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Testing strategies have varied widely between nation states during the COVID-
19 pandemic, in intensity as well as methodology. Some countries have mainly
performed diagnostic testing while others have opted for mass-screening for
the presence of SARS-CoV-2 as well. COVID passport solutions have been
introduced, in which access to several aspects of public life requires either
testing, proof of vaccination or a combination thereof. This creates a coupling
between personal activity levels and testing behaviour which, as we show,
leverages the heterogeneous behaviours in the population and turns this
heterogeneity from a disadvantage to an advantage for epidemic control.

1. Introduction
During the coronavirus disease 2019 (COVID-19) pandemic, population-wide
as well as targeted mitigation strategies have played crucial roles in terms of
keeping societies functional in the face of a highly transmissible novel pathogen.
Non-pharmaceutical interventions (NPIs) such as lockdowns, mass testing and
contact tracing have played a prominent role, due to the scale at which they have
been deployed. This study focuses on regular screening programmes, a class of
NPIs which has been employed by several nations as well as institutions and
employers around the world. The strategy has been particularly predominant
among European countries as well as in the United Arab Emirates [1–12], and
picked up speed aided by the availability of relatively inexpensive rapid antigen
tests [13, 14].

There have been enormous national and regional differences in the level of
testing for SARS-CoV-2 and in the nature of testing programs themselves. This
is partly to do with the different purposes of testing strategies. The primary
overall purpose of testing is of course to identify cases of disease, but for
transmissible diseases such as COVID-19, contact tracing and genetic surveillance
of the pathogen are also common objectives.

Diagnostic testing seeks to confirm (or rule out) the presence of the pathogen
in a person suspected of being ill, most often on the basis of having shown
symptoms. Screening is less targeted and looks for infections across entire groups,
where no symptoms are reported [15]. Mass-testing represents one extreme of
this spectrum, wherein large swathes of the population are invited for screening.
However, in the case of a large outbreak of a fast-moving pathogen such as SARS-
CoV-2, mass-testing at a single point in time may not be sufficient and schemes of
repeated or regular testing may be prudent. This is especially true when tests have
less-than-ideal sensitivities, such as is the case for rapid lateral-flow antigen (AG)
tests [16], which may be made up for by increasing the frequency of testing [17].
In this paper, we exclusively consider regular screening for an infectious disease
such as COVID-19.
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Theoretical analyses of testing schemes have generally
assumed that participating populations were homogeneous
when it comes to testing behaviour [18]. However, empirical
evidence shows that testing frequencies often vary widely,
even on an aggregate level [19–22]. The influence of within-
population heterogeneity in testing frequency has not been
thoroughly understood, and this is the main problem we
tackle from a theoretical point of view with this article.
Adding further complexity, several nations have introduced
COVID ‘passport’ systems in which testing (and/or
immunity through vaccination or previous infection) is a
requirement in order to participate in many parts of public
life, such as dining out, visiting bars and nightclubs as
well as going to concerts and other large events[23, 24]
– in some cases even to go into work[25]. Our analysis
focuses on the testing aspect in isolation, and so does
not assume any particular immunity structure in the
population. The testing requirement implemented through
COVID passports introduces a coupling between activity
levels (understood as epidemiologically relevant contact
rates) and testing behaviour. Those who are highly active
will generally need a valid COVID passport at any given
time, meaning that they are likely to undergo regular testing
2-3 times per week.
We are thus presented with two main questions: How do
heterogeneity in testing rates impact the efficiency of a
regular testing scheme? And how do correlations between
activity levels and test frequency affect this?
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Figure 1. Overall level of testing over time, Danish data. Denmark has

employed an extensive SARS-CoV-2 mass screening program. Assuming

an infectious period of five days, the peak level of testing of approx. 4.4

million tests per week (attained around May 2021) corresponds to an

average testing frequency of ⟨f⟩ ≈ 0.5 in our model.

2. Methods

Homogeneous testing
The mitigative effect of regular testing relies on decreasing
the amount of contact time that an infected individual is
likely to have during the infectious period. Just like in classic
compartmental transmission models of the SIR-type [26,
27], we assume that each individual has a certain rate of
transmission – a probability per unit time – while infectious.

