	medRxiv preprint doi: https://doi.org/10.1101/2022.01.12.22269137; this version posted January 16, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
	Nakano M et al.
1	Title:
2	Cell-type-specific transcriptome architecture underlying the establishment and exacerbation of
3	systemic lupus erythematosus
4	
5	Authors:
6	Masahiro Nakano ^{1,2} , Mineto Ota ^{1,3} , Yusuke Takeshima ¹ , Yukiko Iwasaki ¹ , Hiroaki Hatano ^{1,4} , Yasuo
7	Nagafuchi ^{1,3} , Takahiro Itamiya ¹ , Junko Maeda ¹ , Ryochi Yoshida ¹ , Saeko Yamada ¹ , Aya Nishiwaki ¹ ,
8	Haruka Takahashi ¹ , Hideyuki Takahashi ¹ , Yuko Akutsu ¹ , Takeshi Kusuda ¹ , Hiroyuki Suetsugu ^{5,6,7} , Lu
9	Liu ^{8,9} , Kwangwoo Kim ^{10,11} , Xianyong Yin ^{8,9,12} , So-Young Bang ^{13,14} , Yong Cui ¹⁵ , Hye-Soon Lee ^{13,14} ,
10	Hirofumi Shoda ¹ , Xuejun Zhang ^{8,9} , Sang-Cheol Bae ^{13,14} , Chikashi Terao ^{5,16,17} , Kazuhiko Yamamoto ^{1,2} ,
11	Tomohisa Okamura ^{1,3} , Kazuyoshi Ishigaki ^{1,4} *, and Keishi Fujio ¹ *
12	
13	Affiliations:
14	¹ Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo,
15	Tokyo, Japan
16	² Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Kanagawa,
17	Japan
18	³ Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine,
19	the University of Tokyo, Tokyo, Japan

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

- ⁴ Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Kanagawa,
- 21 Japan
- ⁵ Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical
- 23 Sciences, Tokyo, Japan
- ⁶ Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University,
- 25 Fukuoka, Japan
- ²⁶ ⁷ Department of Orthopaedic Surgery, Hamanomachi hospital, Fukuoka, Japan
- ⁸ Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- ⁹ Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- ¹⁰ Department of Biology, Kyung Hee University, Seoul, Korea
- ³⁰ ¹¹ Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
- ¹² Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor,
- 32 Michigan, USA
- ¹³ Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
- ¹⁴ Hanyang University Institute for Rheumatology Research, Seoul, Korea
- ¹⁵ Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
- ¹⁶ Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- ¹⁷ The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of
- 38 Shizuoka, Shizuoka, Japan
- 39

Nakano M et al.

40 **Correspondence:**

- 41 Kazuyoshi Ishigaki, MD, PhD
- 42 Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, 1-7-22
- 43 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- 44 kazuyoshi.ishigaki@riken.jp.
- 45
- 46 Keishi Fujio, MD, PhD
- 47 Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-
- 48 3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- 49 FUJIOK-INT@h.u-tokyo.ac.jp.

Nakano M et al.

51 Abstract

52	Systemic lupus erythematosus (SLE) is a complex and heterogeneous autoimmune disease involving
53	multiple immune cells. A major hurdle to the elucidation of SLE pathogenesis is our limited
54	understanding of dysregulated gene expression linked to various clinical statuses with a high cellular
55	resolution. Here, we conducted a large-scale transcriptome study with 6,386 RNA sequencing data
56	covering 27 immune cell types from 159 SLE and 89 healthy donors. We first profiled two distinct cell-
57	type-specific transcriptomic signatures: disease-state and disease-activity signatures, reflecting
58	disease establishment and exacerbation, respectively. We next identified candidate biological
59	processes unique to each signature. This study suggested the clinical value of disease-activity
60	signatures, which were associated with organ involvement and responses to therapeutic agents such
61	as belimumab. However, disease-activity signatures were less enriched around SLE risk variants
62	than disease-state signatures, suggesting that the genetic studies to date may not well capture
63	clinically vital biology in SLE. Together, we identified comprehensive gene signatures of SLE, which
64	will provide essential foundations for future genomic, genetic, and clinical studies.
65	

Nakano M et al.

66 Introduction

67	Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that involves multiple
68	immune cell types and pathways ^{1,2} . SLE has a broad spectrum of clinical manifestations such as skin
69	rashes, arthritis and nephritis, and the disease course is generally unpredictable ³ . This
70	heterogeneous nature has hampered a better understanding of SLE pathogenesis and the
71	development of effective therapeutic agents ^{4,5} . To date, only two biologics have been approved for
72	SLE, belimumab (BLM) and anifrolumab, monoclonal antibodies against B cell-activating factor
73	(BAFF) and type I interferon (IFN) receptor subunit 1, respectively ^{6–9} .
74	To detect biomarkers and therapeutic targets for SLE, several studies on bulk whole-blood or
75	peripheral blood mononuclear cell (PBMC) transcriptomes have revealed some key gene signatures
76	related to IFN signaling, granulocytes, and plasma cells ^{10–16} . However, these studies have suffered
77	from one critical limitation: the results were biased by the abundance of various immune cell
78	populations in the analyzed samples, which complicates the identification of any cell-type-specific
79	disease-relevant signatures ¹⁷ . Therefore, recent studies applied single-cell RNA sequencing (scRNA-
80	seq), a powerful technology to improve cellular resolution, to PBMCs, skin and kidney samples from
81	SLE patients and have successfully identified several cell subpopulations crucial for lupus
82	pathogenesis ^{18–20} . However, since these scRNA-seq studies of SLE were limited by sparse
83	expression information and small sample sizes (around 30 cases), they were not well-powered to
84	capture comprehensive transcriptome abnormality related to different clinical manifestations. These

Nakano M et al.

limitations could be overcome by a large-scale bulk transcriptome study with finely sorted cell
 populations.

87	SLE etiology has both genetic and environmental components ^{1–3} . Researchers have
88	conducted large-scale genome-wide association studies (GWASs) for SLE ²¹⁻²³ , identifying more than
89	one hundred risk loci. Combined with omics data mostly from healthy individuals, researchers
90	attempted to interpret the genetic etiology and have identified potential causal roles of IFN, Toll-like
91	receptor signaling and immune complexes ^{24–26} . However, these studies have not thoroughly
92	investigated the complex interactions between risk variants and the transcriptome dysregulation seen
93	in SLE patients. Such investigations hold the promise to elucidate the complex pathogenesis of SLE.
94	To address these issues, we conducted a large-scale transcriptome study of 6,386 bulk RNA
95	sequencing (RNA-seq) data including 27 purified immune cell types in peripheral blood that
96	encompassed almost every type of immune cell (Fig. 1). We recruited 136 SLE patients with various
97	disease activities and clinical presentations (22 among them were re-evaluated after BLM treatment;
98	Methods) and 89 healthy volunteers in the Immune Cell Gene Expression Atlas from the University
99	of Tokyo (ImmuNexUT) cohort ²⁷ (discovery dataset). Using multiple approaches, we investigated cell-
100	type-specific transcriptome dysregulation and classified them into two categories: disease-state and
101	disease-activity signatures. Furthermore, we deployed these signatures to five main topics of
102	downstream analyses: i) replication, ii) biological interpretation, iii) diverse organ involvement, iv) pre-
103	and post-treatment comparison, and v) the SLE-GWAS signals (Fig. 1). Overall, our large-scale and

Nakano M et al.

- 104 comprehensive investigation uncovered the molecular basis underlying the clinical heterogeneity of
- SLE with a fine resolution of cell-type-specificity. 105

Nakano M et al.

Results 107

Overview of gene expression patterns in the ImmuNexUT cohort. 108

- Our dataset included 27 finely sorted immune cell types: CD4⁺ T cells, nine subsets; CD8⁺ T cells, 109
- four subsets; NK cells, one subset; B cells, five subsets; monocytes, four subsets; dendritic cells, two 110
- subsets; and neutrophils, two subsets (Fig. 1, left; Supplementary Table 1). We recruited 248 111
- donors in total. Among them, 136 unique SLE patients and 89 healthy controls (HC) were included in 112
- the discovery dataset; the rest included 22 post-BLM patients (Methods). Compared with previous 113
- studies with fine resolution transcriptomes¹⁸⁻²⁰, larger sample size with multiple clinical statuses (e.g., 114
- disease activity, organ involvement, and treatment profiles) is an advantage of our cohort 115
- (Supplementary Note; Supplementary Table 2). At enrollment, 30 patients (22.1%) in the discovery 116
- dataset had high disease activity (HDA; SLEDAI- $2K^{28} \ge 9$), while 31 (22.8%) patients were inactive 117
- (SLEDAI-2K = 0). Forty one (30.1%), 27 (19.9%) and 30 (22.1%) patients had mucocutaneous, 118
- musculoskeletal, and renal activity, respectively²⁹. 119

To understand the highly complex transcriptomic signatures in our datasets (16,000 genes 120 and 6,386 samples from 248 donors; Extended Data Fig. 1a; Methods), we first aimed to project all 121 samples in low dimensional spaces. Principal component analysis (PCA) showed that the samples 122 from the same cell type clustered together followed by the same cell lineage (Extended Data Fig. 123 1b); this pattern became more evident in the uniform manifold approximation and projection (UMAP) 124 (Extended Data Fig. 1c). We also confirmed that batch effects were successfully removed in all cell 125 types (Extended Data Fig. 2a-b). 126

127	IFN-related gene (IRG) expression is a hallmark signature of SLE ^{30–32} . To explicitly quantify
128	transcriptome patterns well-established for lupus, we utilized 100 IRGs reported in a recent PBMC
129	scRNA-seq study having the highest cellular resolution ²⁰ (Fig. 2a). The cell-type- and disease-
130	specific IRG expression patterns were globally consistent with those in the original publication: e.g.,
131	upregulated CXCL10 and IFITM3 expression (G5) in lupus CD16-positive monocytes (CD16p Mono)
132	and upregulated IRF7 and PARP10 expression (G8) in plasmacytoid dendritic cells (pDC).
133	Additionally, about half (n=54) of IRGs showed the highest expression in SLE neutrophil-lineage
134	cells, which were not evaluated in the previous scRNA-seq studies of SLE ^{18–20} . Together, our
135	transcriptomic data exhibited the expected cell-type-specific patterns and recapitulated previously
136	established IRG signatures.
137	
137 138	Disease activity is a major source of variation in the within-SLE transcriptome data.
137 138 139	Disease activity is a major source of variation in the within-SLE transcriptome data. To explore the source of the transcriptomic variations in the discovery dataset, we conducted PCA
137 138 139 140	Disease activity is a major source of variation in the within-SLE transcriptome data. To explore the source of the transcriptomic variations in the discovery dataset, we conducted PCA within each cell type and evaluated the distribution of samples in the PCA space (Supplementary
137 138 139 140 141	Disease activity is a major source of variation in the within-SLE transcriptome data. To explore the source of the transcriptomic variations in the discovery dataset, we conducted PCA within each cell type and evaluated the distribution of samples in the PCA space (Supplementary Data 1). The top PCs differentiated SLE patients from HC in all cell types, indicating widespread
137 138 139 140 141 142	Disease activity is a major source of variation in the within-SLE transcriptome data. To explore the source of the transcriptomic variations in the discovery dataset, we conducted PCA within each cell type and evaluated the distribution of samples in the PCA space (Supplementary Data 1). The top PCs differentiated SLE patients from HC in all cell types, indicating widespread transcriptome perturbations in SLE immune cells (Fig. 2b; Extended Data Fig. 3). In addition, gene
 137 138 139 140 141 142 143 	Disease activity is a major source of variation in the within-SLE transcriptome data. To explore the source of the transcriptomic variations in the discovery dataset, we conducted PCA within each cell type and evaluated the distribution of samples in the PCA space (Supplementary Data 1). The top PCs differentiated SLE patients from HC in all cell types, indicating widespread transcriptome perturbations in SLE immune cells (Fig. 2b; Extended Data Fig. 3). In addition, gene expression profiles within patients showed higher variation than those within HC (Fig. 2c; Methods).
 137 138 139 140 141 142 143 144 	Disease activity is a major source of variation in the within-SLE transcriptome data. To explore the source of the transcriptomic variations in the discovery dataset, we conducted PCA within each cell type and evaluated the distribution of samples in the PCA space (Supplementary Data 1). The top PCs differentiated SLE patients from HC in all cell types, indicating widespread transcriptome perturbations in SLE immune cells (Fig. 2b; Extended Data Fig. 3). In addition, gene expression profiles within patients showed higher variation than those within HC (Fig. 2c; Methods). We further evaluated how the transcriptome variations reflected the heterogeneous clinical
 137 138 139 140 141 142 143 144 145 	Disease activity is a major source of variation in the within-SLE transcriptome data. To explore the source of the transcriptomic variations in the discovery dataset, we conducted PCA within each cell type and evaluated the distribution of samples in the PCA space (Supplementary Data 1). The top PCs differentiated SLE patients from HC in all cell types, indicating widespread transcriptome perturbations in SLE immune cells (Fig. 2b; Extended Data Fig. 3). In addition, gene expression profiles within patients showed higher variation than those within HC (Fig. 2c; Methods). We further evaluated how the transcriptome variations reflected the heterogeneous clinical statuses. We first confirmed that PC1-7 is the minimum set to associate the transcriptome with the

Nakano M et al.

