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Abstract 51 

Systemic lupus erythematosus (SLE) is a complex and heterogeneous autoimmune disease involving 52 

multiple immune cells. A major hurdle to the elucidation of SLE pathogenesis is our limited 53 

understanding of dysregulated gene expression linked to various clinical statuses with a high cellular 54 

resolution. Here, we conducted a large-scale transcriptome study with 6,386 RNA sequencing data 55 

covering 27 immune cell types from 159 SLE and 89 healthy donors. We first profiled two distinct cell-56 

type-specific transcriptomic signatures: disease-state and disease-activity signatures, reflecting 57 

disease establishment and exacerbation, respectively. We next identified candidate biological 58 

processes unique to each signature. This study suggested the clinical value of disease-activity 59 

signatures, which were associated with organ involvement and responses to therapeutic agents such 60 

as belimumab. However, disease-activity signatures were less enriched around SLE risk variants 61 

than disease-state signatures, suggesting that the genetic studies to date may not well capture 62 

clinically vital biology in SLE. Together, we identified comprehensive gene signatures of SLE, which 63 

will provide essential foundations for future genomic, genetic, and clinical studies. 64 
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Introduction 66 

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that involves multiple 67 

immune cell types and pathways1,2. SLE has a broad spectrum of clinical manifestations such as skin 68 

rashes, arthritis and nephritis, and the disease course is generally unpredictable3. This 69 

heterogeneous nature has hampered a better understanding of SLE pathogenesis and the 70 

development of effective therapeutic agents4,5. To date, only two biologics have been approved for 71 

SLE, belimumab (BLM) and anifrolumab, monoclonal antibodies against B cell-activating factor 72 

(BAFF) and type I interferon (IFN) receptor subunit 1, respectively6–9. 73 

 To detect biomarkers and therapeutic targets for SLE, several studies on bulk whole-blood or 74 

peripheral blood mononuclear cell (PBMC) transcriptomes have revealed some key gene signatures 75 

related to IFN signaling, granulocytes, and plasma cells10–16. However, these studies have suffered 76 

from one critical limitation: the results were biased by the abundance of various immune cell 77 

populations in the analyzed samples, which complicates the identification of any cell-type-specific 78 

disease-relevant signatures17. Therefore, recent studies applied single-cell RNA sequencing (scRNA-79 

seq), a powerful technology to improve cellular resolution, to PBMCs, skin and kidney samples from 80 

SLE patients and have successfully identified several cell subpopulations crucial for lupus 81 

pathogenesis18–20. However, since these scRNA-seq studies of SLE were limited by sparse 82 

expression information and small sample sizes (around 30 cases), they were not well-powered to 83 

capture comprehensive transcriptome abnormality related to different clinical manifestations. These 84 
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limitations could be overcome by a large-scale bulk transcriptome study with finely sorted cell 85 

populations. 86 

SLE etiology has both genetic and environmental components1–3. Researchers have 87 

conducted large-scale genome-wide association studies (GWASs) for SLE21–23, identifying more than 88 

one hundred risk loci. Combined with omics data mostly from healthy individuals, researchers 89 

attempted to interpret the genetic etiology and have identified potential causal roles of IFN, Toll-like 90 

receptor signaling and immune complexes24–26. However, these studies have not thoroughly 91 

investigated the complex interactions between risk variants and the transcriptome dysregulation seen 92 

in SLE patients. Such investigations hold the promise to elucidate the complex pathogenesis of SLE. 93 

To address these issues, we conducted a large-scale transcriptome study of 6,386 bulk RNA 94 

sequencing (RNA-seq) data including 27 purified immune cell types in peripheral blood that 95 

encompassed almost every type of immune cell (Fig. 1). We recruited 136 SLE patients with various 96 

disease activities and clinical presentations (22 among them were re-evaluated after BLM treatment; 97 

Methods) and 89 healthy volunteers in the Immune Cell Gene Expression Atlas from the University 98 

of Tokyo (ImmuNexUT) cohort27 (discovery dataset). Using multiple approaches, we investigated cell-99 

type-specific transcriptome dysregulation and classified them into two categories: disease-state and 100 

disease-activity signatures. Furthermore, we deployed these signatures to five main topics of 101 

downstream analyses: i) replication, ii) biological interpretation, iii) diverse organ involvement, iv) pre- 102 

and post-treatment comparison, and v) the SLE-GWAS signals (Fig. 1). Overall, our large-scale and 103 
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comprehensive investigation uncovered the molecular basis underlying the clinical heterogeneity of 104 

SLE with a fine resolution of cell-type-specificity. 105 
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Results 107 

Overview of gene expression patterns in the ImmuNexUT cohort. 108 

Our dataset included 27 finely sorted immune cell types: CD4+ T cells, nine subsets; CD8+ T cells, 109 

four subsets; NK cells, one subset; B cells, five subsets; monocytes, four subsets; dendritic cells, two 110 

subsets; and neutrophils, two subsets (Fig. 1, left; Supplementary Table 1). We recruited 248 111 

donors in total. Among them, 136 unique SLE patients and 89 healthy controls (HC) were included in 112 

the discovery dataset; the rest included 22 post-BLM patients (Methods). Compared with previous 113 

studies with fine resolution transcriptomes18–20, larger sample size with multiple clinical statuses (e.g., 114 

disease activity, organ involvement, and treatment profiles) is an advantage of our cohort 115 

(Supplementary Note; Supplementary Table 2). At enrollment, 30 patients (22.1%) in the discovery 116 

dataset had high disease activity (HDA; SLEDAI-2K28 ≥ 9), while 31 (22.8%) patients were inactive 117 

(SLEDAI-2K = 0). Forty one (30.1%), 27 (19.9%) and 30 (22.1%) patients had mucocutaneous, 118 

musculoskeletal, and renal activity, respectively29. 119 

To understand the highly complex transcriptomic signatures in our datasets (16,000 genes 120 

and 6,386 samples from 248 donors; Extended Data Fig. 1a; Methods), we first aimed to project all 121 

samples in low dimensional spaces. Principal component analysis (PCA) showed that the samples 122 

from the same cell type clustered together followed by the same cell lineage (Extended Data Fig. 123 

1b); this pattern became more evident in the uniform manifold approximation and projection (UMAP) 124 

(Extended Data Fig. 1c). We also confirmed that batch effects were successfully removed in all cell 125 

types (Extended Data Fig. 2a-b). 126 
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IFN-related gene (IRG) expression is a hallmark signature of SLE30–32. To explicitly quantify 127 

transcriptome patterns well-established for lupus, we utilized 100 IRGs reported in a recent PBMC 128 

scRNA-seq study having the highest cellular resolution20 (Fig. 2a). The cell-type- and disease-129 

specific IRG expression patterns were globally consistent with those in the original publication: e.g., 130 

upregulated CXCL10 and IFITM3 expression (G5) in lupus CD16-positive monocytes (CD16p Mono) 131 

and upregulated IRF7 and PARP10 expression (G8) in plasmacytoid dendritic cells (pDC). 132 

Additionally, about half (n=54) of IRGs showed the highest expression in SLE neutrophil-lineage 133 

cells, which were not evaluated in the previous scRNA-seq studies of SLE18–20. Together, our 134 

transcriptomic data exhibited the expected cell-type-specific patterns and recapitulated previously 135 

established IRG signatures. 136 

 137 

Disease activity is a major source of variation in the within-SLE transcriptome data. 138 

To explore the source of the transcriptomic variations in the discovery dataset, we conducted PCA 139 

within each cell type and evaluated the distribution of samples in the PCA space (Supplementary 140 

Data 1). The top PCs differentiated SLE patients from HC in all cell types, indicating widespread 141 

transcriptome perturbations in SLE immune cells (Fig. 2b; Extended Data Fig. 3). In addition, gene 142 

expression profiles within patients showed higher variation than those within HC (Fig. 2c; Methods). 143 

We further evaluated how the transcriptome variations reflected the heterogeneous clinical 144 

statuses. We first confirmed that PC1-7 is the minimum set to associate the transcriptome with the 145 

clinical parameters in the discovery dataset and utilized PC1-7 scores for subsequent analyses 146 
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(Supplementary Note; Supplementary Fig. 1a-c; Supplementary Table 3). We then quantified the 147 

contribution of clinical parameters to the within-SLE variation using weighted variance partitioning 148 

analysis (Fig. 2d; Methods). Importantly, this analysis revealed that disease activity had the largest 149 

contribution to the total variation within SLE in almost all cell types (7.6% on average), around 2.9-150 

fold larger than the treatment contribution. 151 

 152 

SLE disease-state and activity signatures. 153 

Motivated by the fact that both case-control differences and disease activity substantially contributed 154 

to the whole transcriptome architecture, we next deployed a supervised approach to the discovery 155 

dataset to identify two transcriptomic signatures for each cell type: i) disease-state signature genes, 156 

defined as differentially expressed genes (DEGs, false discovery rate [FDR] < 0.05) between inactive 157 

SLE and HC, which reflect the biology of disease establishment, and ii) disease-activity signature 158 

genes, defined as DEGs between HDA and inactive SLE, which reflect the biology of disease 159 

exacerbation (Fig. 1, middle; Fig. 3a; Extended Data Fig. 4a). We detected comparable numbers of 160 

DEGs between these two comparisons (on average, 2,098 disease-state and 2,114 disease-activity 161 

signature genes; Extended Data Fig. 4b; Supplementary Data 2-3). We conducted replication 162 

analysis using independent cohorts33–35 (Fig. 1, i) and confirmed the robustness of both signatures by 163 

showing their high replicability (one-sided sign test, Bonferroni-corrected P < 0.05; Supplementary 164 