We first develop the mathematical framework for regular
testing in the homogeneous case in which each individual
undergoes regular testing with the same frequency f and
thus with a testing interval of 1/f . We let the length of
the infectious period be unity, TI = 1, so that all times are
measured in units of the infectious period and frequencies
are measured in units of T−1

I . In the homogeneous case, the
transmission rate is assumed to be identical for all infected
individuals as well, such that the mitigation effect obtained
by testing and subsequent isolation depends only on the
time of the first positive test result for each individual.
In order to ascertain the reduction in infections due to
regular testing, we must take into account the susceptibility
rS of the individual (referring here to the risk of becoming
infected), as well as the infectiousness rI once infected
(referring to the rate at which the disease is passed on). The
total infectious burden that each individual contributes is
proportional to the product rS × rI × tI with tI the time
spent being infectious and non-isolated. The effect of regular
testing is then to shorten the time that an infected individual
is likely to spend outside of isolation.

The timing of the first test after the beginning of
the infectious period is of course stochastic in such a
regular testing scheme. We denote the probability density
distribution of this time P1(t; f) where t∈R+. Note that we
do not restrict t to lie within the infectious period (t≤ 1),
since the first test may occur after the infectious period has
elapsed if the frequency of testing is sufficiently low (f < 1).
P1(t; f) is thus a ’box-distribution’ given by:

P1(t; f) =

{
f for t∈ [0; f−1]

0 otherwise

Once the time t1 of the first test has been determined, the
following tests occur deterministically at times tn = t1 +

(n− 1)/f . The distribution of the time of the n’th test is thus
found by summing over all the possible times of the first
test:

Pn(t; f) =

∫∞
0

dt1P1(t1; f)δ[t− (t1 + (n− 1)/f)]. (2.1)

where we have made use of Dirac’s delta function which has
the properties that

δ(x) = 0 for |x|> 0,∫∞
−∞

f(x)δ(x)dx= f(0).

Suppose first that just one test can be performed during the
infectious period. Once a test occurs, the probability of an
infected individual being detected is then given by the test
sensitivity s≤ 1. If a detection takes place, the fractional
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reduction in reproductive number is of course 1− t. The
expected reduction is thus:

ρ1(f, s) = s

∫1
0
dtP1(t; f)(1− t). (2.2)

Note that the integration limits ensure that only tests
performed during the infectious period contribute to a
reduction in the infectious burden.
To cover the general case, where multiple tests may occur
during the infectious period, only minor modifications to
this description are needed.
The probability of testing positive at the n’th test, and (false)
negative on all previous tests, is given by (1− s)n−1s.
In order to compute the expected reduction ρ(f, s)

due to the repeated testing scheme, we simply sum
the contributions from the individual trajectories (being
detected in the first test, the second test, and so on):

ρ(f, s) =

∞∑
n=0

(1− s)n−1s

∫1
0
dtPn(t, f)(1− t), (2.3)

with Pn(t; f) given by equation (2.1).
This expression can be computed analytically to yield

ρ(f, s) = 1−
(
G(1− s, f)

f
+ (1− rs)(1− s)q

)
(2.4)

where the function G(x, f) is given by

G(x, f) = (1− xq)(
1

2
+

x

1− x
) + (r(q +

r

2
)(1− x)− q)xq

and q= ⌊f⌋ is the integer part of the test frequency f , while
r= f − ⌊f⌋= f mod 1 is the remainder.

Incorporating heterogeneity
Heterogeneity in testing frequency f and social activity
level a can readily be implemented in the mathematical
framework. First, note that the burden of infection due to
an individual with activity level a scales as a2 since activity
modulates the risk of becoming infected (rS) as well as of
transmission (rI ), as introduced in the previous section. This
can also be understood in terms of contact networks. Here,
the reproductive number R is quadratic in connectivity;
it depends on the product of in- and out-degrees. Since
contacts are assumed symmetric – if individual A has an
epidemiologically relevant contact with B, then B has one
with A as well – the reproductive number of an individual
with connectivity c may be written as

R(c) = T
c(c− 1)

⟨c⟩

where T is the transmission risk per connection [28, 29]. In
this description, connectivity is proportional to activity a,
leading to an individual reproductive number which scales
as a2.
The basic reproductive number R0 may then be computed

as the average value

R0 = T
⟨c(c− 1)⟩

⟨c⟩

In the homogeneous mixing limit, where a very large
number of connections are made and the transmission risk
per connection is low, the above expression simplifies to

R0 = T
⟨c2⟩
⟨c⟩ .

