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Abstract 

Objective: The meniscus tear is a common problem in sports trauma. The imaging 

diagnosis mainly depends on the MRI. To improve the diagnostic accuracy and 

efficiency, a deep learning model was employed in this study and the identification 

efficiency has been evaluated. 

Methods: The standard knee MRI images of 924 individual patients were used to 

complete the training, validation, and testing process. The Mask R-CNN was 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.11.22269112doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:xswang@seu.edu.cn
mailto:xianfeng9807@163.com
https://doi.org/10.1101/2022.01.11.22269112


considered as the deep learning network structure, and the ResNet50 was considered as 

the backbone network. The deep learning model was trained and validated with a 

dataset containing 504 and 220 patients, respectively. The accuracy testing was 

performed on a dataset of 200 patients and reviewed by an experienced radiologist and 

a sports medicine physician. 

Results: After training and validation, the deep learning model effectively recognized 

the healthy and injured meniscus. The overall average precision of the bounding box 

and pixel mask was more than 88% when the IoU threshold value was 0.75. The 

detailed average precision of three types of menisci (healthy, torn, and degenerated) 

was ranged from 68% to 80%. The overall sensitivity of the bounding box and pixel 

mask was more than 74% at the IoU threshold from 0.50 to 0.95. The diagnosis 

accuracy for the healthy, torn, and degenerated meniscus was 87.50%, 86.96%, and 

84.78%, respectively.    

Conclusion: The Mask R-CNN recognized effectively and predicted the meniscus injury, 

especially for the tears that occurred at different parts of the meniscus. The recognition 

accuracy was admirable. The diagnostic accuracy can be further improved with the 

increase of the training sample size. Therefore, this tool has great potential in the 

application for the diagnosis of meniscus injury.  

The translational potential of this article 

Deep learning model has unique effect in reducing doctors’ workload and improving 

diagnosis accuracy. It can identify and classify injured and healthy meniscus more 

accurately after training and learning datasets. The torn and degenerated meniscus can 

also be distinguished by this model. This technology could serve as an effective tool for 

clinical MRI-assisted diagnostics in meniscus injury. 

Keyword: meniscus injury; deep learning model; MRI; R-CNN; AI 

Abbreviations 

MRI, magnetic resonance imaging; SE T1WI, spin-echo T1 weighted image; FSE 

T2WI, fast spin-echo T2 weighted image; FS FSE PDWI, fat-suppressed fast spin-echo 

proton density-weighted image; GRE, gradient echo; AI, artificial intelligence; PDW, 

proton density-weighted; CA, cartilage tissue; AT, anterior horn tear; PT, posterior horn 
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tear; MBT, meniscus body tear; AD, anterior horn degeneration; PD, posterior horn 

degeneration; MBD, meniscus body degeneration; AH, anterior horn health; PH, 

posterior horn health; MBH, meniscus body health; RPN, region proposal network; 

ROI, region of interest; TP, true positive; FP, false positive; FN, false negative; AP, 

average precision; IoU, intersection over union.  

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The meniscus is commonly referred to as a fibrocartilaginous structure located in the 

knee joint cavity, between the femur and tibia. According to the position of the meniscus, 

it can be divided into medial meniscus and lateral meniscus. They provide strength to 

the joint and absorb the impact forces to protect it [1, 2]. Meniscus injuries can occur 

from the destruction of the meniscus integrity by various conditions such as dysplasia, 

chronic strain, and acute sprain. These injuries lead to a series of clinical symptoms 

such as pain and dysfunction. Meniscus injuries are very common, with an incidence 

rate of 6 to 7 in 10000 [3], which seriously affects the mobility and quality of life of the 

patients. Once the diagnosis is confirmed, most of the cases need surgical treatment. 

Accurate and timely preoperative diagnosis is of great significance. 