Note; Supplementary Table 4; Extended Data Fig. 5a-b). 165 
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To examine the specificity of these signatures, we first compared them within each cell type. 166 

We calculated the Jaccard similarity index in each cell type to quantify the shared genes between 167 

signatures (Fig. 3a); we considered that a gene was shared when it was included in both signatures 168 

with a concordant sign (Methods). Based on the proportion of DEGs and Jaccard index, we found 169 

three different transcriptome perturbation patterns (Methods): disease-state dominant pattern, e.g., 170 

B-lineage cells and naive CD4/8+ T cells, disease-activity dominant pattern, e.g., plasmablasts, and 171 

shared pattern, e.g., monocyte- and neutrophil-lineage cells (Fig. 3a-b; Extended Data Fig. 4b). 172 

When we evaluated the similarity based on the correlation of log fold changes (logFC) for both 173 

signatures, we observed consistent patterns (Extended Data Fig. 4c). 174 

We next compared signature genes across different cell types and confirmed cell-type-175 

specific and shared components. Around 20% and 30% of signature genes were detected in only one 176 

cell type and lineage, respectively (Fig. 3c). To understand the distribution of the shared components 177 

across cell types, we calculated the Jaccard index (Fig. 3d) and correlation (Extended Data Fig. 4d). 178 

Globally, we detected higher similarity within the same cell-lineage than in different lineages in both 179 

signatures. However, we found a clear discrepancy between the signatures; high similarity among T 180 

helper 1 (Th1) and cytotoxic lymphocytes (natural killer [NK] and CD8+ memory T-lineage cells)36 181 

was observed only in activity signatures (blue square in Fig. 3d and Extended Data Fig. 4d). These 182 

gaps indicated the presence of gene expression patterns specific to HDA patients in these cell types. 183 

Thus, our dataset captured distinct transcriptome perturbations in the disease establishment and 184 

exacerbation phases in a cell-type-specific manner. 185 
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 186 

Cell-type-specific biology in disease establishment and exacerbation. 187 

To understand the SLE biology in disease establishment and exacerbation, we next sought to 188 

interpret disease-state and activity signature genes in each cell type using multiple external 189 

databases (Fig. 1, ii). 190 

First, we focused on 137 genes encoding cytokines (Supplementary Table 5), the key 191 

regulators of immune responses and potential drug targets in autoimmune diseases37. Fifty-one 192 

genes were upregulated in at least one signature, consistent with previous studies: IFNG in Th1, NK, 193 

and CD8+ memory T-lineage cells38,39, and TNFSF13B, encoding BAFF, especially in DC-, 194 

monocyte-, and neutrophil-lineage cells with the highest expression40 (Fig. 4a, top). Among these 195 

genes, we identified 21 and 17 that were upregulated specifically in one cell-lineage in disease-state 196 

and activity signatures, respectively; representative examples of activity signatures included IL12A/B 197 

in switched memory B cells (SM B), IL1B in monocyte-lineage, CCL2/8 in classical monocyte (CL 198 

mono), IL18/TNFSF15 in neutrophil-lineage cells, and IL21 and CXCL13 in Th1 (Fig. 4a, top). 199 

Among them, IL21 and CXCL13, critical genes to support B cell antibody production41,42, are 200 

especially intriguing. Although previous studies reported follicular helper T cells (Tfh) as the major 201 

source of IL21 and CXCL1343, Th1 showed a more dynamic increase than Tfh, especially in the 202 

activity signatures (Fig. 4a, bottom). 203 

Next, we inferred activities of transcription factors (TF), essential regulators of immune 204 

function, based on the expression of TF-downstream genes (Methods). Among 61,182 total tests 205 
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(1,133 TF annotations × 27 cell types × two signatures), we observed 1,228 significant enrichments 206 

for 299 annotations (FDR < 0.05; one-sided Fisher’s exact test; Supplementary Table 6). Among 207 

them, disease-activity signatures showed more enrichments (862 enrichments [70.2%]; Fig. 4b, top). 208 

These results suggested underappreciated pathogenic roles of TFs in SLE exacerbation. We here 209 

highlight two such examples (Fig. 4b, middle). First, cell cycle regulators including E2F-families 210 

showed strong enrichment in activity signatures of Th1, NK, CD8+ memory T-lineage cells, and 211 

plasmablasts, indicating that these cells are probably proliferating in active SLE patients. Upregulated 212 

cell cycle regulation might be driving the high similarities between these cell types in disease-activity 213 

signatures (Fig. 3d, right). Second, BACH2 showed significant enrichment in disease-activity 214 

signatures for myeloid-lineage cells. Intriguingly, BACH2 also showed strong enrichment in 215 

lymphocytes, consistent with previous studies44,45, but primarily in disease-state signatures. These 216 

results demonstrated that an identical gene regulatory machinery can exert a pathogenic effect in 217 

different cell types depending on the disease phases (Fig. 4b, bottom). 218 

Lastly, we also performed pathway enrichment analyses to examine multiple biological 219 

processes underlying lupus pathogenesis (Methods). Among 32,292 total tests for 598 pathways, we 220 

observed 735 and 315 significant enrichments for disease-state and activity, respectively (FDR < 221 

0.05; one-sided Fisher’s exact test; Extended Data Fig. 6a; Supplementary Table 7-8). We 222 

confirmed the enrichment of established pathways such as complement activation46,47 223 

(Supplementary Note; Extended Data Fig. 6b). Intriguingly, we found different enrichment patterns 224 

between the signatures in metabolism- and cellular process-related KEGG pathways (Fig. 4c, left; 225 
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Extended Data Fig. 6c; Methods). For example, oxidative phosphorylation signaling was enriched 226 

especially in B-lineage cells for disease-state whereas it was enriched in Th1 and effector memory 227 

CD8+ T cells (EMCD8) for disease-activity signatures (Fig. 4c, right). TCA cycle signaling was 228 

enriched in disease-activity signatures of Th1 and CD8+ memory T-lineage cells. Ribosome 229 

pathways were enriched only in disease-activity signatures. Cell cycle activation was enriched 230 

predominantly in disease-activity signatures of Th1, NK, CD8+ memory T-lineage cells, and 231 

plasmablasts. Although ribosome and cell cycle pathways were already described as disease activity-232 

related pathways in previous bulk whole-blood studies13,16, our analysis clarified the precise cell-type 233 

origin of these pathways. Furthermore, we extended our view to previously underappreciated 234 

pathways such as immunometabolism, describing disease establishment and exacerbation phases 235 

separately. 236 

 237 

Cell-type-specific contribution to organ involvement in SLE. 238 

To resolve the complex relationships between transcriptome dysregulation and clinical heterogeneity 239 

in SLE, we leveraged a PC-based unsupervised approach (Fig. 1, iii). In the hierarchical clustering of 240 

225 unique individuals using all 189 PCs (= 7 PCs × 27 cell types), HC were clearly separated from 241 

patients; in addition, HDA patients with multiple organ complications were clustered together (Fig. 5a; 242 

Extended Data Fig. 7a). 243 

Compared with the approach using thousands of signature genes, the PC-based approach is 244 

better at representing whole transcriptome architecture with a small number of parameters. To 245 
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understand the biological significance of each PC, we defined two categories of PCs as in the 246 

discussion of signature genes: i) disease-state PCs, separating inactive SLE and HC, and ii) disease-247 

activity PCs, separating HDA and inactive SLE (FDR < 0.05; Fig. 5b; Supplementary Table 3; 248 

Methods). Among 189 PCs, we identified 37 disease-state PCs and 25 disease-activity PCs; among 249 

them, nine PCs were classified into both (Extended Data Fig. 7b). When we projected the data from 250 

independent cohorts onto our PCA space, PC scores maintained the original contrasts, confirming 251 

the good replicability of both PC signatures (one-sided sign test, P <0.05; Supplementary Note; 252 

Extended Data Fig. 5c; Supplementary Table 9). This PC-based approach successfully captured 253 

the continuous nature of SLE biology; most disease-activity PCs showed a gradual increase in the 254 

association signals along with the extent of disease activity (Fig. 5b; Extended Data Fig. 7b). 255 

To overview cell-type-specific contributions to organ involvement, we first assessed the 256 

variance proportion of cell-type-specific PCs explained by clinical parameters (weighted variance 257 

partitioning analysis; Methods). Overall disease activity, a composite measure reflecting the status of 258 

all organs, significantly contributed to the within-SLE transcriptome variation especially in the 13 cell 259 

types including Th1, plasmablasts, and monocyte- and neutrophil-lineage cells (Bonferroni-corrected 260 

jackknife resampling P [Pjk] < 0.05; Fig. 2d; Fig. 5c, left; Methods). We then decomposed the overall 261 

activity into seven organ/domain categories28,29: constitutional, mucocutaneous, musculoskeletal, 262 

renal, extrarenal severe, hematological, and serological activities (Fig 5c, right; Extended Data Fig. 263 

8; Supplementary Table 10; Methods). Interestingly, each organ/domain showed distinct cell-type-264 

specific patterns. While Th1 showed the highest explained variance for mucocutaneous activity, the 265 
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contribution of monocyte-lineage cells was predominant for musculoskeletal activity. Furthermore, 266 

neutrophil-lineage cells exhibited the largest contribution to renal involvement, followed by monocyte-267 

lineage cells, Th1, and plasmablasts. 268 

We next evaluated the specific relationship of each disease-activity PC with organ 269 

involvement (Fig 5d; Supplementary Note; Supplementary Table 3). For renal activity, neutrophil 270 