147	(Supplementary Note; Supplementary Fig. 1a-c; Supplementary Table 3). We then quantified the
148	contribution of clinical parameters to the within-SLE variation using weighted variance partitioning
149	analysis (Fig. 2d; Methods). Importantly, this analysis revealed that disease activity had the largest
150	contribution to the total variation within SLE in almost all cell types (7.6% on average), around 2.9-
151	fold larger than the treatment contribution.
152	
153	SLE disease-state and activity signatures.
154	Motivated by the fact that both case-control differences and disease activity substantially contributed
155	to the whole transcriptome architecture, we next deployed a supervised approach to the discovery
156	dataset to identify two transcriptomic signatures for each cell type: i) disease-state signature genes,
157	defined as differentially expressed genes (DEGs, false discovery rate [FDR] < 0.05) between inactive
158	SLE and HC, which reflect the biology of disease establishment, and ii) disease-activity signature
159	genes, defined as DEGs between HDA and inactive SLE, which reflect the biology of disease
160	exacerbation (Fig. 1, middle; Fig. 3a; Extended Data Fig. 4a). We detected comparable numbers of
161	DEGs between these two comparisons (on average, 2,098 disease-state and 2,114 disease-activity
162	signature genes; Extended Data Fig. 4b; Supplementary Data 2-3). We conducted replication
163	analysis using independent cohorts ^{33–35} (Fig. 1, i) and confirmed the robustness of both signatures by
164	showing their high replicability (one-sided sign test, Bonferroni-corrected <i>P</i> < 0.05; Supplementary
165	Note; Supplementary Table 4; Extended Data Fig. 5a-b).

166	To examine the specificity of these signatures, we first compared them within each cell type.
167	We calculated the Jaccard similarity index in each cell type to quantify the shared genes between
168	signatures (Fig. 3a); we considered that a gene was shared when it was included in both signatures
169	with a concordant sign (Methods). Based on the proportion of DEGs and Jaccard index, we found
170	three different transcriptome perturbation patterns (Methods): disease-state dominant pattern, e.g.,
171	B-lineage cells and naive CD4/8+ T cells, disease-activity dominant pattern, e.g., plasmablasts, and
172	shared pattern, e.g., monocyte- and neutrophil-lineage cells (Fig. 3a-b; Extended Data Fig. 4b).
173	When we evaluated the similarity based on the correlation of log fold changes (logFC) for both
174	signatures, we observed consistent patterns (Extended Data Fig. 4c).
175	We next compared signature genes across different cell types and confirmed cell-type-
176	specific and shared components. Around 20% and 30% of signature genes were detected in only one
177	cell type and lineage, respectively (Fig. 3c). To understand the distribution of the shared components
178	across cell types, we calculated the Jaccard index (Fig. 3d) and correlation (Extended Data Fig. 4d).
179	Globally, we detected higher similarity within the same cell-lineage than in different lineages in both
180	signatures. However, we found a clear discrepancy between the signatures; high similarity among T
181	helper 1 (Th1) and cytotoxic lymphocytes (natural killer [NK] and CD8+ memory T-lineage cells) ³⁶
182	was observed only in activity signatures (blue square in Fig. 3d and Extended Data Fig. 4d). These
183	gaps indicated the presence of gene expression patterns specific to HDA patients in these cell types.
184	Thus, our dataset captured distinct transcriptome perturbations in the disease establishment and
185	exacerbation phases in a cell-type-specific manner.

Nakano M et al.

186

Cell-type-specific biology in disease establishment and exacerbation. 187

- To understand the SLE biology in disease establishment and exacerbation, we next sought to 188
- interpret disease-state and activity signature genes in each cell type using multiple external 189
- databases (Fig. 1, ii). 190

191	First, we focused on 137 genes encoding cytokines (Supplementary Table 5), the key
192	regulators of immune responses and potential drug targets in autoimmune diseases ³⁷ . Fifty-one
193	genes were upregulated in at least one signature, consistent with previous studies: IFNG in Th1, NK,
194	and CD8+ memory T-lineage cells ^{38,39} , and <i>TNFSF13B</i> , encoding BAFF, especially in DC-,
195	monocyte-, and neutrophil-lineage cells with the highest expression ⁴⁰ (Fig. 4a, top). Among these
196	genes, we identified 21 and 17 that were upregulated specifically in one cell-lineage in disease-state
197	and activity signatures, respectively; representative examples of activity signatures included IL12A/B
198	in switched memory B cells (SM B), IL1B in monocyte-lineage, CCL2/8 in classical monocyte (CL
199	mono), IL18/TNFSF15 in neutrophil-lineage cells, and IL21 and CXCL13 in Th1 (Fig. 4a, top).
200	Among them, <i>IL21</i> and <i>CXCL13</i> , critical genes to support B cell antibody production ^{41,42} , are
201	especially intriguing. Although previous studies reported follicular helper T cells (Tfh) as the major
202	source of <i>IL21</i> and <i>CXCL13</i> ⁴³ , Th1 showed a more dynamic increase than Tfh, especially in the
203	activity signatures (Fig. 4a, bottom).
204	Next, we inferred activities of transcription factors (TF), essential regulators of immune

function, based on the expression of TF-downstream genes (Methods). Among 61,182 total tests 205

206	(1,133 TF annotations × 27 cell types × two signatures), we observed 1,228 significant enrichments
207	for 299 annotations (FDR < 0.05; one-sided Fisher's exact test; Supplementary Table 6). Among
208	them, disease-activity signatures showed more enrichments (862 enrichments [70.2%]; Fig. 4b, top).
209	These results suggested underappreciated pathogenic roles of TFs in SLE exacerbation. We here
210	highlight two such examples (Fig. 4b, middle). First, cell cycle regulators including E2F-families
211	showed strong enrichment in activity signatures of Th1, NK, CD8+ memory T-lineage cells, and
212	plasmablasts, indicating that these cells are probably proliferating in active SLE patients. Upregulated
213	cell cycle regulation might be driving the high similarities between these cell types in disease-activity
214	signatures (Fig. 3d, right). Second, BACH2 showed significant enrichment in disease-activity
215	signatures for myeloid-lineage cells. Intriguingly, BACH2 also showed strong enrichment in
216	lymphocytes, consistent with previous studies ^{44,45} , but primarily in disease-state signatures. These
217	results demonstrated that an identical gene regulatory machinery can exert a pathogenic effect in
218	different cell types depending on the disease phases (Fig. 4b, bottom).
219	Lastly, we also performed pathway enrichment analyses to examine multiple biological
220	processes underlying lupus pathogenesis (Methods). Among 32,292 total tests for 598 pathways, we
221	observed 735 and 315 significant enrichments for disease-state and activity, respectively (FDR <
222	0.05; one-sided Fisher's exact test; Extended Data Fig. 6a; Supplementary Table 7-8). We
223	confirmed the enrichment of established pathways such as complement activation ^{46,47}
224	(Supplementary Note; Extended Data Fig. 6b). Intriguingly, we found different enrichment patterns
225	between the signatures in metabolism- and cellular process-related KEGG pathways (Fig. 4c, left;

Nakano M et al.

226	Extended Data Fig. 6c; Methods). For example, oxidative phosphorylation signaling was enriched
227	especially in B-lineage cells for disease-state whereas it was enriched in Th1 and effector memory
228	CD8+ T cells (EMCD8) for disease-activity signatures (Fig. 4c, right). TCA cycle signaling was
229	enriched in disease-activity signatures of Th1 and CD8+ memory T-lineage cells. Ribosome
230	pathways were enriched only in disease-activity signatures. Cell cycle activation was enriched
231	predominantly in disease-activity signatures of Th1, NK, CD8+ memory T-lineage cells, and
232	plasmablasts. Although ribosome and cell cycle pathways were already described as disease activity-
233	related pathways in previous bulk whole-blood studies ^{13,16} , our analysis clarified the precise cell-type
234	origin of these pathways. Furthermore, we extended our view to previously underappreciated
235	pathways such as immunometabolism, describing disease establishment and exacerbation phases
236	separately.
237	
238	Cell-type-specific contribution to organ involvement in SLE.
239	To resolve the complex relationships between transcriptome dysregulation and clinical heterogeneity
240	in SLE, we leveraged a PC-based unsupervised approach (Fig. 1, iii). In the hierarchical clustering of
241	225 unique individuals using all 189 PCs (= 7 PCs × 27 cell types), HC were clearly separated from
242	patients; in addition, HDA patients with multiple organ complications were clustered together (Fig. 5a;
243	Extended Data Fig. 7a).
244	Compared with the approach using thousands of signature genes, the PC-based approach is
245	better at representing whole transcriptome architecture with a small number of parameters. To

246	understand the biological significance of each PC, we defined two categories of PCs as in the
247	discussion of signature genes: i) disease-state PCs, separating inactive SLE and HC, and ii) disease-
248	activity PCs, separating HDA and inactive SLE (FDR < 0.05; Fig. 5b; Supplementary Table 3;
249	Methods). Among 189 PCs, we identified 37 disease-state PCs and 25 disease-activity PCs; among
250	them, nine PCs were classified into both (Extended Data Fig. 7b). When we projected the data from
251	independent cohorts onto our PCA space, PC scores maintained the original contrasts, confirming
252	the good replicability of both PC signatures (one-sided sign test, <i>P</i> <0.05; Supplementary Note;
253	Extended Data Fig. 5c; Supplementary Table 9). This PC-based approach successfully captured
254	the continuous nature of SLE biology; most disease-activity PCs showed a gradual increase in the
255	association signals along with the extent of disease activity (Fig. 5b; Extended Data Fig. 7b).
256	To overview cell-type-specific contributions to organ involvement, we first assessed the
257	variance proportion of cell-type-specific PCs explained by clinical parameters (weighted variance
258	partitioning analysis; Methods). Overall disease activity, a composite measure reflecting the status of
259	all organs, significantly contributed to the within-SLE transcriptome variation especially in the 13 cell
260	types including Th1, plasmablasts, and monocyte- and neutrophil-lineage cells (Bonferroni-corrected
261	jackknife resampling $P[P_{jk}] < 0.05$; Fig. 2d; Fig. 5c, left; Methods). We then decomposed the overall
262	activity into seven organ/domain categories ^{28,29} : constitutional, mucocutaneous, musculoskeletal,
263	renal, extrarenal severe, hematological, and serological activities (Fig 5c, right; Extended Data Fig.
264	8; Supplementary Table 10; Methods). Interestingly, each organ/domain showed distinct cell-type-
265	specific patterns. While Th1 showed the highest explained variance for mucocutaneous activity, the