 

The MRI generates high soft-tissue imaging resolution. This method can clearly 
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visualize the shape and internal structure of the meniscus. Therefore, it is the preferred 

method of examination for the diagnosis of meniscus injuries [6, 11]. The meniscus 

produces a uniform low signal on magnetic resonance imaging (MRI) sequences, and 

the FS FSE PDWI (fat-suppressed fast spin-echo proton density-weighted image) is the 

most commonly used in the meniscus injury diagnosis. A multi-center study on the 

meniscus injury showed great clinical significance to analyze the risk and prognosis of 

the meniscus injury [12]. However, the accuracy of the MRI diagnosis is limited, which 

is affected by several factors including 1) several different tissues are situated around 

the meniscus and the shape of these tissues is irregular, 2) the abnormal signal of a 

meniscus tear is very small and is not easy to be found on the image, 3) the amount of 

MRI data may be extremely huge in a multi-center study (each patient has about 100 

images), 4) the doctors' diagnostic level are different, and the accuracy of diagnosis is 

affected by the experience, and 5) other subjective factors. 

In recent years, the application of artificial intelligence (AI) in the field of medical 

imaging has become a research hotspot, and researchers believe that AI has the potential 

to provide accurate diagnosis and treatment. Deep learning and other AI applications 

can effectively improve the efficiency of data processing and reduce human errors 

through repetitive learning to identify disease patterns [13, 14]. Traditional machine 

learning algorithms mainly include neural network, k-nearest neighbor, support vector 

machine, naive Bayes classifier, and random decision forest. These algorithms rely on 

artificial intelligence’s shallow features. In deep learning, there is no need to specify 

the features manually. The machine can learn by itself through the data set training, 

which provides an advantage and brings a breakthrough in image processing. 

Great progress has been made in the in-depth analysis of the knee MRI images using 

the AI, but it is far less used than in other critical conditions such as a tumor, nerve 

damage, and pulmonary nodule. Compared to the bone and cartilage, the study of the 

meniscus is limited, and image segmentation and post-processing are not feasible. 

Among the studies regarding meniscus tear and AI, most of the studies analyzed only 

the sagittal plane, and a small number of studies analyzed the sagittal plane, coronal 

plane, and cross-section [17]. The area under the curve of these studies ranged from 
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0.847 to 0.910 [18], meaning that this technology should be improved in the diagnostic 

accuracy of the MRI. 

The slice thickness is an important parameter in the meniscus MRI examination. In 

the previous studies, the scanning layer thickness ranged from 0.7 mm to 3.0 mm [7, 

11], which made the data sources lacking homogeneity. Based on the clinical practice, 

this study aimed to utilize the most commonly used sequence and scanning layer 

thickness in the model training, which has a wider application range and is beneficial 

for multi-center research in the future. After obtaining the feature map of the meniscus 

MRI images through convolutional neural networks, Mask R-CNN will perform 

classification, regression, and pixel-level mask diagnosis on original meniscus images.  

To verify the recognition accuracy of the deep learning network, the results were 

evaluated by experienced doctors and arthroscopic surgery. We anticipate that this 

technology could serve as an effective tool for clinical MRI-assisted diagnostics in 

meniscus injury.  

2. Methods 

2.1. Process of the MRI scanning 

 The studies followed relevant guidelines, and had approval from the ethics 

committee of Drum Tower Hospital affiliated to the Medical School of Nanjing 

University. All patients underwent MRI using a 3.0 Tesla MR imaging system (United 

Imaging Co., Ltd., Shanghai, China) with a dedicated knee coil in supine position and 

feet first. The sagittal fat-suppressed proton density-weighted (PDW) MR images 

were acquired digitally from the picture archiving and communication system (PACS; 

Neusoft Medical Systems Co., Ltd., Shenyang, China) in the Joint Photographic 

Experts Group (JPEG) format. The parameters of the MR FS PDW sequence were 3 

mm slice thickness, 0.3 mm gap, 1500 ms time of repetition, 40 ms time of echo, 

16x16 cm2 field of view, and 1 number of signal average. The sagittal position lines 

were set perpendicular to the line of the posterior femoral condyle on transverse 

images, and perpendicular to the articular surface of the tibial plateau on coronal 

images. 

2.2. The inclusion criteria 
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According to the clinical diagnostic guidelines, the meniscus was divided into the 

meniscus without tear and with a tear. The diagnostic criteria of the meniscus tear 

were abnormal high signal in the meniscus, and the high signal involved at least in 

one articular surface of the meniscus or reached the free edge of the meniscus [19]. 

The data sources of the study were from the same MRI equipment and scanned by 

technicians who had the same standardized training experience and used the scanning 

parameters all the time. In the image processing stage, the images without motion 

artifacts or any other magnetic artifacts, which affected the meniscus were included. 