(Neu) PC1 and non-classical monocyte (NC Mono) PC2 showed strong associations (linear 271 

regression test; FDR < 0.05). We also identified significant associations of Naive CD4 PC7 and 272 

double negative (DN) B cell PC5 with musculoskeletal activity; these associations might be 273 

underestimated by the weighted variance partitioning analysis, which prioritizes the contribution of top 274 

PCs (Methods). Together, our results confirmed the critical roles of granulocytes and macrophages 275 

for the development of lupus nephritis (LN)48,49. In addition, our results also suggested other potential 276 

cell-type-specific contributions to organ involvement, which may be informative in unravelling SLE 277 

clinical heterogeneity. 278 

 279 

Cell-type-specific activity signatures linked to treatment responses. 280 

Belimumab (BLM) is a monoclonal antibody that inhibits BAFF, a vital factor for B cell survival and 281 

differentiation6,7,40. We investigated the effect of BLM on the transcriptome in each cell type (Fig. 1, 282 

iv). Our cohort has longitudinal data before and six months after BLM induction on 22 individuals; we 283 

refer to them as pre- and post-BLM. Importantly, none of the post-BLM samples were included in the 284 

discovery dataset; therefore, the comparison between pre- and post-BLM is independent of the 285 
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disease-activity signatures calculated in the discovery dataset. We observed DEGs between pre- and 286 

post-BLM (BLM-DEGs) predominantly in B-lineage cells, confirming the cell-type-specific effects of 287 

BLM (Fig. 6a). When we categorized the patients into good and poor responders to BLM (n = 9 and 288 

13, respectively; Methods), more DEGs were observed in good than in poor responders (Fig. 6b; 289 

Supplementary Data 4). The IFNγ-related, nuclear factor-kappa B (NFκB)-related, and glycolysis-290 

related pathways were enriched in B cell DEGs of good responders (FDR < 0.05, one-sided Fisher’s 291 

exact test; Fig. 6c; Supplementary Table 11), consistent with the downstream signaling of BAFF-292 

receptors in B cells50,51. 293 

We next asked whether BLM effects on transcriptomes counteract disease-activity 294 

signatures. We first calculated the Jaccard similarity index to quantify the shared genes between 295 

BLM-DEGs and disease-activity signatures; we considered a gene is shared when the BLM effect 296 

had the opposite sign to the activity signature to reflect therapeutic responses (Method). Jaccard 297 

indexes in good responders were around 3.4-fold higher than those in poor responders in B-lineage 298 

cells (Fig. 6b); the analyses based on logFC also showed similar trends. (Supplementary Note; 299 

Extended Data Fig. 9a-b). By projecting post-BLM data onto the PCA space of the discovery cohort 300 

(Methods), we evaluated the change in disease-activity PC scores between pre- and post-BLM. 301 

Consistent with the DEG analysis, we found a significant decrease in unswitched memory B cells 302 

(USM B) PC4 scores only for good responders (linear mixed regression test, FDR = 9.9×10-3; Fig. 303 

6d). Together, these results provided robust evidence supporting the association between disease-304 

activity signatures and the therapeutic response to BLM. 305 
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Next, we assessed the effect of other therapeutic agents such as mycophenolate mofetil 306 

(MMF) on disease-activity signatures (Supplementary Data 5; Supplementary Fig. 2). Importantly, 307 

we treated disease activity as a potential confounder in this analysis (Methods), and hence the MMF 308 

effects are not biased by disease activity. DEGs between patients with and without MMF (MMF-309 

DEGs) were primarily observed in plasmablasts, followed by Th1 and central memory CD8+ T cells 310 

(CM CD8) (Fig. 6e); the same cell types were nominated by variance partitioning analysis (Extended 311 

Data Fig. 9c; Supplementary Table 10). MMF-DEGs were shared with the activity signature genes 312 

with 15.0-21.7% of the Jaccard index (Fig. 6e). Pathway analysis recapitulated this shared 313 

component: both genes showed enrichment for oxidative phosphorylation and E2F-related cell cycle 314 

pathways (Extended Data Fig. 9d; Supplementary Table 12). We also found a significant decrease 315 

in disease-activity PC scores of plasmablasts (PC1) in patients taking MMF, adjusted for disease 316 

activity (linear regression test, FDR = 6.3×10-3; Fig. 6f; Methods). These results were consistent 317 

with previous reports that MMF suppressed plasma cell differentiation52,53. 318 

  319 

Risks variants for SLE are enriched around disease-state signatures, not activity signatures. 320 

To estimate the causal roles of these signatures for the risk of disease onset, we integrated our 321 

transcriptome data with the results of GWAS for SLE (SLE-GWAS; Fig. 1, v). 322 

First, we analyzed the genome-wide distribution of all risk variants irrespective of their effect 323 

sizes and tested their enrichment around the signature genes using stratified linkage disequilibrium 324 

score regression26,54 (S-LDSC; Methods). To be in line with previous studies of S-LDSC, we 325 
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additionally took a conventional approach and analyzed the enrichment of specifically expressed 326 

genes (SEG) in each cell type derived from HC (HC-SEG; Methods). Since ancestry-specific GWAS 327 

results are required in S-LDSC, we used two large-scale SLE-GWAS conducted in East Asian 328 

(EAS)23 and European (EUR)22 populations. We confirmed that the S-LDSC results for EAS- and 329 

EUR-GWAS were globally similar as reported for other traits55 (r in enrichment estimate = 0.69; P = 330 

1.5×10-12; Extended Data Fig. 10a; Supplementary Table 13); hence we combined them using a 331 

fixed-effect meta-analysis. Consistent with previous reports26, the risk variants were predominantly 332 

enriched around HC-SEG of B-lineage cells but only with a nominal significance (minimum P = 0.028 333 

for SM B): no significant enrichment at Bonferroni-corrected P < 0.05 (Fig. 7a). Strikingly, compared 334 

to HC-SEG, we found much stronger enrichments for disease-state signatures in all cell types: nine 335 

significant enrichments. However, for disease-activity signatures, we found no significant enrichment. 336 

Consistently, the enrichments were substantially weaker in the activity signatures than in the disease-337 

state signatures (paired Wilcoxon test, P = 5.5×10-6). 338 

We next analyzed candidate causal genes implicated in SLE-GWAS (Methods; 339 

Supplementary Table 14) and tested their enrichment in both signatures of each cell type (Fig. 7b; 340 

Extended Data Fig. 10b; Supplementary Table 15). As in the S-LDSC results, the enrichments of 341 

the candidate genes were predominantly observed in disease-state rather than in activity signatures; 342 

significant enrichments were found in five and zero cell types, respectively (Bonferroni-corrected P < 343 

0.05). Again, the enrichments were weaker in activity signatures than disease-state signatures 344 
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(paired Wilcoxon test, P = 2.5×10-3). These results confirmed that the risk variants locate on average 345 

around disease-state and not activity signature genes. 346 

Considering that most of the risk variants are within the gene regulatory regions25, we 347 

hypothesized that risk variants possess gene regulatory effects on disease-state genes (i.e., eQTL 348 

effects; Fig. 7c). To test this hypothesis, we next evaluated the potential eQTL effects of the risk 349 

variants on disease-state and activity signature genes. Specifically, we focused on genes affected by 350 

the risk variants’ eQTL effects (eGenes) and asked how the risk alleles’ directional effects on eGenes 351 

are consistent with our gene expression signatures; an eGene with consistent direction is called a 352 

“coherent gene”56 (Fig. 7d; for this analysis, we utilized the colocalization test results between SLE-353 

GWAS risk variants and eQTL variants that we recently reported27). Intriguingly, the coherent genes 354 

were enriched in disease-state signatures, but not in activity signatures (Fig. 7e; Supplementary 355 

Table 16): 67% of eGene-cell type combinations were coherent in disease-state signatures whereas 356 

only 25% of combinations were coherent in activity signatures (one-sided sign test, P = 0.022 and 357 

0.99, respectively). Together, these analyses demonstrated better directional compatibility of the SLE 358 

risk allele’s effect with disease-state signatures rather than activity signatures. Although this might be 359 

reasonable considering most GWAS are based on case-control design, this finding implied the failure 360 

of current GWAS to capture the critical biology of SLE represented by disease-activity signatures. 361 

While activity signature genes did not locate around the current SLE risk variants, we 362 

speculated that some of them might contribute to the disease risk by modulating the eQTL effects of 363 

risk alleles (we refer to the genes with modulating eQTL effects as proxy genes [pGenes]57; Fig. 7c). 364 
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Therefore, we finally sought to test whether disease-activity signature genes act as pGenes for risk 365 

alleles in SLE patients. We included 115 patients with available genotyping data and examined the 366 

influence of disease-activity signatures genes on the eQTL effects of risk alleles (we again utilized the 367 

abovementioned colocalization results27). Intriguingly, we detected two significant pGenes among 368 

activity signature genes (ANOVA test, FDR < 0.05; Supplementary Data 6), which included MED24, 369 

a transcriptional coactivator. MED24 is an activity signature gene of plasmablasts (Fig. 7f, left), and 370 

its expression was suppressed by MMF (Extended Data Fig. 10c). MED24 significantly modulated 371 

the eQTL effect of a SLE risk variant (rs36059542) on ARHGAP31, encoding a GTPase-activating 372 

protein (ANOVA test, FDR = 0.035; Fig. 7f, right). Of note, the eQTL effect of rs36059542 on 373 