Given a joint distribution Pb(f, a) of testing frequencies and
activity levels in the population the expected reduction in
the reproductive number is thus given by:

ρ(s) =

∑
n(1− s)n−1s

∫∫
dadf

∫
dtPb(f, a)Pn(t; f)a

2(1− t)∫∫
dadfPb(f, a)a2

,

(2.5)

where n runs over 1, . . . ,∞, t runs over [0, 1] and the
integrals over a and f both run over the entire real line.

Special Case: Testing and activity uncoupled. If testing
behaviour and social activity levels are completely
uncoupled, the distribution Pb(f, a) factorizes, Pb(f, a) =

Pf (f)Pa(a). In this case, the activity drops out of the
expression for ρ(s) and the heterogeneity in activity thus
has no bearing on the final result:

ρ(s) =

∞∑
n=1

(1− s)n−1s

∫∞
−∞
df

∫1
0
dtPf (f)Pn(t; f)(1− t).

(2.6)

Special Case: Testing and activity perfectly coupled. The
opposite extreme is the situation where activity and testing
frequency are in direct proportion to one another, a∝ f .
The joint distribution can then be written as Pb(a, f) =

Pf (f)δ(a− cf) for some constant c. In that case, the
expected reduction in the reproductive number is given by:

ρ(s) =

∑
n(1− s)n−1s

∫
df

∫
dtPf (f)Pn(t; f)f

2(1− t)∫
dfPf (f)f2

.

(2.7)

Note that the constant of proportionality c cancels and thus
doesn’t affect the end result.

Parametrizing heterogeneity In the limiting cases of
independent or perfectly correlated test frequency and
activity, we use the Gamma distribution Γ [x;µ, k] to
describe the heterogeneity in either. Here µ is the mean
value and k is the dispersion parameter which satisfies

σ

µ
=

1√
k
.

Here σ is the standard deviation of the distribution and
σ/µ=CV is the coefficient of variation. The parameter k

thus measures the homogeneity of the distribution, in the
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sense that k→∞ corresponds to perfect homogeneity,

lim
k→∞

Γ [x, µ, k] = δ(x− µ), (2.8)

and low values, k < 1, correspond to high heterogeneity.
For k= 1, the Γ distribution is simply an exponential
distribution. For sufficiently small values of the dispersion
factor, k approximates the metric ”the most extreme fraction
f of the population possesses 80% of the data” [30]. In other
words, given an activity distribution with k= 0.1, one could
say that ”the most active 10% of the population account for
80% of the total activity”.

In the case of partially correlated frequency and activity,
we generate the joint distribution by an algorithm which
is described in the Supplemental Material. This algorithm
ensures distributions of frequency of activity which have
a controllable Pearson correlation coefficient as well as
specified coefficients of variation and mean values.

3. Results and discussion

Homogeneous populations – impact of test
frequency and result delay
In a homogeneous testing scenario, the testing behaviour
of the population is well-represented by a single number
– the average testing frequency. Likewise, we initially
assume that the population is homogeneous with respect
to social activity levels, and thus transmission rates. This
regime is well-suited for exploring the impact of test-
specific variables in isolation without the added complexity
of a heterogeneous underlying population. We begin by
addressing the impact of test result delay.

The time between testing and result availability varies by
orders of magnitude between the types of tests commonly
used for screening for SARS-CoV-2 – from a few minutes
(e.g. rapid lateral flow antigen tests) to about a day (RT-PCR
tests). In regular testing schemes, the tested individuals are
generally not required to undergo isolation between test and
result, and thus any delay will affect the total reduction of
infection.