2.3. The image dataset and masking 

The meniscus MRI image dataset was retrieved and produced by combining clinical 

testing. For the recognition of fine results, the size of the acquired meniscus MRI 

images was selected as 1188x1372 pixels. The MRI images of 924 individual patients 

(18 images per patients) were collected and labeled to make the common objects in 

context datasets, in which 504 individual patients were used as the training dataset, 220 

individual patients were used as the verification dataset, and 200 individual patients 

were used as the internal testing dataset. In addition, images of 180 individual patients 

from 8 hospitals were considered as external testing dataset. In order to visually observe 

the health of the menisci, the position and shape of the cartilage tissues were extracted 

and displayed.  

The meniscus MRI images were manually segmented into 10 categories: cartilage 

tissue (CA), anterior horn tear (AH_tear), posterior horn tear (PH_tear), meniscus body 

tear (MBT), anterior horn degeneration (AD), posterior horn degeneration (PD), 

meniscus body degeneration (MBD), anterior horn intact (AH_intact), posterior horn 

intact (PH_intact), and meniscus body health (MBH). During the marking and labeling 

process, the cartilage without the full display has been discarded, and the pixels that 

could not be distinguished from health or injury were also ignored. Figure 1 

demonstrates the visualization process of the meniscus datasets. Usually, the cartilage 

was displayed clearly, and the healthy and injured meniscus was marked based on the 

doctor's diagnosis.  

Due to the limitation of patient number, the number of images in the dataset used for 
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training and verification may not be large enough. In the dataset establishment stage, 

data augmentation technology was used to supplement the collected dataset. Based on 

the labeled MRI image dataset, the geometric transformation, lighting adjustment, 

Gaussian filtering and noise addition were used to expand the number of samples in the 

data set. In order to inhibit the labeling errors, three geometric transformation methods 

were used: horizontal mirroring, vertical mirroring, and diagonal mirroring. By 

geometric transformation, one MRI image was transformed into four different images. 

The following processing was performed on these four images: Gaussian filtering, 

brightness enhancement, brightness reduction and adding noise (such as salt and pepper 

noise). The MRI images generated by the geometric transformation can simulate the 

difference caused by the slice angle and position. New images with different brightness 

can simulate different  fat suppression level. Gaussian filtering blurred original MRI 

images and noise added more interference to images. As shown in Figure 2, through 

data augmentation and label processing, the dataset has been expanded by 20 times. 

The segmentation categories in the meniscus dataset are shown in Table 1. The total 

number of labels in the training dataset, validation dataset, and internal testing dataset 

was 30080, 16520, and 1012, respectively.  

 

2.4. The network architecture 

In this process, the Mask R-CNN was employed as the deep learning network 

structure to classify and segment the meniscus MRI images [20]. As shown in Figure 

3, the process of deep learning for the identification of meniscus injuries mainly 

included two stages. The first stage was the generation of candidate regions, which 

primarily included the feature extraction by convolutional neural networks, Region 

Proposal Network (RPN) [21], and RoIAlign layer [20]. The second stage was the 

classification and regression of the objects and mask generation. 

  The feature map extraction was completed using the ResNet50 architecture as the 

backbone network. Because the ResNet50 had deeper network layers, it produced 

abundant feature information after the convolution and pooling of the original images. 

The ResNet50 combined with the Feature Pyramid Networks combined the feature 
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maps from the bottom layer with the upper layer, which fully utilized the features of the 

different depths [22]. The purpose of the RPN was to recommend the region of interest 

(ROI) to the network. Briefly, the meniscus MRI image was inputted in the RPN, and 

the ROI of the original image was extracted by the 9-size anchor to output the region 

of recommendation score. The bilinear interpolation was used in the RoIAlign to extract 

the fixed-sized feature maps (for example, 7×7 pixel) from each ROI. 

The Mask R-CNN finally outputted three branches of the meniscus images: 

classification, bounding box regression, and a mask branch (Fully Convolutional 

Networks) [23]. In the data set for the identification of meniscus injuries, the number 

of categories was 8 (background and other 7 categories), the output depth of the 

classification and regression network was 8 and the output mask network was 28x28x8. 