266	contribution of monocyte-lineage cells was predominant for musculoskeletal activity. Furthermore,
267	neutrophil-lineage cells exhibited the largest contribution to renal involvement, followed by monocyte-
268	lineage cells, Th1, and plasmablasts.
269	We next evaluated the specific relationship of each disease-activity PC with organ
270	involvement (Fig 5d; Supplementary Note; Supplementary Table 3). For renal activity, neutrophil
271	(Neu) PC1 and non-classical monocyte (NC Mono) PC2 showed strong associations (linear
272	regression test; FDR < 0.05). We also identified significant associations of Naive CD4 PC7 and
273	double negative (DN) B cell PC5 with musculoskeletal activity; these associations might be
274	underestimated by the weighted variance partitioning analysis, which prioritizes the contribution of top
275	PCs (Methods). Together, our results confirmed the critical roles of granulocytes and macrophages
276	for the development of lupus nephritis (LN) ^{48,49} . In addition, our results also suggested other potential
277	cell-type-specific contributions to organ involvement, which may be informative in unravelling SLE
278	clinical heterogeneity.
279	
280	Cell-type-specific activity signatures linked to treatment responses.
281	Belimumab (BLM) is a monoclonal antibody that inhibits BAFF, a vital factor for B cell survival and
282	differentiation ^{6,7,40} . We investigated the effect of BLM on the transcriptome in each cell type (Fig. 1 ,
283	iv). Our cohort has longitudinal data before and six months after BLM induction on 22 individuals; we
284	refer to them as pre- and post-BLM. Importantly, none of the post-BLM samples were included in the
285	discovery dataset; therefore, the comparison between pre- and post-BLM is independent of the

286	disease-activity signatures calculated in the discovery dataset. We observed DEGs between pre- and
287	post-BLM (BLM-DEGs) predominantly in B-lineage cells, confirming the cell-type-specific effects of
288	BLM (Fig. 6a). When we categorized the patients into good and poor responders to BLM (n = 9 and
289	13, respectively; Methods), more DEGs were observed in good than in poor responders (Fig. 6b;
290	Supplementary Data 4). The IFN γ -related, nuclear factor-kappa B (NF κ B)-related, and glycolysis-
291	related pathways were enriched in B cell DEGs of good responders (FDR < 0.05, one-sided Fisher's
292	exact test; Fig. 6c; Supplementary Table 11), consistent with the downstream signaling of BAFF-
293	receptors in B cells ^{50,51} .
294	We next asked whether BLM effects on transcriptomes counteract disease-activity
295	signatures. We first calculated the Jaccard similarity index to quantify the shared genes between
296	BLM-DEGs and disease-activity signatures; we considered a gene is shared when the BLM effect
297	had the opposite sign to the activity signature to reflect therapeutic responses (Method). Jaccard
298	indexes in good responders were around 3.4-fold higher than those in poor responders in B-lineage
299	cells (Fig. 6b); the analyses based on logFC also showed similar trends. (Supplementary Note;
300	Extended Data Fig. 9a-b). By projecting post-BLM data onto the PCA space of the discovery cohort
301	(Methods), we evaluated the change in disease-activity PC scores between pre- and post-BLM.
302	Consistent with the DEG analysis, we found a significant decrease in unswitched memory B cells
303	(USM B) PC4 scores only for good responders (linear mixed regression test, FDR = 9.9×10^{-3} ; Fig.
304	6d). Together, these results provided robust evidence supporting the association between disease-
305	activity signatures and the therapeutic response to BLM.

306	Next, we assessed the effect of other therapeutic agents such as mycophenolate mofetil
307	(MMF) on disease-activity signatures (Supplementary Data 5; Supplementary Fig. 2). Importantly,
308	we treated disease activity as a potential confounder in this analysis (Methods), and hence the MMF
309	effects are not biased by disease activity. DEGs between patients with and without MMF (MMF-
310	DEGs) were primarily observed in plasmablasts, followed by Th1 and central memory CD8+ T cells
311	(CM CD8) (Fig. 6e); the same cell types were nominated by variance partitioning analysis (Extended
312	Data Fig. 9c; Supplementary Table 10). MMF-DEGs were shared with the activity signature genes
313	with 15.0-21.7% of the Jaccard index (Fig. 6e). Pathway analysis recapitulated this shared
314	component: both genes showed enrichment for oxidative phosphorylation and E2F-related cell cycle
315	pathways (Extended Data Fig. 9d; Supplementary Table 12). We also found a significant decrease
316	in disease-activity PC scores of plasmablasts (PC1) in patients taking MMF, adjusted for disease
317	activity (linear regression test, FDR = 6.3×10^{-3} ; Fig. 6f; Methods). These results were consistent
318	with previous reports that MMF suppressed plasma cell differentiation ^{52,53} .
319	
320	Risks variants for SLE are enriched around disease-state signatures, not activity signatures.
321	To estimate the causal roles of these signatures for the risk of disease onset, we integrated our
322	transcriptome data with the results of GWAS for SLE (SLE-GWAS; Fig. 1, v).
323	First, we analyzed the genome-wide distribution of all risk variants irrespective of their effect
324	sizes and tested their enrichment around the signature genes using stratified linkage disequilibrium
325	score regression ^{26,54} (S-LDSC; Methods). To be in line with previous studies of S-LDSC, we

326	additionally took a conventional approach and analyzed the enrichment of specifically expressed
327	genes (SEG) in each cell type derived from HC (HC-SEG; Methods). Since ancestry-specific GWAS
328	results are required in S-LDSC, we used two large-scale SLE-GWAS conducted in East Asian
329	(EAS) ²³ and European (EUR) ²² populations. We confirmed that the S-LDSC results for EAS- and
330	EUR-GWAS were globally similar as reported for other traits ⁵⁵ (r in enrichment estimate = 0.69; P =
331	1.5 × 10 ⁻¹² ; Extended Data Fig. 10a; Supplementary Table 13); hence we combined them using a
332	fixed-effect meta-analysis. Consistent with previous reports ²⁶ , the risk variants were predominantly
333	enriched around HC-SEG of B-lineage cells but only with a nominal significance (minimum $P = 0.028$
334	for SM B): no significant enrichment at Bonferroni-corrected <i>P</i> < 0.05 (Fig. 7a). Strikingly, compared
335	to HC-SEG, we found much stronger enrichments for disease-state signatures in all cell types: nine
336	significant enrichments. However, for disease-activity signatures, we found no significant enrichment.
337	Consistently, the enrichments were substantially weaker in the activity signatures than in the disease-
338	state signatures (paired Wilcoxon test, $P = 5.5 \times 10^{-6}$).
339	We next analyzed candidate causal genes implicated in SLE-GWAS (Methods;
340	Supplementary Table 14) and tested their enrichment in both signatures of each cell type (Fig. 7b;
341	Extended Data Fig. 10b; Supplementary Table 15). As in the S-LDSC results, the enrichments of
342	the candidate genes were predominantly observed in disease-state rather than in activity signatures;
343	significant enrichments were found in five and zero cell types, respectively (Bonferroni-corrected P <
344	0.05). Again, the enrichments were weaker in activity signatures than disease-state signatures

345	(paired Wilcoxon test, $P = 2.5 \times 10^{-3}$). These results confirmed that the risk variants locate on average
346	around disease-state and not activity signature genes.

347	Considering that most of the risk variants are within the gene regulatory regions ²⁵ , we
348	hypothesized that risk variants possess gene regulatory effects on disease-state genes (i.e., eQTL
349	effects; Fig. 7c). To test this hypothesis, we next evaluated the potential eQTL effects of the risk
350	variants on disease-state and activity signature genes. Specifically, we focused on genes affected by
351	the risk variants' eQTL effects (eGenes) and asked how the risk alleles' directional effects on eGenes
352	are consistent with our gene expression signatures; an eGene with consistent direction is called a
353	"coherent gene" ⁵⁶ (Fig. 7d; for this analysis, we utilized the colocalization test results between SLE-
354	GWAS risk variants and eQTL variants that we recently reported ²⁷). Intriguingly, the coherent genes
355	were enriched in disease-state signatures, but not in activity signatures (Fig. 7e; Supplementary
356	Table 16): 67% of eGene-cell type combinations were coherent in disease-state signatures whereas
357	only 25% of combinations were coherent in activity signatures (one-sided sign test, $P = 0.022$ and
358	0.99, respectively). Together, these analyses demonstrated better directional compatibility of the SLE
359	risk allele's effect with disease-state signatures rather than activity signatures. Although this might be
360	reasonable considering most GWAS are based on case-control design, this finding implied the failure
361	of current GWAS to capture the critical biology of SLE represented by disease-activity signatures.
362	While activity signature genes did not locate around the current SLE risk variants, we
363	speculated that some of them might contribute to the disease risk by modulating the eQTL effects of
364	risk alleles (we refer to the genes with modulating eQTL effects as proxy genes [pGenes] ⁵⁷ ; Fig. 7c).

Nakano M et al.

365	Therefore, we finally sought to test whether disease-activity signature genes act as pGenes for risk
366	alleles in SLE patients. We included 115 patients with available genotyping data and examined the
367	influence of disease-activity signatures genes on the eQTL effects of risk alleles (we again utilized the
368	abovementioned colocalization results ²⁷). Intriguingly, we detected two significant pGenes among
369	activity signature genes (ANOVA test, FDR < 0.05; Supplementary Data 6), which included <i>MED24,</i>
370	a transcriptional coactivator. <i>MED24</i> is an activity signature gene of plasmablasts (Fig. 7f, left), and
371	its expression was suppressed by MMF (Extended Data Fig. 10c). MED24 significantly modulated
372	the eQTL effect of a SLE risk variant (rs36059542) on ARHGAP31, encoding a GTPase-activating
373	protein (ANOVA test, FDR = 0.035; Fig. 7f, right). Of note, the eQTL effect of rs36059542 on
374	disease activity genes may also contribute to genetic risk by modulating the eOTL effects of risk
375	alleles. Furthermore, MME might indirectly suppress SLE genetic risk by controlling the MED24
377	expression.

Nakano M et al.

379 Discussion

380	In this study, we extensively examined dysregulated gene expression patterns of SLE by profiling 27
381	immune cell types from 89 HC and 159 SLE donors. We identified two distinct categories of lupus-
382	relevant signatures: disease-state and activity genes. These signatures revealed multiple novel and
383	underappreciated mechanisms with a fine cellular resolution. Moreover, we demonstrated the value
384	of these signatures in multiple applications: transferability to independent transcriptome datasets,
385	shared components with drug responses and consistency with the genetic signals.
386	SLE is a chronic disease characterized by relapsing and remitting disease course ^{1–3} . A
387	critical but unsolved question is how the multi-cellular pathophysiology is different (or not different)
388	between disease development and exacerbation stages. Most of the previous SLE transcriptome
389	studies have failed to provide clear answers since they separately conducted case-control and/or
390	intra-case analyses and have not directly compared both signatures in the same study with a high
391	cellular resolution. Our comprehensive transcriptome data successfully clarified the multiple cell-type-
392	specific immune-mediated pathways characteristic of disease-state and activity, which highlighted the
393	distinct biology behind the establishment and exacerbation phases of this disease.
394	The current realistic goal of SLE management is to achieve remission or low disease activity
395	not a cure ^{58–60} . From this perspective, the disease-activity signature, not the disease-state signature,
396	has implications for development of biomarkers of treatment response or therapeutic targets. Indeed,
397	we observed shared components between the disease-activity signatures and transcriptome changes
398	in BLM good responders and in those taking MMF. The cell-type-specific activity signatures identified

Nakano M et al.

in this study, e.g., myeloid-lineage cells characteristic of renal disease, might be informative for
 designing novel treatment strategies for SLE.