ARHGAP31 was observed only in plasmablasts27. Therefore, in addition to disease-state genes, 374 

disease-activity genes may also contribute to genetic risk by modulating the eQTL effects of risk 375 

alleles. Furthermore, MMF might indirectly suppress SLE genetic risk by controlling the MED24 376 

expression. 377 

  378 
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Discussion 379 

In this study, we extensively examined dysregulated gene expression patterns of SLE by profiling 27 380 

immune cell types from 89 HC and 159 SLE donors. We identified two distinct categories of lupus-381 

relevant signatures: disease-state and activity genes. These signatures revealed multiple novel and 382 

underappreciated mechanisms with a fine cellular resolution. Moreover, we demonstrated the value 383 

of these signatures in multiple applications: transferability to independent transcriptome datasets, 384 

shared components with drug responses and consistency with the genetic signals. 385 

 SLE is a chronic disease characterized by relapsing and remitting disease course1–3. A 386 

critical but unsolved question is how the multi-cellular pathophysiology is different (or not different) 387 

between disease development and exacerbation stages. Most of the previous SLE transcriptome 388 

studies have failed to provide clear answers since they separately conducted case-control and/or 389 

intra-case analyses and have not directly compared both signatures in the same study with a high 390 

cellular resolution. Our comprehensive transcriptome data successfully clarified the multiple cell-type-391 

specific immune-mediated pathways characteristic of disease-state and activity, which highlighted the 392 

distinct biology behind the establishment and exacerbation phases of this disease. 393 

 The current realistic goal of SLE management is to achieve remission or low disease activity, 394 

not a cure58–60. From this perspective, the disease-activity signature, not the disease-state signature, 395 

has implications for development of biomarkers of treatment response or therapeutic targets. Indeed, 396 

we observed shared components between the disease-activity signatures and transcriptome changes 397 

in BLM good responders and in those taking MMF. The cell-type-specific activity signatures identified 398 
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in this study, e.g., myeloid-lineage cells characteristic of renal disease, might be informative for 399 

designing novel treatment strategies for SLE. 400 

 We have provided in-depth integrative analyses of the risk variants and transcriptome 401 

signatures; these results have several important implications. First, since we recruited established 402 

SLE patients in the chronic phase, whether the disease-state signature genes indicate causality (the 403 

signatures induce disease-state) or a reverse-causality (the disease-state induces the signatures) is a 404 

critical question. Since the risk variants reflect the causality, the fact that the risk variants are 405 

enriched around disease-state signature genes suggested the former scenario, further supported by 406 

the consistency in the dysregulation direction (i.e., coherent genes). Moreover, this finding also 407 

suggested that genetic risk-driven susceptibility signatures remained in clinically stable SLE patients, 408 

indicating that the causal mechanism is not completely controlled by the current treatments. Second, 409 

the current GWAS signals failed to reflect the disease-activity signatures. This is a critical limitation of 410 

the current genetic studies considering the potential importance of activity signatures in drug target 411 

discovery. To resolve this issue, a new framework of genetic study focusing on intra-case 412 

heterogeneity (e.g., disease severity) will be required. 413 

Although our study has substantially improved our understanding of SLE biology, we need to 414 

acknowledge several limitations. First, apart from the pre- and post-BLM sub-cohort, our study lacked 415 

longitudinal data. Second, all participants in this study were from the EAS population, although we 416 

demonstrated the applicability of our signatures to transcriptome data and GWAS results from 417 
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multiple ancestries. Third, our cell-sorting strategy might have failed to characterize currently 418 

unidentified cell populations. 419 

It is now clear that disease-state and activity signatures jointly maintain the complex 420 

pathophysiology of SLE. These signatures have the potential to be a pivotal foundation for future 421 

genomic, genetic, and drug discovery studies. 422 

  423 
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Figures 424 

Fig. 1| Overview of this study. We profiled 6,386 RNA sequencing data of 27 immune cell types from peripheral blood in HC and 425 
SLE patients (left). We identified two distinct categories of disease-relevant signatures in a cell-type-specific manner (middle), and 426 
then performed extensive downstream analyses (i-v). BLM, belimumab; EAS, East Asian; EUR, European; TF, transcription factor. 427 
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Fig. 2| Overview of gene expression patterns in the ImmuNexUT cohort. a, A heatmap showing the mean expression levels of 429 
100 IRGs across all 27 cell types and diseases. Expression levels are scaled for each gene. Genes and clusters (G1-9) originate 430 
from a PBMC scRNA-seq study20. Cell types are arranged consistently with the original publication where applicable. b, PCA plots 431 
of HC and SLE gene expression data in representative cell types (see also Extended Data Fig. 3). c, A bar plot showing the 432 
proportion of sum squared deviations within HC, SLE, and between HC and SLE data in each cell type. Cell types are arranged 433 
based on the sum squared deviations within SLE. d, A bar plot showing the proportion of variance explained by the clinical 434 
parameters within SLE data in each cell type. Cell types are arranged based on the variance explained by disease activity. In a and 435 
c-d, column annotation colors indicate cell lineages. We used the discovery dataset (n=225) for all analyses in this figure. PSL, 436 
prednisolone. 437 
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Fig. 3| SLE disease-state and activity signatures. a, (left) Scatter plots comparing the logFC of disease-state and activity 439 
signature genes in representative cell types (see also Extended Data Fig. 4a). Colors indicate the significance of each signature. 440 
(right) Box plots showing the expression of representative disease-state, activity and both significant signature genes. b, Bar plots 441 
showing (top) the number of the union of disease-state/activity signature genes and (bottom) the proportion of DEG types in each 442 
cell type. Cell types are separated into three groups (Methods). c, Histograms showing the proportion of the number of cell types 443 
sharing DEG for both signatures. Colors indicate the number of shared cell lineages. d, (left) A heatmap showing the Jaccard 444 
similarity indexes across all cell types in both signatures. The order of cell types in row and column are same and based on the 445 
hierarchical clustering using the Jaccard indexes of disease-state signatures. (right) Box plots showing the expression of a 446 
representative disease-activity signature gene shared by Th1, NK, and CD8+ memory T-lineage cells. Within each boxplot in b and 447 
d, the horizontal lines reflect the median, the top and bottom of each box reflect the interquartile range (IQR), and the whiskers 448 
reflect the maximum and minimum values within each grouping no further than 1.5 x IQR from the hinge. *, DEG (FDR < 0.05); 449 
N.S., not significant. We used the discovery dataset (n=225) for all analyses in this figure. 450 
 451 
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Fig. 4| Cell-type-specific biology in disease establishment and exacerbation. a, (top) Upregulated cytokines as disease-state 452 
and/or activity signature genes for each cell type. Genes and cell types are hierarchically clustered based on differential expression 453 
Z scores of activity signatures. (bottom) Boxplots showing the expression in representative cytokines. The horizontal lines reflect 454 
the median, the top and bottom of each box reflect the IQR, and the whiskers reflect the maximum and minimum values within each 455 
grouping no further than 1.5 x IQR from the hinge. *, DEG (FDR < 0.05); N.S., not significant. b, (top) A bar plot showing the 456 
number of significant TF annotation enrichments for each signature. (middle) A heatmap showing TF enrichment for each 457 
signature. TFs and cell types are hierarchically clustered based on –log10(enrichment P) of activity signatures. Only the top three 458 
TFs with strongest enrichments in each signature are shown, excluding redundant annotations. (bottom) Line graphs showing the 459 
differential expression Z scores of 10 representative BACH2 target genes in each cell type for both signatures. c, Bar plots showing 460 
(left) the number of significant enrichments of metabolism- and cellular process-related pathways, and (right) the enrichment of 461 
representative pathways for each signature. P, P values in one-sided Fisher’s exact test. We used the discovery dataset (n=225) 462 
for all analyses in this figure. 463 
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Fig. 5| Cell-type-specific contribution to organ involvement in SLE. a, Hierarchical clustering of 225 unique individuals based 465 
on all PC1-7 scores of 27 cell types. Top annotations indicate the disease status and organ/domain activities in each individual. 466 
Right annotations indicate the type and cell lineage of each PC. Here, only disease-state and/or activity PCs are shown in the 467 
heatmap (see also Extended Data Fig. 7a). b, Box plots showing the scaled PC scores in representative disease-state, activity 468 
and both significant PCs. The horizontal lines reflect the median, the top and bottom of each box reflect the IQR, and the whiskers 469 
reflect the maximum and minimum values within each grouping no further than 1.5 x IQR from the hinge. *, FDR < 0.05 in linear 470 
regression test; N.S., not significant. c, Bar plots showing the proportion of variance explained by (left) the overall disease activity 471 
and (right) representative organ/domain activities within SLE data in each cell type (see also Extended Data Fig. 8). Error bars 472 
and dashed vertical lines indicate 95% confidence intervals from jackknife resampling and the median values across 27 cell types, 473 
respectively. *, Bonferroni-adjusted Pjk < 0.05 (Methods). d, A heatmap showing the association of disease-activity PCs and 474 
organ/domain activities in SLE. P, nominal P values; *, FDR < 0.05 in linear regression test. We used the discovery dataset (n=225) 475 
for all analyses in this figure. 476 
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Fig. 6| Cell-type-specific activity signatures linked to treatment responses. a, A bar plot showing the numbers of DEGs in 478 
each cell type between all post- vs. pre-BLM patients (n=22 paired samples). b, Bar plots showing the numbers of BLM-DEGs and 479 
Jaccard similarity indexes between BLM-DEGs and disease-activity signature genes in each cell type, separated into good (n=9) 480 
and poor (n=13) responders. c, Bar plots showing the enrichment of representative pathways for the BLM-DEGs in B-lineage cells, 481 
separated into good and poor responders. P, nominal P values; *, FDR < 0.05 in one-sided Fisher’s exact test. d, A box plot 482 
showing the USM B PC 4 scores from pre- and post-BLM, separated into good and poor responders. P, nominal P values; *, FDR < 483 
0.05 in linear mixed regression test. e, Bar plots showing the numbers of DEGs between patients with (n=31) and without (n=105) 484 
MMF (MMF-DEGs), and Jaccard indexes between MMF-DEGs and disease-activity signature genes in each cell type. f, A box plot 485 
showing the plasmablasts PC 1 scores from patients with or without MMF. P, nominal P values; *, FDR < 0.05 in linear regression 486 
test. Within each boxplot in d and f, the horizontal lines reflect the median, the top and bottom of each box reflect the IQR, and the 487 
whiskers reflect the maximum and minimum values within each grouping no further than 1.5 x IQR from the hinge. In b and e, 488 
column annotation colors indicate cell lineages. 489 
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Fig. 7| Risks variants for SLE are enriched around disease-state signatures, not activity signatures. a, Bar plots showing the 491 
enrichment of SLE risk variants around HC-SEG, disease-state and activity signatures for each cell type. P, enrichment P values in 492 
S-LDSC. Vertical dashed lines represent Bonferroni-significance. b, A scatter plot comparing the enrichment of SLE-GWAS 493 
candidate genes in disease-state and activity signatures for each cell type. Only the cell types that pass Bonferroni-significance 494 
(dashed lines) are annotated. P, P values in one-sided Fisher’s exact test. c, Hypothesis of the association between the risk 495 
variants and DEGs in SLE via eQTL effect. d, Box plots showing the expression patterns in representative coherent and incoherent 496 
genes. P, P values in linear regression (left) and differential expression test (right). e, Histogram of adjusted logFC in coherent and 497 
incoherent genes for disease-state and activity signatures. P, P values in one-sided sign test. f, Box plots showing (left) the 498 
differential expression of MED24, an activity signature gene in plasmablasts and (right) the influence of MED24 on the eQTL effect 499 
of a SLE risk variant rs36059542 on ARHGAP31. P, P values in differential expression (left) and ANOVA test (right). Within each 500 
boxplot in d and f, the horizontal lines reflect the median, the top and bottom of each box reflect the IQR, and the whiskers reflect 501 
the maximum and minimum values within each grouping no further than 1.5 x IQR from the hinge. We used the discovery dataset 502 
(n=225) for all analyses in this figure. 503 
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Extended Data Figures 505 