2.5. Training 

The ResNet50 has been adopted as the backbone network to train the meniscus MRI 

image datasets. The dataset was trained on a GPU (RTX 2070; NVIDIA, Santa Clara, 

CA, USA) for 10000 epochs, the initial learning rate was 0.01 (drop with training), the 

IMS_PER_BATCH was 2, and the NUM_CLASSES was 8. During the training 

process, the loss function was defined as: 

 𝐿 = 𝐿 𝑟𝑝𝑛  +  𝐿 𝑚𝑎𝑠𝑘                     (1) 

Where the  𝐿 𝑐𝑙𝑠  and 𝐿 𝑏𝑜𝑥  respectively represented the classification loss and 

bounding-box loss: 

 𝐿𝑟𝑝𝑛 = 𝐿 𝑐𝑙𝑠  +  𝐿 𝑏𝑜𝑥 =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖

∗) +  𝜆1
1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖
∗)𝑖𝑖    (2) 

Where the N represented the number of corresponding anchors or bounding boxes; 

the hyper-parameters 𝜆 and 𝛾 balanced the training losses of the regression and mask 

branch. The  𝐿 𝑐𝑙𝑠  represented the classification loss function and was expressed as: 

𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖
∗) = − log 𝑝𝑖

∗𝑝𝑖                         (3) 

Where the i was the index of an anchor in a mini-batch; 𝑝𝑖  was the predicted 

classification probability of anchor i; 𝑝𝑖
∗ represented the ground-truth label (correct 

and positive label) probability of the anchor i; 𝑝𝑖
∗ was 1 for the positive anchor and 0 

for the negative anchor. 

The 𝐿 𝑏𝑜𝑥  was bounding-box loss defined over a tuple of true bounding-box 

regression targets: 
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𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖
∗) = 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡𝑖

∗−𝑡𝑖)                     (4) 

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) = {
0.5𝑥2       , 𝑖𝑓 |𝑥| < 1
|𝑥| − 0.5 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               (5) 

Where the 𝑡𝑖
∗ = (𝑡𝑥

∗, 𝑡𝑦
∗ , 𝑡𝑤

∗, 𝑡ℎ
∗) indicated the differences between the ground-

truth label box and the positive anchor in four-parameter vectors (the horizontal and 

vertical coordinate values of the center point in the bounding box; the width and height 

of the bounding box); The 𝑡𝑖 = (𝑡𝑥 , 𝑡𝑦, 𝑡𝑤 , 𝑡ℎ) represented the difference between the 

diagnosis bounding box and the ground-truth label box: 

 𝐿 𝑚𝑎𝑠𝑘 = 𝐿𝑚𝑎𝑠𝑘 (𝑝𝑖 , 𝑝𝑖
∗ , 𝑡𝑖 , 𝑡𝑖

∗, 𝑠𝑖, 𝑠𝑖
∗) 

=
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖

∗) + 𝜆2
1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖
∗)𝑖𝑖 + 𝛾2

1

𝑁𝑚𝑎𝑠𝑘
∑ 𝐿𝑚𝑎𝑠𝑘(𝑠𝑖, 𝑠𝑖

∗)𝑖    

(6) 

The definition of the 𝐿 𝑚𝑎𝑠𝑘  allowed the network to generate masks for every class 

without the competition among classes. The 𝐿 𝑚𝑎𝑠𝑘  was defined as the average binary 

cross-entropy loss used by a per-pixel sigmoid. The mask branch had a K𝑚2 -

dimensional output for each ROI (K was the number of classes). The 𝐿 𝑚𝑎𝑠𝑘  was only 

defined on the k-th mask. 

2.6. Model performances evaluation 

To estimate the identification effect, the meniscus MRI image testing dataset was 

used for testing and evaluation. Intersection over Union (IoU) was used, which was the 

ratio of the intersection and union of the candidate bound area (C) and the ground truth 

bound area (G). 

IoU =
𝑎𝑟𝑒𝑎(𝐶)∩𝑎𝑟𝑒𝑎(𝐺)

𝑎𝑟𝑒𝑎(𝐶)∪𝑎𝑟𝑒𝑎(𝐺)
                          (7) 

The formulas’ precision and recall were: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            (8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                             (9) 

where the True Positive (TP) represented the resultant number of the IoU values 

greater than the threshold values (generally is 0.5). The False Positive (FP) represented 

the number of the IoU values less than the threshold values. The False Negative (FN) 

represented the number of unrecognized targets. 