Delay can be taken into account directly, starting from the
mathematical formulation presented in the Methods section.
The only change required is to shift the time t1 of the first
test by an amount d, i.e. letting P1(t1)→ P1(t1 − d). Here,
the delay d is measured in units of the infectious period TI .
A slight reinterpretation of the variable t1 is also necessary
– it no longer strictly represents the time of the first test, but
rather of the first test result, since it is this event that triggers
isolation. The maximal reduction in reproductive number
attainable with a test with a time delay is linear in the delay
magnitude d, and the reduction ρ(f, s, d) in the delayed case
is simply related to the instantaneous result:

ρ(f, s, d) = (1− d)ρ((1− d)f, s) (3.1)

This relation reflects that the total number of test results
obtained in the infectious period is diminished by a factor
of (1− d) (corresponding to letting f → (1− d)f ) while the

expected reduction due to each of those test results is also
reduced by the same factor (since they occur later in the
infectious period), leading to the overall multiplication by
(1− d). As such, the dependence on delay duration is a
nonlinear one.
In Figure 2, the reduction due to an instantaneous test is
compared with a delayed one (at d= 0.2, corresponding
to a one-day delay in a disease with a five-day infectious
period). The reduction curves for the delayed tests thus
tend toward a value of 80% as the frequency f is increased.
For tests with a delay between test and result, it follows
that arbitrarily large reductions cannot be obtained, and
that increased test frequency cannot fully compensate for a
delay.

As a function of testing frequency, the reduction
ρ saturates at ρ= 1− d, while it increases linearly
for frequencies f < 1. Around f = 1/(1− d), a law of
diminishing returns kicks in, marking the point after which
the reduction per test performed decreases. This is shown
in Figure S2 of the Supplementary Material. As showcased
by the initial linearity and eventual saturation of the
reduction curves in Figure 2, the effectiveness of different
test scenarios generally depend on the parameters in a
highly nonlinear fashion. In the figure, two pairs of dots
mark pairs of equally effective testing scenarios which differ
in test sensitivity and delay-to-result time, respectively. The
aforementioned non-linearity is clear when considering the
growing distance between each such pair of curves as the
reduction level varies.
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Figure 2. Efficient regular testing depends strongly on frequency and

timeliness of results. The reduction in reproductive number obtained

through regular testing depends strongly on the overall testing frequency.

Concretely, assuming an infectious period of 5 days, a test with a sensitivity

of just s= 50% performed at an interval of 2 days is as effective as a

perfect-sensitivity test performed every 5 days (orange dots). However,

even a high-frequency testing scheme suffers if results are delayed.

Assuming a 5-day infectious period again, a delay of just one day (d=

0.2) has a sizable impact. Concretely, an instantaneous testing scheme

performed every 4 days is as effective as delayed one performed every 2

days (blue dots). The dashed (delayed) lines asymptotically trend towards a

maximum reduction value of 80% (orange horizontal line) with increasing

test frequency. The delayed perfect-sensitivity test (dashed red line) only

does so much more rapidly than its 50% sensitivity counterpart (dashed

purple line)

Heterogeneity in testing impedes mitigation
but reduces the importance of high test
sensitivity
Populations are rarely homogeneous where behaviour is
concerned, and rates of testing as well as contact rates are
likely to vary widely [31]. In this section, we explore the
impact of heterogeneous testing behaviours on its own - that
is, without any correlation to social activity. As described
in the Methods section, any variability in contact rates are
immaterial in this case, and can be ignored for now.
In order to directly gauge the impact of heterogeneity, we
parametrize the testing frequency by a Gamma distribution
with a controllable dispersion factor k and a mean value
⟨f⟩, as described in the Methods section. A lower k value
corresponds to a highly heterogeneous distribution. k= 1

can be viewed as a cross-over value between the highly
heterogeneous regime (k < 1, where the spread is larger
than the mean value) to the fairly homogeneous case (k > 1,
where fluctuations are typically smaller than the mean).

As shown in Figure 3a, an increase in dispersion (smaller
k) leads to a drop in effectiveness of mitigation, measured
as the reduction in reproductive number, even if the total

number of administered tests is similar. In other words,
regular testing as a mitigation strategy becomes less cost-
effective in the face of heterogeneous testing behaviour.
This overall result can be understood in the following
way. First, in a heterogeneous scenario, a large proportion
of the population are tested very rarely. Secondly – and
more importantly – at the other extreme are a group who
are tested so frequently that each additional test only
contributes relatively little to the expected probability – and
time – of detection. This effect is visible for both cases of
sensitivity, s= 0.5 and s= 1.0, but most pronounced for the
ideal test, s= 1. (Figure 3a, red curves).