Extended Data Fig. 1| Overview of gene expression patterns in the ImmuNexUT cohort. a, Bar plots showing the number of 506 
samples that passed quality control (QC, Methods) in each cell type. b, A PCA and c, a UMAP plot of all samples. Colors and 507 
shapes indicate cell types and diseases, respectively. We used all 6,386 samples from 248 donors for all analyses in this figure. 508 
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Extended Data Fig. 2| Batch correction procedure in this study. a, PCA plots of HC and all SLE gene expression data in each 510 
cell type (top) before and (bottom) after batch correction. Colors and shapes represent each batch and disease, respectively. b, 511 
Bar plots showing the proportion of variance explained by batch effect and disease in the gene expression data for each cell type 512 
(left) before and (right) after batch correction. We used all 6,386 samples from 248 donors for all analyses in this figure. 513 
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Extended Data Fig. 3| Overview of gene expression patterns in the ImmuNexUT cohort. PCA plots of HC and unique SLE 515 
gene expression data in each cell type. We used the discovery dataset (n=225) for this analysis. 516 
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Extended Data Fig. 4| SLE disease-state and activity signatures. a, Scatter plots comparing the logFC of disease-state and 518 
activity signature genes in all cell types. Each dot represents one gene, colored based on the significance (FDR < 0.05 in 519 
differential expression test) of each comparison. Genes with logFC > 5 are plotted at the position of logFC = 5. b, A barplot showing 520 
the numbers of disease-state and activity signature genes in each cell type. c, A barplot showing the Spearman correlations 521 
between the logFC in disease-state and activity signatures for each cell type. In b and c, cell types are separated into three groups 522 
(Methods). d, A heatmap showing the Spearman correlations across all cell types in disease-state and activity signatures. The 523 
order of cell types in row and column are same and based on the hierarchical clustering using the Spearman correlation 524 
coefficients of disease-activity signatures. In b and d, row and column annotation colors indicate cell lineages. We used the 525 
discovery dataset (n=225) for all analyses in this figure. 526 
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Extended Data Fig. 5| Lupus disease-state and activity signatures are replicable in independent cohorts. a, (top) Heatmaps 528 
showing the concordance between the disease-state signatures in the current study (HC, n=89; inactive SLE, n=31) and those in 529 
replication cohort 1 (left heatmap; HC, n=24; inactive SLE, n=16) and 2 (right heatmap; HC, n=37; inactive SLE, n=10). (bottom) 530 
Scatter plots comparing disease-state effects (logFC) of the current study and those of replication cohort 1 (left panel) and 2 (right 531 
panel) in representative corresponding (left plot in blue frame) and non-corresponding (right plot in black frame) cell-type 532 
combinations. b, (top) Heatmaps showing the concordance between the disease-activity signatures in the current study (inactive, 533 
n=31; HDA SLE, n=30) and those in replication cohort 1 (left heatmap; inactive, n=16; HDA SLE, n=6) and 3 (right heatmap; 534 
inactive, n=41; HDA SLE, n=4). (bottom) Scatter plots comparing disease-activity effects (logFC) of the current study and those of 535 
replication cohort 1 (left panel) and 3 (right panel) in representative corresponding (left plot in red frame) and non-corresponding 536 
(right plot in black frame) cell-type combinations. P, P values in one-sided sign test. In all heatmaps, only the combinations that 537 
pass Bonferroni-significance are colored. In scatter plots, each dot represents one signature gene. Genes with logFC > 5 in either 538 
comparison are plotted at the position of logFC = 5. c, (top) Scatter plots comparing the effect sizes of disease-state PCs in the 539 
current study and those in replication cohorts (cohort 1 and 2). The PCs with nominal P < 0.05 in linear regression test in replication 540 
cohorts are colored. (bottom) Scatter plots comparing the effect sizes of disease-activity PCs in the current study and those in 541 
replication cohorts (cohort 1 and 3). The PCs with nominal P < 0.05 in linear regression test in replication cohorts are colored. 542 
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Extended Data Fig. 6| Cell-type-specific biology in disease establishment and exacerbation. a, Bar plots showing the number 544 
of significant (left) MsigDB HALLMARK and (right) KEGG pathway enrichments for disease-state and activity signature genes in 545 
each cell type. b, Bar plots showing the enrichment of representative MsigDB HALLMARK pathways for each signature. c, 546 
Classification of 774 KEGG pathway annotations significantly enriched in any signatures (FDR < 0.05 in one-sided Fisher’s exact 547 
test) into four main categories and 33 subcategories (Methods). We used the discovery dataset (n=225) for all analyses in this 548 
figure. 549 
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Extended Data Fig. 7| Disease-state and activity PCs in the discovery dataset. a, Hierarchical clustering of 225 unique 551 
individuals based on all PC1-7 scores of 27 cell types. Top annotations indicate the disease status and organ/domain activities in 552 
each individual. Right annotations indicate the type and cell lineage of each PC. b, A heatmap showing the association of PC 553 
scores with disease-state/activity in linear regression test. All PCs with significant association with disease-state and/or disease-554 
activity are shown (*, FDR < 0.05). We used the discovery dataset (n=225) for all analyses in this figure. 555 
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Extended Data Fig. 8| Cell-type-specific contribution to organ involvement in SLE. Bar plots showing the proportion of 557 
variance explained by organ/domain activities within SLE data in each cell type. Here, the results for the four organ/domain 558 
activities other than those in Fig. 5c, right are shown. Error bars and dashed vertical lines indicate 95% confidence intervals from 559 
jackknife resampling and the median values across 27 cell types, respectively. *, Bonferroni-adjusted Pjk < 0.05 (Methods). We 560 
used SLE patients in the discovery dataset (n=136) for this analysis. 561 
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Extended Data Fig. 9| Cell-type-specific activity signatures linked to treatment responses. a, Scatter plots comparing the 563 
disease-activity effects (logFC) and BLM effects (logFC) of the activity signature genes in each cell type, separated into good and 564 
poor responders. Each dot represents one gene. Genes with logFC > 5 are plotted at the position of logFC = 5. b, Bar plots 565 
showing the effect sizes in the linear regression tests for the association between disease-activity effects and BLM effects, 566 
separated into good and poor responders. c, Bar plots showing the proportion of variance explained by medication status of MMF 567 
within SLE data in each cell type. Error bars and dashed vertical lines indicate 95% confidence intervals from jackknife resampling 568 
and the median values across 27 cell types, respectively. *, Bonferroni-adjusted Pjk < 0.05 (Methods). d, Bar plots showing the 569 
enrichment of representative pathways for the MMF-DEGs in Th1, CM CD8, and plasmablast. P, nominal P values; *, FDR < 0.05 570 
in one-sided Fisher’s exact test. For BLM-related analyses, we used the pre- (n=22) and post-BLM (n=22) patients. For MMF-571 
related analyses, we used the patients with (n=31) and without (n=105) MMF. 572 
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Extended Data Fig. 10| Risks variants for SLE are enriched around disease-state signatures, not activity signatures. a, 574 
Scatter plots comparing the normalized coefficients in S-LDSC for EAS and EUR SLE-GWAS. Each dot represents each signature 575 
(i.e., [HC-SEGs, disease-state and disease-activity signatures] × 27 cell types). The signatures that pass Bonferroni-significance in 576 
meta-analysis are annotated. b, A bar plot showing the direct comparison of GWAS candidate genes enrichment between disease-577 
state and activity signature genes for each cell type using one-sided Fisher’s exact test. Dashed horizontal line indicates odds ratio 578 
(OR) = 1. *; nominal P < 0.05. c, A Box plot showing the expression of MED24 in plasmablasts between patients with and without 579 
MMF. P, P values in differential expression test. Within each boxplot, the horizontal lines reflect the median, the top and bottom of 580 
each box reflect the IQR, and the whiskers reflect the maximum and minimum values within each grouping no further than 1.5 x 581 
IQR from the hinge. We used the discovery dataset (n=225) for all analyses in this figure. 582 
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Methods 584 