The Average Precision (AP) was used to measure the identification accuracy. For 

multi-class diagnosis, the AP was the average precision of multiple categories. The 

formula was: 
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𝐴𝑃 = ∫ 𝑃𝑑𝑅
1

0
  (IoU=0.50:0.95)                (10) 

The AP50 and AP75 were APs when the IoU threshold was greater than 0.5 and 

greater than 0.75, respectively. The APs, APm, and APl were respectively represented 

as the AP for small objects (area <322), medium objects (322<area <962), and large 

objects (962<area). 

2.7. Diagnosis accuracy evaluation 

The accuracy of identification was evaluated by comparing the output results with 

the experienced radiologist. Briefly, 200 individual patients having meniscus tears, 

meniscus degeneration, and intact meniscus were identified as the internal testing 

dataset using the model. And 180 patients from 8 hospitals were regarded as external 

testing dataset. Among them, 90 patients (30 healthy patients, 30 patients with meniscus 

degeneration, and 30 patients with meniscus tear ) were scanned using a 1.5T MRI, and 

90 patients (30 healthy patients, 30 patients with meniscus degeneration, and 30 patients 

with meniscus tear ) were scanned using the 3.0T MRI, the scanning parameters were 

listed in Table 2. The output results were assessed by an experienced radiologist and 

sports medicine physician. Additionally, 40 patients with meniscus tear which 

diagnosed by arthroscopic surgery were randomly selected to verify the diagnostic 

accuracy of this model. 

3. Results 

3.1. The Mask R-CNN training 

The loss function and accuracy in the training process of the Mask R-CNN are shown 

in Figure 4. After 10000 iterations, the loss function was relatively low, and the 

accuracy increased to 0.96. More training and larger datasets were conducive to 

increasing accuracy and avoiding overfitting. 

3.2. The Image identification of meniscus 

Figure 5 shows the classification and instance segmentation of a meniscus MR 

image, and the targeted objects were marked by both bounding box and pixel. The 

reorganization diagnosis results of the Bbox and Mask are shown in Figure 6 and 

Figure 7. The Bbox represented the bounding box containing the target objects (Figure 

6). The Mask represented the predicted pixels of the tissues, like cartilage and meniscus 

(Figure 7). Different colors were employed to distinguish the cartilage and meniscus: 

Watchet blue bounding boxes and pixels represented the cartilage tissue (CA), red 
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bounding boxes and pixels represented the injured meniscus (PT, AT, and MBT), yellow 

bounding boxes and pixels represented the degenerated meniscus (AD, MBD, and PD), 

and green bounding boxes and pixels represented the healthy meniscus (AH, MBH, and 

PH).  

The Bbox diagnosis results demonstrated that the meniscus horns (Figure 6a) and 

the body (Figure 6b) were precisely divided into three categories: healthy, degenerated, 

and tear. The coverage of the cartilage tissue on each layer was also included in the 

Bbox. According to the Mask diagnosis results, the degeneration occurred at both 

anterior and posterior horns (Figure 7a), tears occurred at posterior horns (Figure 7b), 

tears occurred at the meniscus body (Figure 7c), and health meniscus (Figure 7d) was 

accurately identified.  

The testing average precision of the Mask R-CNN with Resnet50_FPN as the 

backbone network is exhibited in Table 3. The results indicated that when the IoU 

shoulder was more than 0.5, the AP for the Bbox and Mask was 99.55 ± 0.41 %, 99.47 

± 0.28 %, respectively. As the IoU threshold value increased to more than 0.75, the AP 

for Bbox and Mask demonstrated a slight decrease. But the two values were more than 

88%, which still exhibited extremely high accuracy. The AP for the different-sized 

objects were also acceptable, and all the values were more than 50%. Due to the deep 

network layers of the Resnet50, the identification APs were relatively good. For higher 

AP, the number of iterations was increased. 

3.3. The diagnosis of meniscus injures  

Table 4 represents the AP evaluation results of each category in the MRI images. The 

Bbox AP of the cartilage tissue was above 84%. The Bbox AP of the meniscus tear was 

more than 68%, and the value for the degenerated meniscus was more than 79%. As for 

healthy meniscus, the AP value was more than 80%. Although the mask diagnosis was 

a pixel-level diagnosis, the level of the AP values was similar to the Bbox AP values. 

