & segment depression in any 
of leads I, aVL, or V6*  

Electrophysiologic variables 1.47% 

9 Sex* Demographics & anthropometric variables  1.35% 

10 Troponin T* Laboratory values or biomarkers 1.33% 

11 QRS duration* Electrophysiologic variables 1.15% 

12 Cornell voltage * Other cardiac indices 0.96% 

13 Use of anti-hypertensive medications*  Medications 0.79% 

14 Prior stroke*  Clinical factors 0.78% 

15 Race* Demographics & anthropometric variables  0.78% 

16 Visit Demographics & anthropometric variables  0.61% 

17 Prior heart failure Clinical factors 0.55% 

18 Troponin I Laboratory values or biomarkers 0.44% 

19 Blood glucose  Laboratory values or biomarkers 0.33% 

20 Systolic blood pressure Clinical factors 0.28% 

21 Q-Q.S. pattern II, III, aVF Electrophysiologic variables 0.24% 

22 Smoking status Lifestyle factors 0.21% 

23 Serum creatinine Laboratory values or biomarkers 0.19% 

24 Heart rate Electrophysiologic variables 0.17% 

25 Education Demographics & anthropometric variables  0.16% 
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26 High-density lipoprotein cholesterol Laboratory values or biomarkers 0.13% 

27 Age Demographics & anthropometric variables  0.12% 

28 Hematocrit Laboratory values or biomarkers 0.12% 

29 Urine albumin Laboratory values or biomarkers 0.08% 

30 Body mass index  Demographics & anthropometric variables 0.08% 

31 Estimated glomerular filtration rate  Laboratory values or biomarkers 0.08% 

32 Waist circumstances  Demographics & anthropometric variables  0.08% 

33 Number of hospitalizations Clinical factors 0.08% 

34 Diastolic blood pressure Clinical factors 0.06% 

35 Triglycerides Laboratory values or biomarkers 0.04% 

36 
ST junction & segment depression V1-
V5 

Electrophysiologic variables 0.04% 

37 Jackson field center Demographics & anthropometric variables  0.03% 

38 Dietary quality score Lifestyle factors 0.03% 

39 Low-density lipoprotein cholesterol  Laboratory values or biomarkers 0.02% 

40 Serum albumin Laboratory values or biomarkers 0.02% 

41 C-reactive protein Laboratory values or biomarkers 0.02% 

42 Atrial fibrillation Clinical factors 0.02% 

43 Q-Q.S. pattern V1-V5 Electrophysiologic variables 0.02% 

44 Income Demographics & anthropometric variables  0.02% 

45 White blood cells count Laboratory values or biomarkers 0.02% 

46 Father had coronary heart disease Demographics & anthropometric variables 0.01% 

47 Total cholesterol Laboratory values or biomarkers 0.01% 

48 Physical activity Lifestyle factors 0.01% 

49 Hemoglobin Laboratory values or biomarkers 0.01% 

50 Washington field center Demographics & anthropometric variables  0.01% 

51 Mother had coronary heart disease Demographics & anthropometric variables 0.01% 

52 High Amplitude R Wave Codes Electrophysiologic variables 0.01% 

53 T Wave V1-V5 Electrophysiologic variables 0.01% 

54 QRS axis deviation codes Electrophysiologic variables 0.01% 

55 Minneapolis field center Demographics & anthropometric variables  0.005% 
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56 QRS transition zone Electrophysiologic variables 0.004% 

57 Drinking status Lifestyle factors 0.004% 

58 T Wave II, III, aVF Electrophysiologic variables 0.004% 

59 Serum nitrogen Laboratory values or biomarkers 0.003% 

*Indicate variables that together explained > 80% of the RF-SLAM prediction. 

RF-SLAM: random forest statistical method for survival, longitudinal, and multivariable outcomes. 
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