401	We have provided in-depth integrative analyses of the risk variants and transcriptome
402	signatures; these results have several important implications. First, since we recruited established
403	SLE patients in the chronic phase, whether the disease-state signature genes indicate causality (the
404	signatures induce disease-state) or a reverse-causality (the disease-state induces the signatures) is a
405	critical question. Since the risk variants reflect the causality, the fact that the risk variants are
406	enriched around disease-state signature genes suggested the former scenario, further supported by
407	the consistency in the dysregulation direction (i.e., coherent genes). Moreover, this finding also
408	suggested that genetic risk-driven susceptibility signatures remained in clinically stable SLE patients,
409	indicating that the causal mechanism is not completely controlled by the current treatments. Second,
410	the current GWAS signals failed to reflect the disease-activity signatures. This is a critical limitation of
411	the current genetic studies considering the potential importance of activity signatures in drug target
412	discovery. To resolve this issue, a new framework of genetic study focusing on intra-case
413	heterogeneity (e.g., disease severity) will be required.
414	Although our study has substantially improved our understanding of SLE biology, we need to
415	acknowledge several limitations. First, apart from the pre- and post-BLM sub-cohort, our study lacked

- 416 longitudinal data. Second, all participants in this study were from the EAS population, although we
- 417 demonstrated the applicability of our signatures to transcriptome data and GWAS results from

Nakano M et al.

- 418 multiple ancestries. Third, our cell-sorting strategy might have failed to characterize currently
- unidentified cell populations. 419
- It is now clear that disease-state and activity signatures jointly maintain the complex 420
- pathophysiology of SLE. These signatures have the potential to be a pivotal foundation for future 421
- genomic, genetic, and drug discovery studies. 422

Nakano M et al.

424 **Figures**

425 Fig. 1| Overview of this study. We profiled 6,386 RNA sequencing data of 27 immune cell types from peripheral blood in HC and

426 SLE patients (left). We identified two distinct categories of disease-relevant signatures in a cell-type-specific manner (middle), and then performed extensive downstream analyses (i-v). BLM, belimumab; EAS, East Asian; EUR, European; TF, transcription factor.

medRxiv preprint doi: https://doi.org/10.1101/2022.01.12.22269137; this version posted January 16, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

429 Fig. 2] Overview of gene expression patterns in the ImmuNexUT cohort. a. A heatmap showing the mean expression levels of 430 100 IRGs across all 27 cell types and diseases. Expression levels are scaled for each gene. Genes and clusters (G1-9) originate 431 from a PBMC scRNA-seq study²⁰. Cell types are arranged consistently with the original publication where applicable. b, PCA plots 432 of HC and SLE gene expression data in representative cell types (see also Extended Data Fig. 3). c. A bar plot showing the 433 proportion of sum squared deviations within HC, SLE, and between HC and SLE data in each cell type. Cell types are arranged 434 based on the sum squared deviations within SLE. d, A bar plot showing the proportion of variance explained by the clinical 435 parameters within SLE data in each cell type. Cell types are arranged based on the variance explained by disease activity. In a and 436 c-d, column annotation colors indicate cell lineages. We used the discovery dataset (n=225) for all analyses in this figure. PSL, 437 prednisolone.

439 Fig. 3| SLE disease-state and activity signatures. a, (left) Scatter plots comparing the logFC of disease-state and activity 440 signature genes in representative cell types (see also Extended Data Fig. 4a). Colors indicate the significance of each signature. 441 (right) Box plots showing the expression of representative disease-state, activity and both significant signature genes. b, Bar plots 442 showing (top) the number of the union of disease-state/activity signature genes and (bottom) the proportion of DEG types in each 443 cell type. Cell types are separated into three groups (Methods). c, Histograms showing the proportion of the number of cell types 444 sharing DEG for both signatures. Colors indicate the number of shared cell lineages. d, (left) A heatmap showing the Jaccard 445 similarity indexes across all cell types in both signatures. The order of cell types in row and column are same and based on the 446 hierarchical clustering using the Jaccard indexes of disease-state signatures. (right) Box plots showing the expression of a 447 representative disease-activity signature gene shared by Th1, NK, and CD8+ memory T-lineage cells. Within each boxplot in b and 448 d, the horizontal lines reflect the median, the top and bottom of each box reflect the interquartile range (IQR), and the whiskers 449 reflect the maximum and minimum values within each grouping no further than 1.5 x IQR from the hinge. *, DEG (FDR < 0.05); 450 N.S., not significant. We used the discovery dataset (n=225) for all analyses in this figure. 451

452 Fig. 4| Cell-type-specific biology in disease establishment and exacerbation. a, (top) Upregulated cytokines as disease-state 453 and/or activity signature genes for each cell type. Genes and cell types are hierarchically clustered based on differential expression 454 Z scores of activity signatures. (bottom) Boxplots showing the expression in representative cytokines. The horizontal lines reflect 455 the median, the top and bottom of each box reflect the IQR, and the whiskers reflect the maximum and minimum values within each 456 grouping no further than 1.5 x IQR from the hinge. *, DEG (FDR < 0.05); N.S., not significant. b, (top) A bar plot showing the 457 number of significant TF annotation enrichments for each signature. (middle) A heatmap showing TF enrichment for each 458 signature. TFs and cell types are hierarchically clustered based on -log10(enrichment P) of activity signatures. Only the top three 459 TFs with strongest enrichments in each signature are shown, excluding redundant annotations. (bottom) Line graphs showing the 460 differential expression Z scores of 10 representative BACH2 target genes in each cell type for both signatures. c, Bar plots showing 461 (left) the number of significant enrichments of metabolism- and cellular process-related pathways, and (right) the enrichment of 462 representative pathways for each signature. P, P values in one-sided Fisher's exact test. We used the discovery dataset (n=225) 463 for all analyses in this figure.

465 Fig. 5| Cell-type-specific contribution to organ involvement in SLE. a, Hierarchical clustering of 225 unique individuals based 466 on all PC1-7 scores of 27 cell types. Top annotations indicate the disease status and organ/domain activities in each individual. 467 Right annotations indicate the type and cell lineage of each PC. Here, only disease-state and/or activity PCs are shown in the 468 heatmap (see also Extended Data Fig. 7a). b, Box plots showing the scaled PC scores in representative disease-state, activity 469 and both significant PCs. The horizontal lines reflect the median, the top and bottom of each box reflect the IQR, and the whiskers 470 reflect the maximum and minimum values within each grouping no further than 1.5 x IQR from the hinge. *, FDR < 0.05 in linear 471 regression test; N.S., not significant. c, Bar plots showing the proportion of variance explained by (left) the overall disease activity 472 and (right) representative organ/domain activities within SLE data in each cell type (see also Extended Data Fig. 8). Error bars 473 and dashed vertical lines indicate 95% confidence intervals from jackknife resampling and the median values across 27 cell types, 474 respectively. *, Bonferroni-adjusted $P_{ik} < 0.05$ (Methods). d, A heatmap showing the association of disease-activity PCs and 475 organ/domain activities in SLE. P, nominal P values; *, FDR < 0.05 in linear regression test. We used the discovery dataset (n=225) 476 for all analyses in this figure.

478 Fig. 6| Cell-type-specific activity signatures linked to treatment responses. a, A bar plot showing the numbers of DEGs in 479 each cell type between all post- vs. pre-BLM patients (n=22 paired samples). b, Bar plots showing the numbers of BLM-DEGs and 480 Jaccard similarity indexes between BLM-DEGs and disease-activity signature genes in each cell type, separated into good (n=9) 481 and poor (n=13) responders. c, Bar plots showing the enrichment of representative pathways for the BLM-DEGs in B-lineage cells, 482 separated into good and poor responders. P, nominal P values; *, FDR < 0.05 in one-sided Fisher's exact test. d, A box plot 483 showing the USM B PC 4 scores from pre- and post-BLM, separated into good and poor responders. P, nominal P values; *, FDR < 484 0.05 in linear mixed regression test. e, Bar plots showing the numbers of DEGs between patients with (n=31) and without (n=105) 485 MMF (MMF-DEGs), and Jaccard indexes between MMF-DEGs and disease-activity signature genes in each cell type. f, A box plot 486 showing the plasmablasts PC 1 scores from patients with or without MMF. P, nominal P values; *, FDR < 0.05 in linear regression 487 test. Within each boxplot in d and f, the horizontal lines reflect the median, the top and bottom of each box reflect the IQR, and the 488 whiskers reflect the maximum and minimum values within each grouping no further than 1.5 x IQR from the hinge. In b and e, 489 column annotation colors indicate cell lineages.

Nakano M et al.

491 Fig. 7| Risks variants for SLE are enriched around disease-state signatures, not activity signatures. a, Bar plots showing the 492 enrichment of SLE risk variants around HC-SEG, disease-state and activity signatures for each cell type. P, enrichment P values in 493 S-LDSC. Vertical dashed lines represent Bonferroni-significance. b, A scatter plot comparing the enrichment of SLE-GWAS 494 candidate genes in disease-state and activity signatures for each cell type. Only the cell types that pass Bonferroni-significance 495 (dashed lines) are annotated. P, P values in one-sided Fisher's exact test. c, Hypothesis of the association between the risk 496 variants and DEGs in SLE via eQTL effect. d, Box plots showing the expression patterns in representative coherent and incoherent 497 genes. P, P values in linear regression (left) and differential expression test (right). e, Histogram of adjusted logFC in coherent and 498 incoherent genes for disease-state and activity signatures. P, P values in one-sided sign test. f, Box plots showing (left) the 499 differential expression of MED24, an activity signature gene in plasmablasts and (right) the influence of MED24 on the eQTL effect 500 of a SLE risk variant rs36059542 on ARHGAP31. P, P values in differential expression (left) and ANOVA test (right). Within each 501 boxplot in d and f, the horizontal lines reflect the median, the top and bottom of each box reflect the IQR, and the whiskers reflect 502 the maximum and minimum values within each grouping no further than 1.5 x IQR from the hinge. We used the discovery dataset 503 (n=225) for all analyses in this figure.

505 Extended Data Figures

506 **Extended Data Fig. 1| Overview of gene expression patterns in the ImmuNexUT cohort. a**, Bar plots showing the number of 507 samples that passed quality control (QC, **Methods**) in each cell type. **b**, A PCA and **c**, a UMAP plot of all samples. Colors and 508 shapes indicate cell types and diseases, respectively. We used all 6,386 samples from 248 donors for all analyses in this figure. 509

Extended Data Fig. 2| Batch correction procedure in this study. a, PCA plots of HC and all SLE gene expression data in each
cell type (top) before and (bottom) after batch correction. Colors and shapes represent each batch and disease, respectively. b,
Bar plots showing the proportion of variance explained by batch effect and disease in the gene expression data for each cell type
(left) before and (right) after batch correction. We used all 6,386 samples from 248 donors for all analyses in this figure.

|--|

518 Extended Data Fig. 4| SLE disease-state and activity signatures. a, Scatter plots comparing the logFC of disease-state and 519 activity signature genes in all cell types. Each dot represents one gene, colored based on the significance (FDR < 0.05 in 520 differential expression test) of each comparison. Genes with logFC > 5 are plotted at the position of logFC = 5. b, A barplot showing 521 the numbers of disease-state and activity signature genes in each cell type. c, A barplot showing the Spearman correlations 522 between the logFC in disease-state and activity signatures for each cell type. In b and c, cell types are separated into three groups 523 (Methods). d, A heatmap showing the Spearman correlations across all cell types in disease-state and activity signatures. The 524 order of cell types in row and column are same and based on the hierarchical clustering using the Spearman correlation 525 coefficients of disease-activity signatures. In b and d, row and column annotation colors indicate cell lineages. We used the 526 discovery dataset (n=225) for all analyses in this figure. 527