The sensitivity results at IoU from 0.50 to 0.95 are shown in Table 5. The overall 

sensitivity for the Bbox and Mask was 83.77 ± 5.29% and 74.43 ± 3.41%, respectively. 

The sensitivity for the target objects with different areas was also admirable. For the 

small and medium areas, the values were above 75%. For the large area, the Bbox 
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sensitivity was as high as 95.77 ± 2.89%. Since the detection objects were relatively 

concentrated in the small and medium areas, the Mask sensitivity of large area scores 

was relatively low, but it still exceeded the critical value of 50%. 

Compared to the diagnosis by experienced doctors, the identification and diagnosis 

accuracy were also quite high. Among the 200 patients of the internal testing dataset, 6 

samples were unrecognized (3%). Besides, 49 of 56 healthy samples (unrecognized: 3 

torn, 4 degenerated), 80 of 92 torn samples (unrecognized: 3 healthy, 9 degenerated), 

and 39 of 46 degenerated (unrecognized: 3 torn, 2 healthy) were recognized by the deep 

learning model. Therefore, the diagnosis accuracy for the healthy meniscus was 87.50%, 

for the torn meniscus was 86.96%, and for the degenerated meniscus was 84.78%.  

For the external testing dataset, the 3.0T group demonstrated the better recognition 

rate and diagnosis accuracy than the 1.5T group (Table 6). Briefly, the healthy meniscus 

obtained the highest recognition rate in both 3.0T and 1.5T group. The lowest 

recognition rate occurred on the degenerated meniscus for both the two kinds of field 

strength. The torn meniscus can be effectively diagnosed in 3.0T group, but for the 1.5T 

group the diagnostic accuracy was the lowest among the three meniscus types. 

The result of the arthroscopic surgery verifying was also optimistic, among the 40 

diagnosed patients confirmed by the golden standard, 87.50% of them (35 of 40) 

obtained corrected diagnose using this model.      

4. Discussion 

The meniscus injury is one of the most common sports injuries. The MRI test 

generates a high soft-tissue image resolution, which is the first diagnostic choice for the 

meniscus injury [3]. But the diagnosis accuracy of the meniscus injury depends on the 

experience of the diagnostician. The popularization from the multi-center study on 

meniscus injury is hampered by the objective criteria of diagnosis, the subjective errors 

of doctors, and the diagnostic efficiency. These limitations put forward the objective 

demand for the standardization of the meniscus MRI images interpretation and the 

automation of classification. Herein, we proposed a deep learning network based on the 

Mask R-CNN to address the demands mentioned above. We used the most common 

conventional sequence and the routine scanning parameters, to ensure that it could be 
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widely used in different hospitals, and the anatomical images from different MR 

machines were consistent. The results proved that this method could rapidly recognize 

the injured meniscus with high accuracy. Thus, we believed that this deep learning 

network can be regarded as an effective measure in the clinical application.  

We used a deep learning method based on the Mask R-CNN to realize the meniscus 

injury identification and diagnosis. After the annotation and classification, meniscus 

MRI images of 924 individual patients were collected clinically . The substantial 

amount of images (nearly twenty thousands) were used in this study result in the 

admirable sensitivity and diagnostic accuracy. The meniscus images were segmented 

into 10 categories to estimate the meniscus injury. Compared to the similar studies 

involved the using deep learning model to diagnose the meniscus injury, this study has 

the largest label numbers (Table 7), indicated that the model can help the doctors to 

recognize more subjects on the MRI images. In the deep learning networks, the 

Resnet50_FPN was used as backbone networks, which had more network layers to 

integrate the features of the image at different depths. The RPN uses a 9-size anchor to 

extract the ROI from the original image, output category scores, and box scores, 

respectively. The Mask R-CNN finally delivered classification, bounding box regression, 

and mask diagnosis. While realizing the classification and recognition, the pixel-level 

diagnosis of the meniscus MRI injury was carried out. Through the training on the 

meniscus MRI image datasets, the AP of the bounding box regression was greater than 

97%, and the AP of pixel diagnosis was greater than 88%. In the visualized diagnosis 

results, the size and location of the meniscus injury were displayed and marked, which 

was conducive to a better diagnostic estimate. 

In the validating process of this study, the three types of menisci were well identified. 