Subjects 585 

The data in our study was generated by the ImmuNexUT consortium27, approved by the Ethics 586 

Committees of the University of Tokyo. All participants were from the EAS ancestry. Healthy 587 

volunteers were recruited at the Department of Allergy and Rheumatology at the University of Tokyo 588 

Hospital. SLE patients were recruited at the Department of Allergy and Rheumatology at the 589 

University of Tokyo Hospital, Division of Rheumatic Diseases at National Center for Global Health 590 

and Medicine, or Immuno-Rheumatology Center at St. Luke’s International Hospital. Written informed 591 

consent was obtained from all participants. We have complied with all of the relevant ethical 592 

regulations. 593 

All SLE patients met the 1997 revised version of the American College of Rheumatology 594 

classification criteria61. The exclusion criteria for the discovery dataset (including 136 SLE patients) 595 

were: i) active malignancies or infections, ii) use of more than 20mg prednisolone (PSL) daily or 596 

equivalent at enrollment, iii) receive of intravenous methylprednisolone pulse, cyclophosphamide, 597 

rituximab, or BLM within 12 months before enrollment. 598 

In addition, we also collected 22 paired samples just before and six months after the 599 

additional therapy of BLM (i.e., pre- and post-BLM). Among the pre-BLM samples, 21 samples were 600 

included in the discovery dataset, and one was re-sampled due to the interval between initial 601 

enrollment and BLM induction. None of the post-BLM samples were included in the discovery 602 
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dataset. Therefore, we recruited 248 donors in total: 136 unique SLE patients, one pre-BLM, 22 post-603 

BLM patients, and 89 healthy volunteers. 604 

 605 

Sample processing and sequencing 606 

In this study, all samples were collected based on phase 2 protocol in the ImmuNexUT27; 27 immune 607 

cell types were purified from peripheral blood of each donor (Supplementary Table 1). We first 608 

isolated PBMCs by density gradient separation with Ficoll-Paque (GE healthcare) immediately after 609 

the blood draw. Erythrocytes were lysed with Ammonium-Chloride-Potassium lysing buffer (Gibco), 610 

and non-specific binding was blocked with anti-human Fc-gamma receptor antibodies (Thermo Fisher 611 

Scientific). We next sorted PBMCs into 26 immune cell types with purity > 99% using a 14-color cell 612 

sorter BD FACSAria Fusion (BD Biosciences) with the aim of 5,000 cells per sample. The immune 613 

cell gating strategy for flow cytometry was based on the Human Immunology Project with slight 614 

modification62. Sorted cells were lysed and stored at -80℃. RNA was extracted using MagMAX-96 615 

Total RNA Isolation Kits (Thermo Fisher Scientific). Libraries for RNA-seq were prepared using 616 

SMART-seq v4 Ultra Low Input RNA Kit (Takara Bio). Neutrophils were purified using MACSxpress 617 

Neutrophil Isolation Kits human (Miltenyi Biotec) with the aim of 2×106 cells immediately after the 618 

blood draw, lysed and stored at -80℃, followed by RNA isolation with an RNeasy Mini Kits (QIAGEN) 619 

and library preparation with SMART-seq v4 Ultra Low Input RNA Kits (Takara Bio). All prepared 620 

libraries were sequenced on HiSeq2500 (6169 samples) or NovaSeq6000 (217 samples) (Illumina) to 621 

generate 100 or 150 base paired-end reads, respectively. Genomic DNA was isolated from peripheral 622 
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blood using QIAmp DNA Blood Midi kit (QIAGEN). Libraries were prepared using TruSeq DNA PCR-623 

Free Library prep kit (Illumina), followed by whole-genome sequencing (WGS). WGS was performed 624 

only for the samples from Japanese individuals. The details of WGS data processing were reported in 625 

our previous study27. 626 

 627 

Quantification and normalization of the expression data 628 

Adaptor sequences were trimmed using Cutadapt (v1.16) and reads containing low-quality bases 629 

(Phred quality score < 20 in > 20% of the bases) were removed. Reads were aligned against the 630 

GRCh38 reference sequence using STAR63 (v2.5.3) with the UCSC (downloaded from illumina 631 

iGenome reference collection, archive-2015-08-14-08-18-15) and expression was counted with 632 

HTSeq64. 633 

We applied multiple sample quality control (QC) steps to ensure high quality data. The 634 

samples with uniquely mapped read rates < 80% or unique read counts < 5 × 106 were excluded as 635 

low-quality samples. To exclude outlier samples, we calculated Spearman’s correlations of the 636 

expressions between two samples from the same cell type and then removed the samples with mean 637 

correlation coefficients < 0.9. In addition, to exclude potentially swapped samples, we calculated the 638 

concordance rates between RNA-seq-based genotype and WGS-based genotype at the 639 

heterozygous loci and excluded samples with concordance rate < 0.9. 640 

We then filtered out low expression genes (<10 counts or <1 count per million [CPM] in > 641 

85% of samples), followed by a trimmed mean of M values (TMM) normalization with R (v4.0.2) 642 
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package edgeR (v3.32.1)65 in each cell type. Normalized expression data were converted to log-643 

transformed count per million (i.e., log[CPM+1]). The batch effects (i.e., product lots in SMART-seq 644 

v4 and sequencer; Extended Data Fig. 2a) were removed using Combat software66. To verify the 645 

successful work of the batch correction procedure, we used principal variance component analysis; 646 

we first calculated the explained variance of each clinical parameter for each PC1-7 score with the 647 

linear mixed models in R package lme4 (v1.1-27.1)67 and then inferred the average value of the 648 

explained variance weighted by each PC’s eigenvalue (Extended Data Fig. 2b).  649 

 650 

PCA and UMAP of all samples 651 

For PCA and UMAP using all samples (Extended Data Fig. 1b-c), we combined the expression data 652 

after batch correction from each cell type and used the intersection of the genes (n=8397) that 653 

passed the filtering of low expression in each cell type. For UMAP, we used R package uwot (v 654 

0.1.10) with default parameters68. 655 

 656 

PCA in each cell type of the discovery dataset 657 

For PCA in each cell type of the discovery cohort, we used the top 10,000 variable genes from the 658 

expression data after batch correction in each cell type (Fig. 2b; Extended Data Fig. 3). 659 

To calculate the proportion of sum squared deviations within HC, SLE, and between HC and 660 

SLE data in each cell type (Fig. 2c), we used the PC1-7 data of the discovery dataset 661 
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(Supplementary Note). We first calculated the proportion of sum squared deviations for each PC 662 

score and then inferred the average value of the proportion weighted by each PC’s eigenvalue. 663 

 664 

Weighted variance partitioning analysis in each cell type 665 

To calculate the explained variance of each clinical parameter within SLE transcriptome data for each 666 

cell type, we performed weighted variance partitioning analysis using the PC1-7 data of the discovery 667 

dataset (Supplementary Note). We first calculated the explained variance of each clinical parameter 668 

for each PC score using the linear mixed models in R package variancePartition (v1.20.0)69 and then 669 

inferred the average value of the explained variance weighted by each PC’s eigenvalue (Fig. 2d, 5c; 670 

Extended Data Fig. 8, 9c; Supplementary Fig. 2b). 671 

To verify whether the inferred explained variance was not biased by outlier samples, we 672 

estimated standard errors (S.E.) of the explained variance by jackknife resampling method. When we 673 

had n samples for one cell type, we re-calculated the explained variance n times by excluding each 674 

one of the samples. We then evaluated the distribution of n explained variance and quantified its S.E. 675 

For each clinical parameter, we compared the explained variance in each cell type against the 676 

median explained variance across all 27 cell types. To assess the significance of the difference 677 

observed in this comparison for a cell type, we utilized n explained variance calculated in jackknife 678 

resampling for that cell type; among n values, we calculated the proportion of the values which was 679 

smaller than the median value, and we defined this proportion as jackknife resampling P (Pjk). For 680 

each clinical parameter, if one cell type passed the Bonferroni-corrected Pjk < 0.05, we concluded that 681 
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the clinical parameter significantly contributed to the within-SLE transcriptome variation in that cell 682 

type. 683 

 684 

Linear models for the association between PC scores and clinical parameters 685 

This study focused on the clinical parameters related to disease-state, overall disease-activity, 686 

organ/domain activity, and treatment statuses (Supplementary Fig. 1a). Disease-state was defined 687 

as the contrast between inactive SLE (i.e., not all SLE) and HC in the discovery dataset to exclude 688 

the elements of disease-activity signatures from the case-control contrast (Fig. 1, middle). For 689 

overall disease activity, we defined four categories: i) inactive as SLEDAI-2K28 = 0, ii) low disease 690 

activity (LDA) as 1 ≤ SLEDAI-2K ≤ 4, iii) moderate disease activity (MDA) as 5 ≤ SLEDAI-2K ≤ 8, and 691 

iv) high disease activity (HDA) as SLEDAI-2K ≥ 9. For organ activity, we categorized the patients into 692 

seven groups based on their actively involved organ/domains of the British Isles Lupus Assessment 693 