528 Extended Data Fig. 5| Lupus disease-state and activity signatures are replicable in independent cohorts. a, (top) Heatmaps 529 showing the concordance between the disease-state signatures in the current study (HC, n=89; inactive SLE, n=31) and those in 530 replication cohort 1 (left heatmap; HC, n=24; inactive SLE, n=16) and 2 (right heatmap; HC, n=37; inactive SLE, n=10). (bottom) 531 Scatter plots comparing disease-state effects (logFC) of the current study and those of replication cohort 1 (left panel) and 2 (right 532 panel) in representative corresponding (left plot in blue frame) and non-corresponding (right plot in black frame) cell-type 533 combinations. **b**, (top) Heatmaps showing the concordance between the disease-activity signatures in the current study (inactive, 534 n=31; HDA SLE, n=30) and those in replication cohort 1 (left heatmap; inactive, n=16; HDA SLE, n=6) and 3 (right heatmap; 535 inactive, n=41; HDA SLE, n=4). (bottom) Scatter plots comparing disease-activity effects (logFC) of the current study and those of 536 replication cohort 1 (left panel) and 3 (right panel) in representative corresponding (left plot in red frame) and non-corresponding 537 (right plot in black frame) cell-type combinations. P. P values in one-sided sign test. In all heatmaps, only the combinations that 538 pass Bonferroni-significance are colored. In scatter plots, each dot represents one signature gene. Genes with logFC > 5 in either 539 comparison are plotted at the position of logFC = 5. c, (top) Scatter plots comparing the effect sizes of disease-state PCs in the 540 current study and those in replication cohorts (cohort 1 and 2). The PCs with nominal P < 0.05 in linear regression test in replication 541 cohorts are colored. (bottom) Scatter plots comparing the effect sizes of disease-activity PCs in the current study and those in replication cohorts (cohort 1 and 3). The PCs with nominal P < 0.05 in linear regression test in replication cohorts are colored. 542 543

Extended Data Fig. 7| Disease-state and activity PCs in the discovery dataset. a, Hierarchical clustering of 225 unique individuals based on all PC1-7 scores of 27 cell types. Top annotations indicate the disease status and organ/domain activities in each individual. Right annotations indicate the type and cell lineage of each PC. b, A heatmap showing the association of PC scores with disease-state/activity in linear regression test. All PCs with significant association with disease-state and/or diseaseactivity are shown (*, FDR < 0.05). We used the discovery dataset (n=225) for all analyses in this figure.</p>

Extended Data Fig. 8 Cell-type-specific contribution to organ involvement in SLE. Bar plots showing the proportion of variance explained by organ/domain activities within SLE data in each cell type. Here, the results for the four organ/domain activities other than those in **Fig. 5c, right** are shown. Error bars and dashed vertical lines indicate 95% confidence intervals from jackknife resampling and the median values across 27 cell types, respectively. *, Bonferroni-adjusted $P_{jk} < 0.05$ (**Methods**). We used SLE patients in the discovery dataset (n=136) for this analysis.

Nakano M et al.

563 Extended Data Fig. 9| Cell-type-specific activity signatures linked to treatment responses. a, Scatter plots comparing the 564 disease-activity effects (logFC) and BLM effects (logFC) of the activity signature genes in each cell type, separated into good and 565 poor responders. Each dot represents one gene. Genes with logFC > 5 are plotted at the position of logFC = 5. b, Bar plots 566 showing the effect sizes in the linear regression tests for the association between disease-activity effects and BLM effects, 567 separated into good and poor responders. c, Bar plots showing the proportion of variance explained by medication status of MMF 568 within SLE data in each cell type. Error bars and dashed vertical lines indicate 95% confidence intervals from jackknife resampling 569 and the median values across 27 cell types, respectively. *, Bonferroni-adjusted $P_{ik} < 0.05$ (Methods). d, Bar plots showing the 570 enrichment of representative pathways for the MMF-DEGs in Th1, CM CD8, and plasmablast. P, nominal P values; *, FDR < 0.05 571 in one-sided Fisher's exact test. For BLM-related analyses, we used the pre- (n=22) and post-BLM (n=22) patients. For MMFrelated analyses, we used the patients with (n=31) and without (n=105) MMF. 572

Nakano M et al.

574 Extended Data Fig. 10| Risks variants for SLE are enriched around disease-state signatures, not activity signatures. a, 575 Scatter plots comparing the normalized coefficients in S-LDSC for EAS and EUR SLE-GWAS. Each dot represents each signature 576 (i.e., [HC-SEGs, disease-state and disease-activity signatures] × 27 cell types). The signatures that pass Bonferroni-significance in 577 meta-analysis are annotated. b, A bar plot showing the direct comparison of GWAS candidate genes enrichment between disease-578 state and activity signature genes for each cell type using one-sided Fisher's exact test. Dashed horizontal line indicates odds ratio 579 (OR) = 1.*; nominal P < 0.05. c, A Box plot showing the expression of MED24 in plasmablasts between patients with and without 580 MMF. P, P values in differential expression test. Within each boxplot, the horizontal lines reflect the median, the top and bottom of 581 each box reflect the IQR, and the whiskers reflect the maximum and minimum values within each grouping no further than 1.5 x 582 IQR from the hinge. We used the discovery dataset (n=225) for all analyses in this figure. 583

584 Methods

585 Subjects

586	The data in our study was generated by the ImmuNexUT consortium ²⁷ , approved by the Ethics
587	Committees of the University of Tokyo. All participants were from the EAS ancestry. Healthy
588	volunteers were recruited at the Department of Allergy and Rheumatology at the University of Tokyo
589	Hospital. SLE patients were recruited at the Department of Allergy and Rheumatology at the
590	University of Tokyo Hospital, Division of Rheumatic Diseases at National Center for Global Health
591	and Medicine, or Immuno-Rheumatology Center at St. Luke's International Hospital. Written informed
592	consent was obtained from all participants. We have complied with all of the relevant ethical
593	regulations.
594	All SLE patients met the 1997 revised version of the American College of Rheumatology
595	classification criteria ⁶¹ . The exclusion criteria for the discovery dataset (including 136 SLE patients)
596	were: i) active malignancies or infections, ii) use of more than 20mg prednisolone (PSL) daily or
597	equivalent at enrollment, iii) receive of intravenous methylprednisolone pulse, cyclophosphamide,
598	rituximab, or BLM within 12 months before enrollment.
599	In addition, we also collected 22 paired samples just before and six months after the
600	additional therapy of BLM (i.e., pre- and post-BLM). Among the pre-BLM samples, 21 samples were
601	included in the discovery dataset, and one was re-sampled due to the interval between initial

enrollment and BLM induction. None of the post-BLM samples were included in the discovery

- dataset. Therefore, we recruited 248 donors in total: 136 unique SLE patients, one pre-BLM, 22 postBLM patients, and 89 healthy volunteers.
- 605

606 Sample processing and sequencing

In this study, all samples were collected based on phase 2 protocol in the ImmuNexUT²⁷; 27 immune 607 cell types were purified from peripheral blood of each donor (Supplementary Table 1). We first 608 isolated PBMCs by density gradient separation with Ficoll-Paque (GE healthcare) immediately after 609 610 the blood draw. Erythrocytes were lysed with Ammonium-Chloride-Potassium lysing buffer (Gibco), and non-specific binding was blocked with anti-human Fc-gamma receptor antibodies (Thermo Fisher 611 Scientific). We next sorted PBMCs into 26 immune cell types with purity > 99% using a 14-color cell 612 613 sorter BD FACSAria Fusion (BD Biosciences) with the aim of 5,000 cells per sample. The immune cell gating strategy for flow cytometry was based on the Human Immunology Project with slight 614 modification⁶². Sorted cells were lysed and stored at -80°C. RNA was extracted using MagMAX-96 615 Total RNA Isolation Kits (Thermo Fisher Scientific). Libraries for RNA-seq were prepared using 616 SMART-seg v4 Ultra Low Input RNA Kit (Takara Bio). Neutrophils were purified using MACSxpress 617 Neutrophil Isolation Kits human (Miltenyi Biotec) with the aim of 2×10⁶ cells immediately after the 618 blood draw, lysed and stored at -80°C, followed by RNA isolation with an RNeasy Mini Kits (QIAGEN) 619 620 and library preparation with SMART-seq v4 Ultra Low Input RNA Kits (Takara Bio). All prepared libraries were sequenced on HiSeg2500 (6169 samples) or NovaSeg6000 (217 samples) (Illumina) to 621 generate 100 or 150 base paired-end reads, respectively. Genomic DNA was isolated from peripheral 622

623	blood using QIAmp DNA Blood Midi kit (QIAGEN). Libraries were prepared using TruSeq DNA PCR-
624	Free Library prep kit (Illumina), followed by whole-genome sequencing (WGS). WGS was performed
625	only for the samples from Japanese individuals. The details of WGS data processing were reported in
626	our previous study ²⁷ .

627

628 Quantification and normalization of the expression data

Adaptor sequences were trimmed using Cutadapt (v1.16) and reads containing low-quality bases (Phred quality score < 20 in > 20% of the bases) were removed. Reads were aligned against the GRCh38 reference sequence using STAR⁶³ (v2.5.3) with the UCSC (downloaded from illumina iGenome reference collection, archive-2015-08-14-08-18-15) and expression was counted with HTSeq⁶⁴.

634	We applied multiple sample quality control (QC) steps to ensure high quality data. The
635	samples with uniquely mapped read rates < 80% or unique read counts < 5 \times 10 ⁶ were excluded as
636	low-quality samples. To exclude outlier samples, we calculated Spearman's correlations of the
637	expressions between two samples from the same cell type and then removed the samples with mear
638	correlation coefficients < 0.9. In addition, to exclude potentially swapped samples, we calculated the
639	concordance rates between RNA-seq-based genotype and WGS-based genotype at the
640	heterozygous loci and excluded samples with concordance rate < 0.9.
641	We then filtered out low expression genes (<10 counts or <1 count per million [CPM] in >
642	85% of samples), followed by a trimmed mean of M values (TMM) normalization with R (v4.0.2)

643	package edgeR (v3.32.1) ⁶⁵ in each cell type. Normalized expression data were converted to log-
644	transformed count per million (i.e., log[CPM+1]). The batch effects (i.e., product lots in SMART-seq
645	v4 and sequencer; Extended Data Fig. 2a) were removed using Combat software ⁶⁶ . To verify the
646	successful work of the batch correction procedure, we used principal variance component analysis;
647	we first calculated the explained variance of each clinical parameter for each PC1-7 score with the
648	linear mixed models in R package Ime4 (v1.1-27.1) ⁶⁷ and then inferred the average value of the
649	explained variance weighted by each PC's eigenvalue (Extended Data Fig. 2b).
650	
651	PCA and UMAP of all samples
652	For PCA and UMAP using all samples (Extended Data Fig. 1b-c), we combined the expression data
653	after batch correction from each cell type and used the intersection of the genes (n=8397) that
654	passed the filtering of low expression in each cell type. For UMAP, we used R package uwot (v
655	0.1.10) with default parameters ⁶⁸ .
656	
657	PCA in each cell type of the discovery dataset
658	For PCA in each cell type of the discovery cohort, we used the top 10,000 variable genes from the
659	expression data after batch correction in each cell type (Fig. 2b; Extended Data Fig. 3).
660	To calculate the proportion of sum squared deviations within HC, SLE, and between HC and
661	SLE data in each cell type (Fig. 2c), we used the PC1-7 data of the discovery dataset

662	(Supplementary Note). We first calculated the proportion of sum squared deviations for each PC
663	score and then inferred the average value of the proportion weighted by each PC's eigenvalue.
664	
665	Weighted variance partitioning analysis in each cell type
666	To calculate the explained variance of each clinical parameter within SLE transcriptome data for each
667	cell type, we performed weighted variance partitioning analysis using the PC1-7 data of the discovery
668	dataset (Supplementary Note). We first calculated the explained variance of each clinical parameter
669	for each PC score using the linear mixed models in R package variancePartition (v1.20.0) ⁶⁹ and then
670	inferred the average value of the explained variance weighted by each PC's eigenvalue (Fig. 2d, 5c;
671	Extended Data Fig. 8, 9c; Supplementary Fig. 2b).
672	To verify whether the inferred explained variance was not biased by outlier samples, we
673	estimated standard errors (S.E.) of the explained variance by jackknife resampling method. When we
674	had <i>n</i> samples for one cell type, we re-calculated the explained variance <i>n</i> times by excluding each
675	one of the samples. We then evaluated the distribution of <i>n</i> explained variance and quantified its S.E.
676	For each clinical parameter, we compared the explained variance in each cell type against the
677	median explained variance across all 27 cell types. To assess the significance of the difference
678	observed in this comparison for a cell type, we utilized <i>n</i> explained variance calculated in jackknife
679	resampling for that cell type; among <i>n</i> values, we calculated the proportion of the values which was
680	smaller than the median value, and we defined this proportion as jackknife resampling $P(P_{jk})$. For
681	each clinical parameter, if one cell type passed the Bonferroni-corrected $P_{jk} < 0.05$, we concluded that

the clinical parameter significantly contributed to the within-SLE transcriptome variation in that celltype.