In Figure 3b, we explore the role that test sensitivity
plays in modulating the overall mitigative power. Naturally,
test sensitivity is an important parameter in shaping the
efficacy of a test programme, but a less-than-ideal sensitivity
can be largely offset by an increased frequency of testing
(see Figure 2 and ref. [17]). The intuition behind this
phenomenon is that the probability to remain undetected
throughout the infectious period is reduced exponentially
as a function of the number of tests performed. Assuming
a test-sensitivity of s, the probability pn that a positive
individual has been detected after n tests is then

pn = 1− (1− s)n, (3.2)

assuming that each test is an independent event. However,
this simple description holds only on the scale of a
single individual. If a fixed number of tests are instead
heterogeneously distributed in a population, it is not a priori
obvious how much of a role the sensitivity plays.
We quantify the sensitivity dependence using the following
measure:

Sensitivity dependence =
ρ(s1)

ρ(s2)

s2
s1

, (3.3)

where s1 and s2 are two different sensitivities and ρ

is the expected reduction in reproductive number. A
sensitivity dependence of 100% indicates that decreasing
test sensitivity by some factor leads to a decrease in
mitigation by that same factor. A sensitivity dependence
of < 100% thus indicates a reduced vulnerability to less-
than-ideal test sensitivity. The curves of Figure 3b arise
by comparing the reduction obtained at a sensitivity of
s1 = 100% to that obtained at a sensitivity of s2 = 50% by
means of the above equation. Clearly, test sensitivity plays
less of a role when testing is heterogeneous (low k). As we
shall see in the next section, this result survives – and is in
fact strengthened – when heterogeneous testing behaviour
is correlated with social activity.
Intuitively, the result can be explained in the following way.
In a heterogeneous testing scenario, a large proportion of the
population very rarely get tested, and so are not strongly
affected by a decrease in test sensitivity. In the case of a
dispersion of e.g. k= 0.2, the majority of tests are taken by
the upper 20% of the population who get tested so often
that, again, test sensitivity is not a grave concern since it is
offset by the high frequency. In a homogeneous scenario,
on the other hand, the majority of individuals are tested at
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Figure 3. Heterogeneous testing behaviours impede mitigation when testing frequency is heterogeneous and uncorrelated with social activity. Note

that test sensitivity becomes less important as heterogeneity increases. (a): Reduction as function of dispersion coefficient. The fully drawn lines are for

f = 0.5 (purple), the dashed lines are f = 1.0 (red), and the two colors are for resp. s= 0.5 and s= 1.0 (b): The dependence of the reduction due to

the test-sensitivity decreases as heterogeneity increases (as k→ 0)

an intermediate rate, where each false negative is likely to
have a real impact on how early the pathogen is detected –
if detected at all.

The decreased efficiency of regular testing schemes in the
face of heterogeneous testing behaviours is exacerbated by
the fact that those individuals who only get tested rarely do
not necessarily have a correspondingly low risk of infection
or transmission. At the opposite extreme, the section of the
population who get tested frequently are not guaranteed to
be the most socially active and are therefore not expected to
account for the majority of new infections anyway. In other
words, the lack of correlation between test frequency and
social activity (with its associated exposure risk), is exactly
what makes a heterogeneous testing scheme perform so
relatively poorly.
In the next section, we explore how a regular testing
scheme performs when test frequency and social activity are
correlated.

Test/activity correlation renders heterogeneity
an advantage
In the previous section, we assumed that testing rates were
heterogeneously distributed, but completely uncorrelated
with social behaviour in general. We now turn to the other
extreme and assume that the social activity (or contact rate)
is fully correlated with the test-frequency – that they are
directly proportional. The plots of Figure 4 were generated
by evaluating equation (2.7) under this assumption. Clearly,
introducing such a correlation radically alters the effects
of heterogeneity on the mitigation strategy. By inducing
correlation, heterogeneity can in fact be leveraged to

significantly improve the performance of a regular testing
scheme.

Furthermore, the trend observed in the uncorrelated case
with respect to test sensitivity continues to hold here. The
more heterogeneous testing and activity becomes, the less
discrepancy between the performance of high- and low-
sensitivity tests is observed.