Group (BILAG) 200429 and SELDAI-2K: a) constitutional, b) mucocutaneous, c) musculoskeletal, d) 694 

renal, e) extrarenal severe (neuropsychiatric/eye, cardiorespiratory and/or gastrointestinal), f) 695 

hematological, and g) serological activities. We also evaluated the effect of therapeutic agents such 696 

as MMF, hydroxychloroquine (HCQ), and tacrolimus (TAC)3,60,70. 697 

To examine the associations between the PC scores (PC1-30) and clinical traits, we fitted 698 

the PC scores to the following linear regression models: 699 

(1) For disease-state (𝑥: inactive SLE vs. HC),  700 

𝑦 = 𝛽 ∙ 𝑥[0,1] + 𝜀 ∙ 𝐴𝑔𝑒[𝑦𝑟𝑠] + 𝜖 ∙ 𝑆𝑒𝑥[0,1] + 𝜃 701 
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Here, 𝑦 represents the scaled PC score for each cell type (PC1-30 × 27 cell types). All PC scores 702 

were scaled across samples to enable the direct comparison of the effect sizes in the associations 703 

with clinical parameters. In this comparison, age and sex were included as covariates. 704 

(2) For disease-activity (𝑥: HDA vs. inactive SLE; we also examined LDA vs. inactive and MDA vs. 705 

inactive SLE), 706 

𝑦 = 𝛽 ∙ 𝑥[0,1] + 6 𝛾 ∙ 𝐼![0,1]
!"#,%,&

+ 𝛿 ∙ 𝑃𝑆𝐿[𝑚𝑔] + 	𝜀 ∙ 𝐴𝑔𝑒[𝑦𝑟𝑠] + 𝜖 ∙ 𝑆𝑒𝑥[0,1] + 𝜃 707 

Here, 𝐼!(𝑘 = 1,2,3) represents each immunosuppressant (MMF, HCQ, TAC) as covariates. 708 

(3) For organ/domain activity (𝑥'[𝑗 = 1…7]: the abovementioned seven categories), 709 

	𝑦 = 6 𝛽 ∙ 𝑥'[0,1]
'"#…)

+ 6 𝛾 ∙ 𝐼![0,1]
!"#,%,&

+ 𝛿 ∙ 𝑃𝑆𝐿[𝑚𝑔] + 	𝜀 ∙ 𝐴𝑔𝑒[𝑦𝑟𝑠] + 𝜖 ∙ 𝑆𝑒𝑥[0,1] + 𝜃 710 

Here, we constructed multiple linear regression models including all seven categories, which enabled 711 

us to infer the association of each organ activity with PC scores, controlling the other organs’ effects 712 

(Fig. 5c-d). 713 

(4) For therapeutic agents (𝐼![𝑘 = 1,2,3]: MMF, HCQ, TAC), 714 

𝑦 = 6 𝛾 ∙ 𝐼![0,1]
!"#,%,&

+ 𝛽 ∙ 𝑥[0,1,2,3] + 𝛿 ∙ 𝑃𝑆𝐿[𝑚𝑔] + 	𝜀 ∙ 𝐴𝑔𝑒[𝑦𝑟𝑠] + 𝜖 ∙ 𝑆𝑒𝑥[0,1] + 𝜃 715 

Here, 𝑥 represents disease activity (inactive, LDA, MDA, and HDA) as covariates. 716 

These equations enabled us to derive the associations of disease-state, activity, organ 717 

involvements or treatment statuses with PC scores, adjusted for other confounding factors. Statistical 718 

significance was set at FDR < 0.05. As described in Supplementary Note and Supplementary Fig. 719 

1b, most of the significant associations were detected within PC1-7, with larger numbers than 720 

average per PCs. Therefore, we confirmed that PC1-7 is a minimum set to associate the 721 
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transcriptome with the clinical parameters in the discovery dataset and utilized PC1-7 scores for the 722 

subsequent analyses. All PC scores were signed so that the effect sizes of disease-state and 723 

disease-activity were positive (Fig. 5a-b; Extended Data Fig. 7a-b). In the case of some PCs that 724 

had opposite sign in the effect sizes of disease-state and activity, the association with lower P value 725 

was prioritized to have positive effect size. 726 

In the hierarchical clustering of 225 unique individuals using 189 PCs (= 7 PCs × 27 cell 727 

types) in the discovery dataset, the Euclidean distances of the PC scores were used with Ward’s 728 

method (Fig. 5a; Extended Data Fig. 7a). 729 

 730 

Differential gene expression analysis 731 

To detect DEGs in each cell type, we fitted the TMM-normalized counts in the discovery dataset to 732 

the generalized linear models (GLM) with negative binomial distribution using edgeR (v3.32.1)65. The 733 

equations in these GLM models were consistent with those in the linear models as described in the 734 

Methods; Linear models for the association between PC scores and clinical parameters; we 735 

utilized the equations (1), (2) and (4). Additionally, we also considered the batch effects as covariates 736 

in this analysis since TMM-normalized counts were not corrected for batch effects (Methods; 737 

Quantification and normalization of the expression data). These equations enabled us to derive 738 

DEGs related to our focused disease traits or treatment statuses, adjusted for other confounding 739 

factors (Fig. 3a-b, 6e; Supplementary Fig. 2a). Statistical significance was set at FDR < 0.05. We 740 

defined (1) “disease-state signature genes” as significant DEGs between inactive SLE and HC, and 741 
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(2) “disease-activity signature genes” as significant DEGs between HDA and inactive SLE for each 742 

cell type (Fig. 3a). 743 

To evaluate the similarities and differences between disease-state and activity signature 744 

genes, we calculated Jaccard similarity indexes as the ratio of the shared genes with the concordant 745 

sign between the disease-state and activity signatures (Fig. 3a; orange dots) over the union of these 746 

two signature genes (Fig. 3a; orange + red + blue dots) for each cell type. Considering the biological 747 

significance, we did not regard the DEGs with the discordant sign between these two signatures as 748 

shared genes. Based on the proportion of DEGs and Jaccard index, we classified 27 cell types into 749 

three patterns (Fig. 3b). We first defined the cell types with Jaccard index > 0.15 as shared pattern 750 

and then classified the other cell types into disease-state or disease-activity dominant patterns based 751 

on which signature genes were numerically predominant. 752 

We also calculated the Jaccard similarity index and Spearman correlation across all pairs of 753 

different cell types for both signature genes. The Jaccard similarity distances (i.e., 1 - Jaccard 754 

similarity indexes) of each pair within disease-state signature genes were used for hierarchical 755 

clustering (Fig. 3d). Similarly, Spearman’s correlation distance of each pair within disease-activity 756 

signature genes were used for hierarchical clustering (Extended Data Fig. 4d). 757 

To detect DEGs related to therapeutic agents adjusted for confounding factors (e.g., disease 758 

activity), we set the patients not taking the agent as the control, meaning the down-DEGs 759 

represented the genes that were downregulated by each agent. Therefore, we calculated Jaccard 760 

indexes as the ratio of the shared genes with the inverse sign between the disease-activity signatures 761 
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and MMF-DEGs over the union of these two signature genes (Fig. 6e). We calculated Jaccard 762 

indexes within the cell types in which more than 300 MMF-DEGs were observed. 763 

 764 

Replication analysis 765 

For replication analysis, we compared our data with the three external bulk immune cell RNA-seq 766 

dataset of SLE and/or HC from different ancestries. 767 

i) Cohort 1 (Panwar et al.33) 768 

• Samples: 64 SLE and 24 HC, multi-ancestry cohort (Caucasian, Asian, Hispanic, and African) 769 

• Cell subsets: six cell types (bulk T cells, bulk B cells, CL Mono, mDC, pDC, and Neu). Only 770 

CL Mono was collected from all donors, and the other five cell types were collected from 771 

around 20 SLE and 10 HC samples. 772 

• Data usage strategy: since this cohort included both SLE and HC, we used this cohort for the 773 

replication analysis of disease-state and activity signatures (Extended Data Fig. 5a-c). Naive 774 

CD4 and naive B data from the current study were compared with bulk T and bulk B data from 775 

cohort 1, respectively (Supplementary Table 4). 776 

ii) Cohort 2 (Takeshima et al.35) 777 

• Samples: 30 SLE and 37 HC, All East Asian (EAS) 778 

• Cell subsets: 19 cell types (Naive CD4, Mem CD4, Th1, Th2, Th17, Tfh, Fr. II eTreg, Naive 779 

CD8, bulk memory CD8 [Mem CD8], NK, Naive B, USM B, SM B, DN B, plasmablast, CL 780 

Mono, CD16p Mono, mDC, and pDC) 781 
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• Data usage strategy: this is our previous cohort independent of the ImmuNexUT. In this 782 

study, we excluded the overlapped samples with the current study, leaving relatively stable 783 

30 SLE patients for the analysis. Therefore, we used this cohort only for the replication of 784 

disease-state signatures (Extended Data Fig. 5a, c). EM CD8 data from the current study 785 

was compared with bulk Mem CD8 data from cohort 2 (Supplementary Table 4). 786 

iii) Cohort 3 (Andreoletti et al.34) 787 

• Samples: 57 White and 63 Asian SLE patients 788 

• Cell subsets: four cell types (bulk CD4 cells, NK cells, bulk B cells, and bulk monocytes)  789 

• Data usage strategy: since this cohort did not include HC samples, we used this cohort only 790 

for the replication of disease-activity signatures (Extended Data Fig. 5b-c). Naive CD4, naive 791 

B, and CL Mono data from the current study were compared with bulk CD4, bulk B, and bulk 792 

monocyte data from cohort 3, respectively (Supplementary Table 4). 793 

In all replications, we assessed the concordance of the directions of disease-state and 794 

activity signature genes in the discovery cohort with the corresponding genes in external cohorts 795 

using one-sided binomial sign tests (Extended Data Fig. 5a-b). The definitions of clinical status (e.g., 796 

disease-state and activity) were consistent with our discovery cohort, with the exception that inactive 797 