The most common problem was the misidentification of a degenerative meniscus as a 

torn meniscus. According to the imaging principle, there may be two main reasons for 

this misidentification. The first reason is that the signal intensity, degeneration, and cleft 

meniscus are actually at the different stages of the same pathological process. The 

distinction between the two stages is not obvious, leading to the confusion of severe 

degeneration and spallation. The second reason is the complex anatomical morphology. 
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The meniscus is not regular in shape, its free edge is very slender with a thickness less 

than 0.5mm, and it is not easy to identify. In addition, when meniscal tears occur, broken 

fragments can shift to the femoral intercondylar notch and the original anatomic area 

of the meniscus is replaced by the fluid signals, which may result in erroneous 

recognition. 

Except the validation on internal dataset, 180 samples from 8 hospitals scanned by 

MRI with different brands and field strength were used as the external dataset. The 

results demonstrated that this model have admirable recognition rate in 3.0T group, 

especially for the intact and torn meniscus. But the recognition and diagnose effect for 

1.5T group was not as good as the 3.0T group. One possible reason is that the images 

obtained by the 1.5T MRI equipment were not employed in the learning and training 

process. The image quality including matrix and signal noise ratio differ  exist 

between the 1.5T and 3.0T images. The recognition rate for degenerated meniscus was 

limited due to the ambiguous boundary between degeneration and tear. In addition, 40 

samples who were diagnosed meniscus tear by the arthroscopic surgery were tested by 

this model to further verified the reliability, and the diagnostic accuracy rate was nearly 

90%. Among the related studies, only one of them has employed the arthroscopic 

surgery as the reference standard. The introducing of this golden standard can improve 

the confidence of orthopaedic specialists in this model and promote the clinical 

application of this technique. 

Artificial intelligence has a broad application prospect for the efficient analysis and 

classification of medical images. At present, there are great challenges in the application 

of artificial intelligence in diagnosing the abnormalities related to the knee joint. Except 

for the model algorithm and other technical factors, the biggest challenge is to establish 

a homogenized standard data set, and on this basis to adopt in different people and 

different performance MRI equipment. This requires a trade-off between diagnostic 

accuracy and universality. Herein this study, the training dataset was only collected 

from one 3.0T MRI equipment using the general scanning sequence. To enhance the 

learning and training effect, the data augmentation technique was used in the training 

process. This technique can simulate different slice angle, position, and fat suppression 
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level by using geometric transformation, lighting adjustment, Gaussian filtering and 

noise addition. Through this operation, the dataset can be expanded by 20 times, meant 

that the images number has reached hundreds of thousands. But more importantly, the 

dataset can be further expanded by modifying the parameters of the currently used data 

augmentation methods.   

In addition to improve the diagnostic accuracy, the AI technique also can be used to 

help doctors clearly distinguish the diagnosis. Herein, the image processing was 

performed to highlight the health of the meniscus. As shown in Figure 7, after removing 

the soft tissue background and cartilage, the deep learning model only recognized the 

situation of the meniscus. The green, yellow, and red pixels respectively represented 

healthy，degenerative, and torn meniscus. The horns (Figure 7a) and body (Figure 7b) 

of the meniscus, and the cartilage were easily recognized in this process.  

There were several limitations in this study. First, only meniscus injury was identified, 

and no distinction was made between the types of meniscus tears. Moreover, the 

diagnostic accuracy of sagittal, coronal, and transverse views was not compared in the 

analysis. In the future study, we will analyze the accuracy of this model for the meniscus 

tears at different positions by including more cases and study the influence of the 

different layer thickness on the diagnosis of the meniscus tears using AI. Additionally, 

the validation method is also need to be improved. Only a few of the samples in this 

study was confirmed by the arthroscopic surgery, this result can partly reflect the effect 

of the deep learning model, but it is not statistically representative. In future research, 

it is necessary to strictly compare the arthroscopic diagnostic results with the data used 

for training and verification, so as to further improve the accuracy of the model. 

5. Conclusion 

In summary, a Mask R-CNN model was employed in this study to identify and 

predict meniscus tears on the MRI images. This deep learning model effectively 

detected and recognized the meniscus and cartilage, especially for tears that occurred 

at different parts of the meniscus. The recognition accuracy was more than 84%. With 

the increase of training sample size, the diagnostic accuracy can be further improved. 