Of course, neither of these extremes are likely to
exactly represent any real scenario, but a better description
probably exists somewhere in between, with an incomplete
but nonzero correlation between social and testing activity.
We generate partially correlated distributions of activity
and test frequency with a specified level of dispersion
using an algorithm which is described in the supplementary
material. We continue to express the level of dispersion in
terms of the parameter k= (µ/σ)2. Once the distributions
have been generated, the reduction due to testing can be
computed using equation (2.5). This procedure results in
Figure 5, which systematically explores the relation between
the degree of test/activity correlation (as measured by the
Pearson correlation coefficient) and the expected reduction
in reproductive number. We find that even a very weak
correlation renders heterogeneity an advantage for a regular
testing scheme, and that the effect is rather dramatic even at
moderate correlation levels.
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Figure 4. Testing heterogeneity can be turned to an advantage. Here, perfect correlation between social activity and test frequency is assumed. (a)

(left): Reduction in the reproductive number as a function of the dispersion coefficient k (lower k corresponding to more pronounced heterogeneity). Note

that for the fully correlated case, increased heterogeneity leads to better epidemic control (higher reduction in the reproductive number), in contrast to

what was observed in the uncorrelated case (Figure 3). (b) (right): The reduction due to regular testing depends less strongly on test sensitivity when

heterogeneity is high, in the fully correlated case. The overall dependence is similar to the one observed for the uncorrelated case (Figure 3), only more

pronounced.

Figure 5. Only weak coupling is needed to leverage heterogeneity

Dependency of reduction on the correlation between test frequency and

activity. Across all three curves, the test frequency is set at f = 0.5, and

the test sensitivity is assumed ideal, i.e. s= 1. Note that the turning point

at which heterogeneity becomes an advantage rather than a disadvantage

occurs at quite low correlations – as long as a correlation of more than

≈ 5% is attained, the heterogeneous scenarios (k= 0.2 and k= 1.0) fare

better than the homogeneous one (k→∞).

Perspectives
In addition to screening and direct isolation, testing schemes
play a role in enabling contact tracing for close contacts
to infectious individuals. An oft-used abbreviaton is TTI

– Test, Trace, Isolate. Here we have only addressed the
effects of the screening aspect and subsequent isolation,
but not any kind of contact tracing schemes which may
be implemented in addition. As addressed in refs. [30, 32,
33], overdispersion in infectiousness can be leveraged to
improve contact tracing, by incorporating a bidirectional
(backward-then-forward) contact tracing scheme. This effect
relies on an analogy to the so-called friendship paradox of
network theory [34]. This is the somewhat counter-intuitive
statement that “on average, your friends have more friends
than you do”, which holds true as long as the underlying
degree distribution has a nonzero variance. Similarly, if
reproductive numbers in a disease outbreak are variable,
then it is true that “the person who infected you likely
infected more people than you did”. However, even simple
forward contact tracing benefits from heterogeneities in
social activity and contact network structure as well [35].
If activity is correlated with test frequency, as described in
this study, contact tracing is likely to receive a significant
boost. In this case, the heterogeneous activity leads to a
friendship paradox, as described above, while the coupling
to test frequency increases the likelihood of detecting
primary cases with a high risk of being infected in the first
place. We thus highlight the need for research to establish
the exact impact of (correlated) heterogeneous activity and
test frequency on contact tracing schemes. Such research is
likely to yield insights into how test-based COVID Passport-
type solutions can increase the effectiveness of contact
tracing as well as decrease the overhead associated with this
type of control strategy.
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The efficacy of contact tracing schemes depends on the
characteristics of the test employed as well. In this context,
high test specificity is mainly a question of minimizing the
overhead caused by false positives and of staying within
the capacity of the infrastructure surrounding the contact
tracing scheme. Since contact tracing is a time-sensitive
operation, any delay from test to result, as well as in tracing
itself, has a large impact on the efficacy of contact tracing
[36, 37].

In this study, we have assumed that all heterogeneity in
susceptibility and infectiousness stems from differences in
social activity. Put differently, we have not taken potential
biological heterogeneities into account. However, it is well-
known that certain infectious diseases are prone to high
person-to-person variability in infectiousness, with COVID-
19 being an example of such a disease [38–44]. It is
also becoming increasingly clear that biological variability
plays a significant role in explaining this disease-specific
overdispersion in infectiousness [45–48] and that the
resulting superspreading phenomenon has wide implications
for mitigation strategies [30, 32, 38, 49–53]. A central finding
has been that overdispersion in infectiousness enhances the
sensitivity of an epidemic to changes in social network size
and structure [30, 50], a link that has yet to be explored in
the context of regular testing schemes.