SLE in cohort 2 was defined as 0 ≤ SLEDAI-2K ≤ 2 (10 patients) since there were no patients with 798 

SLEDAI-2K = 0. In all replication analyses, we adjusted for the covariates (e.g., age and sex) in line 799 

with the analyses of the discovery dataset where applicable. 800 
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In the PC projection method, we first computed the Z score matrix of gene expressions using 801 

the mean and standard deviation (SD) of the discovery dataset and then inferred the PC scores of 802 

each sample from the external datasets as the inner products of each PC loading (Supplementary 803 

Data 1) and the Z score matrix. We tested the association of these PC scores with disease-state (i.e., 804 

inactive SLE vs. HC) and disease-activity (i.e., HDA vs. inactive SLE) in the external datasets using 805 

the linear regression model as with the discovery dataset (Supplementary Table 9). We then 806 

assessed the concordance of the directions of the effect sizes for disease-state and disease-activity 807 

PCs, respectively, using one-sided binomial sign tests (Supplementary Note; Extended Data Fig. 808 

5c). 809 

 810 

Transcription factor and pathway enrichment analysis 811 

To test pathway and transcription factor (TF) enrichment in each disease-state and activity signature 812 

genes, we performed over-representation analyses with one-sided Fisher’s exact test in R package 813 

clusterProfiler (v.3.18.1)71. Statistical significance was set at FDR < 0.05. For TF datasets, we used 814 

the Molecular Signatures Database (MsigDB) C3 all TF targets annotation (1133 annotations)72. For 815 

pathway datasets, we used the MsigDB hallmark gene set collection (50 annotations)73 and Kyoto 816 

Encyclopedia of Genes and Genomes (KEGG) pathway (548 annotations)74. To capture the cell-type-817 

specific biology linked to disease-state and activity signatures genes, we set the union of both 818 

signature genes in all cell types as the background gene sets. For treatment-related DEGs (e.g., 819 
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MMF-DEGs and BLM-DEGs), we performed pathway enrichment analysis only in the cell types in 820 

which more than 300 DEGs were observed. 821 

 822 

Analysis of pre- and post-BLM dataset 823 

All 22 individuals received BLM treatment according to the standard protocols6,7,75. In this section, we 824 

defined those whose original disease-activity categories were moved into one or more lower 825 

categories (e.g., MDA to LDA or LDA to inactive) between pre- and post-BLM treatment, as good 826 

responders, and the others as poor responders. 827 

Because edgeR did not implement generalized linear mixed models (GLMM), we detected 828 

DEGs between pre- and post-BLM using the following GLMM with negative binomial distribution in 829 

lme4 (v1.1-27.1)67, setting the statistical significance at FDR < 0.05 (Fig. 6a-b). Of note, we need to 830 

consider the batch effects as covariates in the following equation, since TMM-normalized counts were 831 

not corrected for batch effects (Methods; Quantification and normalization of the expression 832 

data). 833 

𝑦 = 𝛽 ∙ 𝐵𝐿𝑀[0,1] + (1|𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) + 𝜋 ∙ 𝐵𝑎𝑡𝑐ℎ + 𝜃 834 

Here, 𝑦 and 𝐵𝐿𝑀 represents the TMM-normalized count for each gene in each cell type 835 

and the treatment status of BLM (i.e., pre- and post-BLM). We included a term for random intercept of 836 

individuals, and hence excluded individual-specific covariates (e.g., age and sex). In this equation, we 837 

set pre-BLM as the control, meaning the down-DEGs represented the genes that were 838 

downregulated by BLM treatment. Therefore, we calculated Jaccard indexes as the ratio of the 839 
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shared genes with the inverse sign between the disease-activity signatures and BLM-related DEGs 840 

over the union of these two signature genes (Fig. 6b). We calculated Jaccard indexes within the cell 841 

types in which more than 300 BLM-DEGs were observed. Moreover, in each cell type, we compared 842 

associations between the logFC of disease-activity effect and those in BLM effect using linear 843 

regression model (Supplementary Note; Extended Data Fig. 9a-b). 844 

In the PC projection method, we first computed the Z score matrix of gene expressions using 845 

the mean and SD of the discovery dataset and then inferred the PC scores of duplicated samples as 846 

the inner products of each PC loading (Supplementary Data 1) and the Z score matrix. To test the 847 

association between the change of PC scores and the treatment status, we used the following linear 848 

mixed model: 849 

𝑦 = 𝛽 ∙ 𝐵𝐿𝑀[0,1] + (1|𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) + 𝜃 850 

Here, 𝑦 represents the scaled PC score for each cell type. In this model, it was not necessary to 851 

consider the batch effects since the PCA was performed using the log(CPM+1) gene expression data 852 

that had been already corrected for batch effects (Methods; Quantification and normalization of 853 

the expression data). 854 

 855 

Stratified linkage disequilibrium score regression 856 

To evaluate the enrichment of the genome-wide distribution of all SLE risk variants irrespective of 857 

their effect sizes (heritability) around HC-SEG, disease-state and activity signature genes, we 858 

performed S-LDSC26,54. We examined the enrichment of SLE heritability for common variants within 859 
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100-kb windows on either side of the transcription start site of the genes with the top 1,000 highest Z-860 

scores in either signature genes for each cell type, adjusting for baseline model provided by the 861 

developers54 (Fig. 7a). For this analysis, we used two large-scale SLE GWAS summary statistics 862 

from EAS23 and EUR ancestries22 (Extended Data Fig. 10a). Since the regression coefficients of S-863 

LDSC are influenced by the GWAS heritability, we normalized coefficients by dividing them with 864 

mean per-SNP heritability as reported by a previous report26; we then reported normalized 865 

coefficients. In a fixed-effect meta-analysis of the two results, we used the inverse variance weighting 866 

method using normalized coefficients and their S.E. We reported P values to test whether the 867 

regression coefficient is significantly positive. 868 

To call HC-SEG (specifically expressed genes in HC) for each cell type, we compared the 869 

expression data of one cell type with that of the remaining cell types that belong to other cell lineages 870 

using the GLM with negative binomial distribution in edgeR (v3.32.1)65. To be in line with previous 871 

studies of S-LDSC, only the samples from HC were used in this analysis. 872 

 873 

GWAS candidate genes enrichment analysis 874 

The SLE-GWAS results were downloaded from the NHGRI-EBI GWAS Catalog76 on 16/08/2021. 875 

Among them, we defined the genes nearest to SLE-GWAS significant variants (P < 5×10-8) as 876 

GWAS candidate genes (Supplementary Table 14). Gene symbols were based on UCSC definition. 877 

To test the enrichment of GWAS candidate genes for disease-state and activity signature genes, we 878 

performed over-representation analyses with one-sided Fisher’s exact test (Fig. 7b). We set the 879 
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union of the genes that passed the filtering of low expression in each cell type and used it as the 880 

background. 881 

 882 

Integrative analysis with eQTL data 883 

To compare the direction between the risk allele’s expression quantitative trait loci (eQTL) effects and 884 

disease-state and activity signature genes, we utilized the results of the colocalization test between 885 

SLE-GWAS and ImmuNexUT eQTL data reported in Ota et al27. For visualization, logFC sign 886 

information was adjusted so that the direction of the coherent genes, which showed the concordant 887 

direction between eQTL effects for risk alleles and differential expressions56 (Fig. 7e), was positive 888 

(i.e., adjusted logFC). 889 

To examine the interactive effects of the signature genes on the eQTL effects of SLE risk 890 

variants, we fitted the eGene expressions to the following linear regression models for each cell type 891 

(Fig. 7f): 892 

𝐹𝑢𝑙𝑙:	𝑦 = 𝜌 ∙ 𝐺[0,1,2] + 𝜇 ∙ 𝑥 + 𝛽 ∙ 𝐺: 𝑥 + 6 𝛾 ∙ 𝐼![0,1]
!"#,%,&

+ 𝛿 ∙ 𝑃𝑆𝐿[𝑚𝑔] + 	𝜀 ∙ 𝐴𝑔𝑒[𝑦𝑟𝑠] + 𝜖 ∙ 𝑆𝑒𝑥[0,1] + 𝜃 893 

𝑁𝑢𝑙𝑙:	𝑦 = 𝜌 ∙ 𝐺[0,1,2] + 𝜇 ∙ 𝑥 + 6 𝛾 ∙ 𝐼![0,1]
!"#,%,&

+ 𝛿 ∙ 𝑃𝑆𝐿[𝑚𝑔] + 	𝜀 ∙ 𝐴𝑔𝑒[𝑦𝑟𝑠] + 𝜖 ∙ 𝑆𝑒𝑥[0,1] + 𝜃 894 

Here, 𝑦 and 𝑥	 represents the expression of eGene and pGene, respectively, and 𝐺 895 

represents the genotype of each individual. 𝐼!(𝑘 = 1,2,3) represents each immunosuppressant 896 

(MMF, HCQ, TAC) as covariates. We tested the significance of interaction terms (i.e., 𝐺: 𝑥) by 897 

comparing full and null models using analysis of variance (ANOVA). Statistical significance was set at 898 

FDR < 0.05. 899 
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 900 

Data availability 901 

All analysis results including DEG list and PC loading scores are available as supplementary table 902 

and data. RNA-seq data used in this study will be available at the National Bioscience Database 903 

Center (NBDC) Human Database (Dataset ID: JGAS000486) upon acceptance. 904 
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Code availability 906 

Codes utilized in this study are available on GitHub (https://github.com/MasahiroNakano-hub). 907 
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