684

685 Linear models for the association between PC scores and clinical parameters

686	This study focused on the clinical parameters related to disease-state, overall disease-activity,
687	organ/domain activity, and treatment statuses (Supplementary Fig. 1a). Disease-state was defined
688	as the contrast between inactive SLE (i.e., not all SLE) and HC in the discovery dataset to exclude
689	the elements of disease-activity signatures from the case-control contrast (Fig. 1, middle). For
690	overall disease activity, we defined four categories: i) inactive as SLEDAI-2K ²⁸ = 0, ii) low disease
691	activity (LDA) as $1 \le$ SLEDAI-2K ≤ 4 , iii) moderate disease activity (MDA) as $5 \le$ SLEDAI-2K ≤ 8 , and
692	iv) high disease activity (HDA) as SLEDAI-2K \geq 9. For organ activity, we categorized the patients into

- 693 seven groups based on their actively involved organ/domains of the British Isles Lupus Assessment
- 694 Group (BILAG) 2004²⁹ and SELDAI-2K: a) constitutional, b) mucocutaneous, c) musculoskeletal, d)
- renal, e) extrarenal severe (neuropsychiatric/eye, cardiorespiratory and/or gastrointestinal), f)
- hematological, and g) serological activities. We also evaluated the effect of therapeutic agents such
- as MMF, hydroxychloroquine (HCQ), and tacrolimus (TAC)^{3,60,70}.
- To examine the associations between the PC scores (PC1-30) and clinical traits, we fitted
 the PC scores to the following linear regression models:
- 700 (1) For disease-state (*x*: inactive SLE vs. HC),
- 701 $y = \beta \cdot x[0,1] + \varepsilon \cdot Age[yrs] + \epsilon \cdot Sex[0,1] + \theta$

702

were scaled across samples to enable the direct comparison of the effect sizes in the associations 703 with clinical parameters. In this comparison, age and sex were included as covariates. 704 (2) For disease-activity (x: HDA vs. inactive SLE; we also examined LDA vs. inactive and MDA vs. 705 inactive SLE), 706 $y = \beta \cdot x[0,1] + \sum_{k=1,2,3} \gamma \cdot I_k[0,1] + \delta \cdot PSL[mg] + \varepsilon \cdot Age[yrs] + \epsilon \cdot Sex[0,1] + \theta$ 707 Here, I_k (k = 1,2,3) represents each immunosuppressant (MMF, HCQ, TAC) as covariates. 708 (3) For organ/domain activity $(x_i [i = 1 \dots 7])$: the abovementioned seven categories), 709 $y = \sum_{i=1,7}^{\beta} \beta \cdot x_i[0,1] + \sum_{k=1,2,2}^{\gamma} \gamma \cdot I_k[0,1] + \delta \cdot PSL[mg] + \varepsilon \cdot Age[yrs] + \epsilon \cdot Sex[0,1] + \theta$ 710 Here, we constructed multiple linear regression models including all seven categories, which enabled 711 us to infer the association of each organ activity with PC scores, controlling the other organs' effects 712 (Fig. 5c-d). 713 (4) For the rapeutic agents ($I_k[k = 1,2,3]$: MMF, HCQ, TAC), 714 $y = \sum_{k=1,2,3} \gamma \cdot I_k[0,1] + \beta \cdot x[0,1,2,3] + \delta \cdot PSL[mg] + \varepsilon \cdot Age[yrs] + \epsilon \cdot Sex[0,1] + \theta$ 715 Here, x represents disease activity (inactive, LDA, MDA, and HDA) as covariates. 716 These equations enabled us to derive the associations of disease-state, activity, organ 717 involvements or treatment statuses with PC scores, adjusted for other confounding factors. Statistical 718 719 significance was set at FDR < 0.05. As described in Supplementary Note and Supplementary Fig.

Here, y represents the scaled PC score for each cell type (PC1-30 × 27 cell types). All PC scores

1b, most of the significant associations were detected within PC1-7, with larger numbers than

average per PCs. Therefore, we confirmed that PC1-7 is a minimum set to associate the

722	transcriptome with the clinical parameters in the discovery dataset and utilized PC1-7 scores for the
723	subsequent analyses. All PC scores were signed so that the effect sizes of disease-state and
724	disease-activity were positive (Fig. 5a-b; Extended Data Fig. 7a-b). In the case of some PCs that
725	had opposite sign in the effect sizes of disease-state and activity, the association with lower P value
726	was prioritized to have positive effect size.
727	In the hierarchical clustering of 225 unique individuals using 189 PCs (= 7 PCs × 27 cell
728	types) in the discovery dataset, the Euclidean distances of the PC scores were used with Ward's
729	method (Fig. 5a; Extended Data Fig. 7a).
730	
731	Differential gene expression analysis
732	To detect DEGs in each cell type, we fitted the TMM-normalized counts in the discovery dataset to
733	the generalized linear models (GLM) with negative binomial distribution using edgeR (v3.32.1) ⁶⁵ . The
734	equations in these GLM models were consistent with those in the linear models as described in the
735	Methods; Linear models for the association between PC scores and clinical parameters; we
736	utilized the equations (1), (2) and (4). Additionally, we also considered the batch effects as covariates
737	in this analysis since TMM-normalized counts were not corrected for batch effects (Methods;
738	Quantification and normalization of the expression data). These equations enabled us to derive
739	DEGs related to our focused disease traits or treatment statuses, adjusted for other confounding
740	factors (Fig. 3a-b, 6e; Supplementary Fig. 2a). Statistical significance was set at FDR < 0.05. We
741	defined (1) "disease-state signature genes" as significant DEGs between inactive SLE and HC, and

(2) "disease-activity signature genes" as significant DEGs between HDA and inactive SLE for each
cell type (Fig. 3a).

744	To evaluate the similarities and differences between disease-state and activity signature
745	genes, we calculated Jaccard similarity indexes as the ratio of the shared genes with the concordant
746	sign between the disease-state and activity signatures (Fig. 3a; orange dots) over the union of these
747	two signature genes (Fig. 3a; orange + red + blue dots) for each cell type. Considering the biological
748	significance, we did not regard the DEGs with the discordant sign between these two signatures as
749	shared genes. Based on the proportion of DEGs and Jaccard index, we classified 27 cell types into
750	three patterns (Fig. 3b). We first defined the cell types with Jaccard index > 0.15 as shared pattern
751	and then classified the other cell types into disease-state or disease-activity dominant patterns based
752	on which signature genes were numerically predominant.
753	We also calculated the Jaccard similarity index and Spearman correlation across all pairs of
754	different cell types for both signature genes. The Jaccard similarity distances (i.e., 1 - Jaccard
755	similarity indexes) of each pair within disease-state signature genes were used for hierarchical
756	clustering (Fig. 3d). Similarly, Spearman's correlation distance of each pair within disease-activity
757	signature genes were used for hierarchical clustering (Extended Data Fig. 4d).
758	To detect DEGs related to therapeutic agents adjusted for confounding factors (e.g., disease
759	activity), we set the patients not taking the agent as the control, meaning the down-DEGs
760	represented the genes that were downregulated by each agent. Therefore, we calculated Jaccard
761	indexes as the ratio of the shared genes with the inverse sign between the disease-activity signatures

762	and MMF-DEGs over the union of these two signature genes (Fig. 6e). We calculated Jaccard		
763	indexes within the cell types in which more than 300 MMF-DEGs were observed.		
764			
765	Replication analysis		
766	For replication analysis, we compared our data with the three external bulk immune cell RNA-seq		
767	dataset of SLE and/or HC from different ancestries.		
768	i) Cohort 1 (Panwar <i>et al.</i> ³³)		
769	• Samples: 64 SLE and 24 HC, multi-ancestry cohort (Caucasian, Asian, Hispanic, and African)		
770	• Cell subsets: six cell types (bulk T cells, bulk B cells, CL Mono, mDC, pDC, and Neu). Only		
771	CL Mono was collected from all donors, and the other five cell types were collected from		
772	around 20 SLE and 10 HC samples.		
773	• Data usage strategy: since this cohort included both SLE and HC, we used this cohort for the		
774	replication analysis of disease-state and activity signatures (Extended Data Fig. 5a-c). Naive		
775	CD4 and naive B data from the current study were compared with bulk T and bulk B data from		
776	cohort 1, respectively (Supplementary Table 4).		
777	ii) Cohort 2 (Takeshima <i>et al.</i> ³⁵)		
778	• Samples: 30 SLE and 37 HC, All East Asian (EAS)		
779	• Cell subsets: 19 cell types (Naive CD4, Mem CD4, Th1, Th2, Th17, Tfh, Fr. II eTreg, Naive		
780	CD8, bulk memory CD8 [Mem CD8], NK, Naive B, USM B, SM B, DN B, plasmablast, CL		
781	Mono, CD16p Mono, mDC, and pDC)		

782	Data usage strategy: this is our previous cohort independent of the ImmuNexUT. In this
783	study, we excluded the overlapped samples with the current study, leaving relatively stable
784	30 SLE patients for the analysis. Therefore, we used this cohort only for the replication of
785	disease-state signatures (Extended Data Fig. 5a, c). EM CD8 data from the current study
786	was compared with bulk Mem CD8 data from cohort 2 (Supplementary Table 4).
787	iii) Cohort 3 (Andreoletti <i>et al.</i> ³⁴)
788	Samples: 57 White and 63 Asian SLE patients
789	Cell subsets: four cell types (bulk CD4 cells, NK cells, bulk B cells, and bulk monocytes)
790	• Data usage strategy: since this cohort did not include HC samples, we used this cohort only
791	for the replication of disease-activity signatures (Extended Data Fig. 5b-c). Naive CD4, naive
792	B, and CL Mono data from the current study were compared with bulk CD4, bulk B, and bulk
793	monocyte data from cohort 3, respectively (Supplementary Table 4).
794	In all replications, we assessed the concordance of the directions of disease-state and
795	activity signature genes in the discovery cohort with the corresponding genes in external cohorts
796	using one-sided binomial sign tests (Extended Data Fig. 5a-b). The definitions of clinical status (e.g.
797	disease-state and activity) were consistent with our discovery cohort, with the exception that inactive
798	SLE in cohort 2 was defined as $0 \le$ SLEDAI-2K ≤ 2 (10 patients) since there were no patients with
799	SLEDAI-2K = 0. In all replication analyses, we adjusted for the covariates (e.g., age and sex) in line
800	with the analyses of the discovery dataset where applicable.

801	In the PC projection method, we first computed the Z score matrix of gene expressions using
802	the mean and standard deviation (SD) of the discovery dataset and then inferred the PC scores of
803	each sample from the external datasets as the inner products of each PC loading (Supplementary
804	Data 1) and the Z score matrix. We tested the association of these PC scores with disease-state (i.e.,
805	inactive SLE vs. HC) and disease-activity (i.e., HDA vs. inactive SLE) in the external datasets using
806	the linear regression model as with the discovery dataset (Supplementary Table 9). We then
807	assessed the concordance of the directions of the effect sizes for disease-state and disease-activity
808	PCs, respectively, using one-sided binomial sign tests (Supplementary Note; Extended Data Fig.
809	5c).
810	
811	Transcription factor and pathway enrichment analysis
812	To test pathway and transcription factor (TF) enrichment in each disease-state and activity signature
813	genes, we performed over-representation analyses with one-sided Fisher's exact test in R package
814	clusterProfiler (v.3.18.1) ⁷¹ . Statistical significance was set at FDR < 0.05. For TF datasets, we used
815	the Molecular Signatures Database (MsigDB) C3 all TF targets annotation (1133 annotations) ⁷² . For
816	pathway datasets, we used the MsigDB hallmark gene set collection (50 annotations) ⁷³ and Kyoto
817	Encyclopedia of Genes and Genomes (KEGG) pathway (548 annotations) ⁷⁴ . To capture the cell-type-
818	specific biology linked to disease-state and activity signatures genes, we set the union of both
819	signature genes in all cell types as the background gene sets. For treatment-related DEGs (e.g.,

MMF-DEGs and BLM-DEGs), we performed pathway enrichment analysis only in the cell types in which more than 300 DEGs were observed.