Limitations
While our model improves upon previous mathematical
models of regular testing programmes by including
heterogeneities and correlations, it makes a number of
idealizations. The model assumes that the onset of the
infectious period coincides with the earliest time at which
the pathogen is detectable by the screening test employed.
This is only a coarse-grained approximation, the validity
of which depends on the exact test and pathogen in
question. In the case of SARS-Cov-2, studies into the
connections between viral load (a proxy for infectiousness)
and probability of detection suggest that detectability
precedes infectiousness, at least for high-sensitivity tests
[17, 54, 55]. For lower-sensitivity tests such as lateral
flow antigen tests, the approximation is likely to be more
accurate. In any case, early detectability would of course
be a benefit to a regular testing scheme. Furthermore, high-
sensitivity RT-PCR tests are more likely than antigen tests to
detect fragments of non-viable virus for a prolonged period
after the individual is no longer infectious [56]. These false
positives of course contribute nothing in terms of mitigation
but have no bearing on our results.

It should be noted that this study does not consider
the wider range of interventions (pharmaceutical and
otherwise) which are likely to affect testing frequency.
In the case of SARS-CoV-2, the most notable example is
the vaccine roll-out. Testing requirements associated with
COVID Passport solutions are often affected by vaccination
status [24, 25], leading to correlations between vaccination
status, rate of infection and frequency of testing.

We have generally assumed perfect regularity in the
spacing between tests. However, in the Supplementary
Material, we explore the opposite extreme: stochastic timing
of tests with no dependence on the time of the previous test,
corresponding to a Poisson process model of testing (see
Figure S1 of the Supplementary Material). We find that the
qualitative agreement is good, and thus expect our results to
have quite general applicability, irrespective of the precise
details of the underlying testing scheme.

Finally, regular testing is a type of screening and
thus only targeted at symptom-free individuals. As such,
the population-wide impact of regular testing is highly
dependent on the presymptomatic period as well as the
asymptomatic fraction for the disease in question. In
this study, we model only the mitigation impact among
subpopulations who do participate in regular testing, and
not the society-wide impact of such a testing programme.

4. Conclusions
Person-to-person heterogeneity is increasingly recognized
as a decisive factor in many epidemiological phenomena.
We have shown that heterogeneous testing behaviour,
in and of itself, is disadvantageous to regular testing
schemes. This result largely owes to a basic property of
overdispersed distributions; when significant heterogeneity
is present, a large fraction of the population is essentially
non-participatory while some individuals undergo very
frequent testing. When a fraction of the population is tested
very frequently, each additional test contributes less in terms
of epidemic control than if it were redistributed to less-
frequently tested individuals.
Heterogeneity was also shown to alter the population-
wide impact of properties inherent to the test itself.
Our results show that the sensitivity of the test involved
is less important in the case of heterogeneous testing.
It was previously shown by Larremore et al. [17] that
even tests with a moderate sensitivity are highly useful
in (homogeneous) regular testing schemes, provided that
sufficiently rapid result availability and testing frequency
is possible. Our results thus strengthen this finding by
showing that heterogeneity further increases the effect. This
decreased dependence on test sensitivity is a robust finding
and continues to hold in the case of correlated testing and
activity distributions discussed below.

As long as heterogeneity in testing and in general social
activity are uncoupled, the effect of testing heterogeneity is
a detrimental one. However, correlations between activity
and testing are natural to consider and are even induced
through the design of certain COVID Passport solutions
where a recent negative test is required to hold a valid
COVID Passport. Such a passport in turn grants entry
to many aspects of public life, ranging from educational
institutions and public transport to bars and restaurants.
We have shown that heterogeneous testing behaviours can
in fact be leveraged to increase the mitigation effect of a
population-wide regular testing programme. By coupling
testing frequency to social activity, heterogeneity turns from
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a disadvantage to a significant advantage. Concretely, just
a weak correlation (< 10%) between activity and testing
is necessary to benefit from heterogeneity, and the effect
increases rapidly with enhanced correlation. Our work

thus provides a theoretical basis for the design of test-
based “passport” solutions. Crucially, the low threshold
correlation required to reap the benefits of heterogeneity
indicate that even initiatives which moderately couple
testing to activity may be highly beneficial.
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