The application of this technique can reduce the misdiagnostic rate of meniscus injury 
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and alleviate the burden of doctors.  
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Table 1. Meniscus dataset and demographic breakdown  
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Table 2. MR imaging system and scanning parameters 

Types Model 
Field 

strength 

MR 

sequence 
Field of view 

Time of 

repetition 

Time of 

echo 

Slice 

Thickness 
Matrix 

Philips Intera 1.5 FS-T2W 18cm*18cm 1800ms 30ms 4mm 200*160 
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United 

Imaging 
uMR790 3.0 FS-PDW 16cm*16cm 1500ms 40ms 3mm 320*288 

Siemens Skyra 3.0 FS-PDW 17cm*19.6cm 2600ms 36ms 3.5mm 384*384 

Siemens Avanto 1.5 FS-PDW 16cm*16cm 3000ms 31ms 4mm 640*640 

Philips Multiva 1.5 FS-PDW 16cm*16cm 2000ms 25ms 4mm 288*224 

GE 
Archite

ct 
3.0 FS-PDW 16cm*16cm 2500ms 38ms 4mm 512*512 

Siemens Avanto 1.5 FS-PDW 22.2cm*16.6cm 2000ms 19ms 4.5mm 640*640 

Siemens Skyra 3.0 FS-PDW 16cm*16cm 2800ms 32ms 3.5mm 352*288 

GE 750 3.0 FS-PDW 18cm*18cm 1941ms 35ms 3.5mm 352*224 

 

Table 3. The AP of identification of the meniscus injuries 

Backbone 

network 
(%) AP50 AP75 APs APm APl 

Resnet50_

FPN  

Bbox 99.55 ± 0.41 97.67 ± 1.21 76.86 ± 4.82 82.07 ± 5.82 88.45 ± 4.11 

Mask 99.47 ± 0.28 88.15 ± 5.16 69.60 ± 5.33 74.99 ± 4.91 45.20 ± 6.56 

 

Table4. Per-category Bbox/Mask AP of identification of the meniscus injuries 

Backbone 

network 
(%) CA PT  AT MBT AD 

MB

D 
PD AH 

MB

H 
PH 

Resnet50_

FPN  
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Table 5. Sensitivity of identification of the meniscus injuries 

Backbone 

Network 
(%) 

Overall 

Sensitivity 

Area 

=Small 

Area 

=Medium 

Area 

= Large 

Resnet50_

FPN 

Bbox 83.77 ± 5.29 78.16 ± 3.37 86.30 ± 5.28 95.77 ± 2.89 

Mask 74.43 ± 3.41 73.54 ± 4.92 78.22 ± 4.36  59.67 ± 2.72  

 

Table 6. The verifying of the external dataset 

Field 

strength 
Meniscus type Recognition rate  diagnostic accuracy 

3.0 

Intact 93.33% (28 of 30) 82.14% (23 of 28) 

Degeneration  76.67% (23 of 30) 73.91% (17 of 23) 

Tear  86.67% (26 of 30) 92.31% (24 of 26) 

1.5 

Intact 80.00% (24 of 30) 79.17% (19 of 24) 

Degeneration  66.67% (20 of 30) 70.00% (14 of 20) 

Tear  76.67% (23 of 30) 60.87% (14 of 23) 
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Table 7. The comparison of AI studies for meniscus tear diagnosis 

Study 
Reference 

standard 
Label No. 

Network 

structure 
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Figures 

 

Figure 1. Meniscus MR Image dataset visualization process. (a) The marking process 

of the image, (b) The exported image from the deep learning model. 
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Figure 2. The illustration diagram of the dataset augmentation technique.  

 
Figure 3. Architecture of the deep learning networks for the identification of torn 

menisci. 

 

Figure 4. Loss function and accuracy in the training process of the Mask R-CNN. 
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Figure 5. Classification and instance segmentation results of the meniscus MR images.  

 
Figure 6. Bounding box diagnosis results of the meniscus MR images. (a) Meniscus 

horns, (b) Meniscus body. 
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Figure 7. Mask diagnosis results of the meniscus MR images. (a) Degenerations at the 

meniscus anterior and posterior horns, (b) Tears at the meniscus body, (c) Tears at the 

posterior horn, (d) Healthy meniscus.  
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Figure 8. Diagnostic result highlighting and processing of the meniscus MR images. (a) 

Meniscus horns, (b) Meniscus body. 
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