822

823 Analysis of pre- and post-BLM dataset

All 22 individuals received BLM treatment according to the standard protocols^{6,7,75}. In this section, we defined those whose original disease-activity categories were moved into one or more lower

- s26 categories (e.g., MDA to LDA or LDA to inactive) between pre- and post-BLM treatment, as good
- responders, and the others as poor responders.

Because edgeR did not implement generalized linear mixed models (GLMM), we detected DEGs between pre- and post-BLM using the following GLMM with negative binomial distribution in lme4 (v1.1-27.1)⁶⁷, setting the statistical significance at FDR < 0.05 (**Fig. 6a-b**). Of note, we need to consider the batch effects as covariates in the following equation, since TMM-normalized counts were not corrected for batch effects (**Methods**; **Quantification and normalization of the expression**

833 **data**).

834
$$y = \beta \cdot BLM[0,1] + (1|individual) + \pi \cdot Batch + \theta$$

Here, *y* and *BLM* represents the TMM-normalized count for each gene in each cell type and the treatment status of BLM (i.e., pre- and post-BLM). We included a term for random intercept of individuals, and hence excluded individual-specific covariates (e.g., age and sex). In this equation, we set pre-BLM as the control, meaning the down-DEGs represented the genes that were downregulated by BLM treatment. Therefore, we calculated Jaccard indexes as the ratio of the

840	shared genes with the inverse sign between the disease-activity signatures and BLM-related DEGs
841	over the union of these two signature genes (Fig. 6b). We calculated Jaccard indexes within the cell
842	types in which more than 300 BLM-DEGs were observed. Moreover, in each cell type, we compared
843	associations between the logFC of disease-activity effect and those in BLM effect using linear
844	regression model (Supplementary Note; Extended Data Fig. 9a-b).
845	In the PC projection method, we first computed the Z score matrix of gene expressions using
846	the mean and SD of the discovery dataset and then inferred the PC scores of duplicated samples as
847	the inner products of each PC loading (Supplementary Data 1) and the Z score matrix. To test the
848	association between the change of PC scores and the treatment status, we used the following linear
849	mixed model:
850	$y = \beta \cdot BLM[0,1] + (1 individual) + \theta$
851	Here, y represents the scaled PC score for each cell type. In this model, it was not necessary to
852	consider the batch effects since the PCA was performed using the log(CPM+1) gene expression data
853	that had been already corrected for batch effects (Methods; Quantification and normalization of
854	the expression data).
855	
856	Stratified linkage disequilibrium score regression
857	To evaluate the enrichment of the genome-wide distribution of all SLE risk variants irrespective of
858	their effect sizes (heritability) around HC-SEG, disease-state and activity signature genes, we
859	performed S-LDSC ^{26,54} . We examined the enrichment of SLE heritability for common variants within 55

860	100-kb windows on either side of the transcription start site of the genes with the top 1,000 highest Z-
861	scores in either signature genes for each cell type, adjusting for baseline model provided by the
862	developers ⁵⁴ (Fig. 7a). For this analysis, we used two large-scale SLE GWAS summary statistics
863	from EAS ²³ and EUR ancestries ²² (Extended Data Fig. 10a). Since the regression coefficients of S-
864	LDSC are influenced by the GWAS heritability, we normalized coefficients by dividing them with
865	mean per-SNP heritability as reported by a previous report ²⁶ ; we then reported normalized
866	coefficients. In a fixed-effect meta-analysis of the two results, we used the inverse variance weighting
867	method using normalized coefficients and their S.E. We reported P values to test whether the
868	regression coefficient is significantly positive.
869	To call HC-SEG (specifically expressed genes in HC) for each cell type, we compared the
870	expression data of one cell type with that of the remaining cell types that belong to other cell lineages
871	using the GLM with negative binomial distribution in edgeR (v3.32.1) ⁶⁵ . To be in line with previous
872	studies of S-LDSC, only the samples from HC were used in this analysis.
873	
874	GWAS candidate genes enrichment analysis
875	The SLE-GWAS results were downloaded from the NHGRI-EBI GWAS Catalog ⁷⁶ on 16/08/2021.
876	Among them, we defined the genes nearest to SLE-GWAS significant variants ($P < 5 \times 10^{-8}$) as
877	GWAS candidate genes (Supplementary Table 14). Gene symbols were based on UCSC definition.
878	To test the enrichment of GWAS candidate genes for disease-state and activity signature genes, we
879	performed over-representation analyses with one-sided Fisher's exact test (Fig. 7b). We set the

union of the genes that passed the filtering of low expression in each cell type and used it as the
background.

882

883 Integrative analysis with eQTL data

To compare the direction between the risk allele's expression quantitative trait loci (eQTL) effects and disease-state and activity signature genes, we utilized the results of the colocalization test between SLE-GWAS and ImmuNexUT eQTL data reported in Ota *et al*²⁷. For visualization, logFC sign information was adjusted so that the direction of the coherent genes, which showed the concordant direction between eQTL effects for risk alleles and differential expressions⁵⁶ (**Fig. 7e**), was positive

To examine the interactive effects of the signature genes on the eQTL effects of SLE risk variants, we fitted the eGene expressions to the following linear regression models for each cell type (**Fig. 7f**):

893
$$Full: y = \rho \cdot G[0,1,2] + \mu \cdot x + \beta \cdot G: x + \sum_{k=1,2,3} \gamma \cdot I_k[0,1] + \delta \cdot PSL[mg] + \varepsilon \cdot Age[yrs] + \epsilon \cdot Sex[0,1] + \theta$$
894
$$Null: y = \rho \cdot G[0,1,2] + \mu \cdot x + \sum_{k=1,2,3} \gamma \cdot I_k[0,1] + \delta \cdot PSL[mg] + \varepsilon \cdot Age[yrs] + \epsilon \cdot Sex[0,1] + \theta$$

Here, *y* and *x* represents the expression of eGene and pGene, respectively, and *G*
represents the genotype of each individual.
$$I_k(k = 1,2,3)$$
 represents each immunosuppressant
(MMF, HCQ, TAC) as covariates. We tested the significance of interaction terms (i.e., *G*:*x*) by
comparing full and null models using analysis of variance (ANOVA). Statistical significance was set at
FDR < 0.05.

900

901 Data availability

All analysis results including DEG list and PC loading scores are available as supplementary table 902 and data. RNA-seq data used in this study will be available at the National Bioscience Database 903 Center (NBDC) Human Database (Dataset ID: JGAS000486) upon acceptance. 904 905 Code availability 906 Codes utilized in this study are available on GitHub (https://github.com/MasahiroNakano-hub). 907 908 Acknowledgments 909 910 The super-computing resource was provided by Human Genome Center, Institute of Medical Sciences, The University of Tokyo (http://sc.hgc.jp/shirokane.html). This study was supported by 911 Chugai Pharmaceutical Co., Ltd., Tokyo, Japan, the Ministry of Education, Culture, Sports, and the 912 Japan Agency for Medical Research and Development (AMED) (JP21tm0424221 and 913 JP21zf0127004). We appreciate all SLE patients and HC volunteers who participated in this study. 914 We would like to thank all collaborators in the University of Tokyo, National Center for Global Health 915 and Medicine, St. Luke's International Hospital, and Chugai Pharmaceutical Co., Ltd for the 916 contribution to sample collection and processing. M.N. and K.I. thank Michihiro Kono for helpful 917 feedback. H. Suetsugu is supported by Practical Research Project for Rare/Intractable Diseases from 918 Japan AMED. X.Y. is supported by Distinguished Young Scholar of Provincial Natural Science 919

920	Foundation of Anhui (1808085J08). S. Bae is supported by Basic Science Research Program through
921	the National Research Foundation of Korea funded by the Ministry of Education (NRF-
922	2021R1A6A1A03038899).
923	
924	Author contributions
925	M.N. and K.I. conceived and designed the study. M.N. and K.I. wrote the manuscript with critical
926	inputs from M.O. and K.F. M.N. conducted all analyses with the help of K.I. M.N., M.O., Y.T., Y.I.,
927	H.H., Y.N., T.I., J.M., R.Y., S.Y., A.N., Haruka T., Hideyuki T., Y.A., T.K., and H. Shoda managed and
928	contributed to sample collection and processing. M.O., H.H., Y.N., and T.I. contributed to QC of the
929	RNA-seq data. H. Suetsugu, L.L., K.K., X.Y., S. Bang, Y.C., H.L., X.Z., S. Bae, and C.T. managed
930	and contributed to sample collection of EAS SLE-GWAS data. K.Y., T.O., and K.F. designed and
931	managed the project. All authors contributed to the final version of the manuscript.
932	
933	Competing interests
934	M.O., Y.T., Y.N., and T.O. belong to the Social Cooperation Program, Department of functional
935	genomics and immunological diseases, supported by Chugai Pharmaceutical. K.F. receives
936	consulting honoraria and research support from Chugai Pharmaceutical.
937	

938 Reference

- Liu, Z. & Davidson, A. Taming lupus-a new understanding of pathogenesis is leading to clinical
 advances. *Nat. Med.* 18, 871–882 (2012).
- 941 2. Tsokos, G. C., Lo, M. S., Reis, P. C. & Sullivan, K. E. New insights into the
- 942 immunopathogenesis of systemic lupus erythematosus. *Nat. Rev. Rheumatol.* 12, 716–730
 943 (2016).
- 3. Durcan, L., O'Dwyer, T. & Petri, M. Management strategies and future directions for systemic
- 945 lupus erythematosus in adults. *Lancet* **393**, 2332–2343 (2019).
- 946 4. Cho, J. H. & Feldman, M. Heterogeneity of autoimmune diseases: Pathophysiologic insights
- 947 from genetics and implications for new therapies. *Nat. Med.* **21**, 730–738 (2015).
- 5. Wallace, D. J. The evolution of drug discovery in systemic lupus erythematosus. *Nat. Rev.*
- 949 *Rheumatol.* **11**, 616–620 (2015).
- 950 6. Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus
- 951 erythematosus: A randomised, placebo-controlled, phase 3 trial. *Lancet* **377**, 721–731 (2011).
- 952 7. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal
- 953 antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus.
- 954 Arthritis Rheum. **63**, 3918–3930 (2011).
- 8. Furie, R. A. et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus
- (TULIP-1): a randomised, controlled, phase 3 trial. *Lancet Rheumatol.* **1**, e208–e219 (2019).

957	9.	Morand, E. F. et al. Trial of Anifrolumab in Active Systemic Lupus Erythematosus. N. Engl. J.
958		<i>Med.</i> 382 , 211–221 (2020).
959	10.	Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus
960		blood. <i>J. Exp. Med.</i> 197 , 711–723 (2003).
961	11.	Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of
962		patients with severe lupus. Proc. Natl. Acad. Sci. U. S. A. 100, 2610–2615 (2003).
963	12.	Kirou, K. A. <i>et al.</i> Activation of the interferon- α pathway identifies a subgroup of systemic lupus
964		erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 52,
965		1491–1503 (2005).
966	13.	Banchereau, R. et al. Personalized Immunomonitoring Uncovers Molecular Networks that
967		Stratify Lupus Patients. Cell 165, 551–565 (2016).
968	14.	El-Sherbiny, Y. M. et al. A novel two-score system for interferon status segregates
969		autoimmune diseases and correlates with clinical features. Sci. Rep. 8, 1–11 (2018).
970	15.	Catalina, M. D., Bachali, P., Geraci, N. S., Grammer, A. C. & Lipsky, P. E. Gene expression
971		analysis delineates the potential roles of multiple interferons in systemic lupus erythematosus.
972		Commun. Biol. 2 , (2019).
973	16.	Panousis, N. I. et al. Combined genetic and transcriptome analysis of patients with SLE:
974		distinct, targetable signatures for susceptibility and severity. Ann. Rheum. Dis. 78, 1079–1089
975		(2019).

976	17.	Lyons, P. A. et al.	Novel expression	signatures	identified by	transcriptional an	alysis of
-----	-----	---------------------	------------------	------------	---------------	--------------------	-----------

- 977 separated leucocyte subsets in systemic lupus erythematosus and vasculitis. *Ann. Rheum.*
- 978 Dis. 69, 1208–1213 (2010).
- 18. Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis
- reveal type I IFN and fibrosis relevant pathways. *Nat. Immunol.* **20**, 915–927 (2019).
- 19. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat.
- 982 Immunol. 20, 902–914 (2019).
- 983 20. Nehar-Belaid, D. et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell
- 984 level. Nat. Immunol. **21**, 1094–1106 (2020).
- 985 21. Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and
- 986 adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. *Nat. Genet.*
- **47**, 1457–1464 (2015).
- 22. Langefeld, C. D. et al. Transancestral mapping and genetic load in systemic lupus
- 989 erythematosus. *Nat. Commun.* **8**, (2017).
- 990 23. Yin, X. et al. Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic
- 991 lupus erythematosus. Ann. Rheum. Dis. **80**, 632–640 (2021).
- 992 24. Westra, H. J. et al. Systematic identification of trans eQTLs as putative drivers of known
- 993 disease associations. *Nat. Genet.* **45**, 1238–1243 (2013).
- 994 25. Farh, K. K. H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease
- 995 variants. *Nature* **518**, 337–343 (2015).

- 996 26. Finucane, H. K. *et al.* Heritability enrichment of specifically expressed genes identifies disease997 relevant tissues and cell types. *Nat. Genet.* **50**, 621–629 (2018).
- 998 27. Ota, M. *et al.* Dynamic landscape of immune cell-specific gene regulation in immune-mediated
- 999 diseases. *Cell* **184**, 3006-3021.e17 (2021).
- 1000 28. Gladman, D. D., Ibañez, D. & Urowitz, M. B. Systemic lupus erythematosus disease activity
- index 2000. J. Rheumatol. **29**, 288–91 (2002).
- 1002 29. Isenberg, D. A. et al. BILAG 2004. Development and initial validation of an updated version of
- 1003 the British Isles Lupus Assessment Group's disease activity index for patients with systemic
- 1004 lupus erythematosus. *Rheumatology* **44**, 902–906 (2005).
- 1005 30. Banchereau, J. & Pascual, V. Type I Interferon in Systemic Lupus Erythematosus and Other
- 1006 Autoimmune Diseases. *Immunity* **25**, 383–392 (2006).
- 1007 31. Elkon, K. B. & Stone, V. V. Type I interferon and systemic lupus erythematosus. *J. Interf.*
- 1008 *Cytokine Res.* **31**, 803–812 (2011).
- 1009 32. Crow, M. K. Type I Interferon in the Pathogenesis of Lupus. *J. Immunol.* **192**, 5459–5468
- 1010 (2014).
- 1011 33. Panwar, B. et al. Multi-cell type gene coexpression network analysis reveals coordinated
- 1012 interferon response and cross–cell type correlations in systemic lupus erythematosus.
- 1013 *Genome Res.* **31**, 659–676 (2021).

- 1014 34. Andreoletti, G. et al. Transcriptomic analysis of immune cells in a multi-ethnic cohort of
- 1015 systemic lupus erythematosus patients identifies ethnicity- and disease-specific expression
- 1016 signatures. *Commun. Biol.* **4**, 1–13 (2021).
- 1017 35. Takeshima, Y. et al. Immune cell multi-omics analysis reveals contribution of oxidative
- 1018 phosphorylation to B cell functions and organ damage of lupus. *bioRxiv* (2021)
- 1019 doi:https://doi.org/10.1101/2021.10.08.463629.
- 1020 36. Uzhachenko, R. V. & Shanker, A. CD8+ T lymphocyte and NK cell network: Circuitry in the
- 1021 cytotoxic domain of immunity. *Front. Immunol.* **10**, 1–7 (2019).
- 1022 37. Dean, G. S., Tyrrell-Price, J., Crawley, E. & Isenberg, D. A. Cytokines and systemic lupus
- 1023 erythematosus. Ann. Rheum. Dis. 59, 243–51 (2000).
- 1024 38. Theofilopoulos, A. N., Koundouris, S., Kono, D. H. & Lawson, B. R. The role of IFN-gamma in
- 1025 systemic lupus erythematosus: a challenge to the Th1/Th2 paradigm in autoimmunity. Arthritis
- 1026 *Res.* **3**, 136–41 (2001).
- 1027 39. Harigai, M. et al. Excessive Production of IFN-γ in Patients with Systemic Lupus
- 1028 Erythematosus and Its Contribution to Induction of B Lymphocyte Stimulator/B Cell-Activating
- 1029 Factor/TNF Ligand Superfamily-13B. J. Immunol. 181, 2211–2219 (2008).
- 1030 40. Vincent, F. B., Morand, E. F., Schneider, P. & MacKay, F. The BAFF/APRIL system in SLE
- 1031 pathogenesis. Nat. Rev. Rheumatol. 10, 365–373 (2014).
- 1032 41. Wang, S. et al. IL-21 drives expansion and plasma cell differentiation of autoreactive
- 1033 CD11chiT-bet+ B cells in SLE. *Nat. Commun.* 9, 1–14 (2018).

1034	42.	Rao, D. A. T	cells that help	b B cells in	chronically	/ inflamed	tissues.	Front.	Immunol.	9,	(2018)
------	-----	--------------	-----------------	--------------	-------------	------------	----------	--------	----------	----	-------	---

- 1035 43. Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. *Immunity* 50,
 1036 1132–1148 (2019).
- 1037 44. Kometani, K. et al. Repression of the Transcription Factor Bach2 Contributes to Predisposition
- 1038 of IgG1 Memory B Cells toward Plasma Cell Differentiation. *Immunity* **39**, 136–147 (2013).
- 1039 45. Sidwell, T. *et al.* Attenuation of TCR-induced transcription by Bach2 controls regulatory T cell
- 1040 differentiation and homeostasis. *Nat. Commun.* **11**, 1–17 (2020).
- 1041 46. Cook, H. T. & Botto, M. Mechanisms of Disease: the complement system and the
- 1042 pathogenesis of systemic lupus erythematosus. Nat. Clin. Pract. Rheumatol. 2, 330–337
- 1043 (2006).
- 1044 47. Leffler, J., Bengtsson, A. A. & Blom, A. M. The complement system in systemic lupus
- 1045 erythematosus: An update. *Ann. Rheum. Dis.* **73**, 1601–1606 (2014).
- 1046 48. Gupta, S. & Kaplan, M. J. The role of neutrophils and NETosis in autoimmune and renal
- 1047 diseases. *Nat. Rev. Nephrol.* **12**, 402–413 (2016).
- 1048 49. Kuriakose, J. et al. Patrolling monocytes promote the pathogenesis of early lupus-like
- 1049 glomerulonephritis. J. Clin. Invest. **129**, 2251–2265 (2019).
- 1050 50. Sun, S. C. The non-canonical NF-κB pathway in immunity and inflammation. *Nat. Rev.*
- 1051 *Immunol.* **17**, 545–558 (2017).
- 1052 51. McAllister, E. & Jellusova, J. BAFF signaling in B cell metabolism. Curr. Opin. Immunol. 71,

1053 69–74 (2021).

1054	52.	Jonsson, C. A. & Carlsten, H. Mycophenolic acid inhibits inosine 5'-monophosphate
1055		dehydrogenase and suppresses immunoglobulin and cytokine production of B cells. Int.

1056 *Immunopharmacol.* **3**, 31–37 (2003).

- 1057 53. Gatto, M., Zen, M., Iaccarino, L. & Doria, A. New therapeutic strategies in systemic lupus
- 1058 erythematosus management. *Nat. Rev. Rheumatol.* **15**, 30–48 (2019).
- 1059 54. Finucane, H. K. *et al.* Partitioning heritability by functional annotation using genome-wide
- association summary statistics. *Nat. Genet.* **47**, 1228–1235 (2015).
- 1061 55. Amariuta, T. et al. Improving the trans-ancestry portability of polygenic risk scores by
- 1062 prioritizing variants in predicted cell-type-specific regulatory elements. Nat. Genet. 52, 1346-
- 1063 1354 (2020).
- 1064 56. Marigorta, U. M. et al. Transcriptional risk scores link GWAS to eQTLs and predict

1065 complications in Crohn's disease. *Nat. Genet.* **49**, 1517–1521 (2017).

- 1066 57. Zhernakova, D. V. et al. Identification of context-dependent expression quantitative trait loci in
- 1067 whole blood. *Nat. Genet.* **49**, 139–145 (2017).
- 1068 58. Van Vollenhoven, R. F. *et al.* Treat-to-target in systemic lupus erythematosus:
- 1069 Recommendations from an international task force. Ann. Rheum. Dis. **73**, 958–967 (2014).
- 1070 59. Franklyn, K. et al. Definition and initial validation of a Lupus Low Disease Activity State
- 1071 (LLDAS). Ann. Rheum. Dis. 75, 1615–1621 (2016).
- 1072 60. Fanouriakis, A. et al. 2019 Update of the EULAR recommendations for the management of
- 1073 systemic lupus erythematosus. Ann. Rheum. Dis. 78, 736–745 (2019).

1074	61.	Hochberg, M. C. Updating the American College of Rheumatology revised criteria for the
1075		classification of systemic lupus erythematosus. Arthritis and rheumatism vol. 40 1725 (1997).
1076	62.	Maecker, H. T., McCoy, J. P. & Nussenblatt, R. Standardizing immunophenotyping for the
1077		Human Immunology Project. Nat. Rev. Immunol. 12, 191–200 (2012).
1078	63.	Dobin, A. <i>et al.</i> STAR: Ultrafast universal RNA-seq aligner. <i>Bioinformatics</i> 29 , 15–21 (2013).
1079	64.	Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput
1080		sequencing data. Bioinformatics 31 , 166–169 (2015).
1081	65.	Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for
1082		differential expression analysis of digital gene expression data. <i>Bioinformatics</i> 26, 139–140
1083		(2009).
1084	66.	Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data
1085		using empirical Bayes methods. <i>Biostatistics</i> 8 , 118–127 (2007).
1086	67.	Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using
1087		Ime4. J. Stat. Softw. 67, (2015).

1088 68. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold Approximation and

1089 Projection. J. Open Source Softw. **3**, 861 (2018).

1090 69. Hoffman, G. E. & Schadt, E. E. variancePartition: Interpreting drivers of variation in complex

1091 gene expression studies. *BMC Bioinformatics* **17**, 17–22 (2016).

1092 70. Liu, Z. *et al.* Multitarget therapy for induction treatment of lupus nephritis: A randomized trial.

1093 Ann. Intern. Med. **162**, 18–26 (2015).

1094	71.	Yu, G., Wang, L. G., Han, Y. & He, Q. Y. ClusterProfiler: An R package for comparing
1095		biological themes among gene clusters. Omi. A J. Integr. Biol. 16, 284–287 (2012).
1096	72.	Kolmykov, S. et al. Gtrd: An integrated view of transcription regulation. Nucleic Acids Res. 49,
1097		D104–D111 (2021).
1098	73.	Liberzon, A. et al. The Molecular Signatures Database Hallmark Gene Set Collection. Cell
1099		<i>Syst.</i> 1 , 417–425 (2015).
1100	74.	Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids
1101		<i>Res.</i> 28 , 27–30 (2000).
1102	75.	Stohl, W. et al. Efficacy and Safety of Subcutaneous Belimumab in Systemic Lupus
1103		Erythematosus: A Fifty-Two–Week Randomized, Double-Blind, Placebo-Controlled Study.
1104		Arthritis Rheumatol. 69, 1016–1027 (2017).
1105	76.	Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association
1106		studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012

1107 (2019).