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The SIR model of the epidemic spread is used for consideration the problem of the competition
of two viruses having different contagiousness. It is shown how the more contagious strain replaces
over time the less contagious one. In particular the results can be applied to the current situation
when the omicron strain appeared in population affected by the delta strain.
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The most of existing models for the spread of infection simulate the spontaneous development of an epidemic
and describe all its stages. There are two kinds of such models: susceptible-infected-susceptible (SIS) models and
susceptible–infectious–removed, susceptible–exposed–infectious–removed (SIR, SEIR) models. The first one goes back
to the pioneering work of Kermack and McKendrick [1] and uses the assumption that the recovered people can
immediately get infection again. On the contrary, the latter are built on the assumption that the recovered people
save strong immunity during epidemic (see, e.g. [2]). There are many variants of those models.The SIS models are
used in the mathematical epidemiology [3]. An overview is given in [4–6] (see also references therein). Balance between
the susceptible and infected members of population under the various conditions of infection transfer, are the subject
of research in [7–9].
Developing the delayed time-discrete epidemic model (DTDEM) [10] the papers [11, 12] take into account delay

features of COVID-19 in differential form. An important feature of this model is the delay, which takes into account
the long-term carriage of viruses confirmed by clinical data. In contrast to the delay discussed in [13], the discrete
delay model assumes that the patient is immune, and in this respect fits the SIR model, not SIS. At the same time,
the considered delay model does not imply the allocation of a separate category of hidden virus carriers (see, for
example, the SEIR model with dealy in [14]). Latent carriers of the virus can infect others without delay and in this
sense are similar to those infected, in contrast to the SEIR model. Currently, the simplest SIR and SEIR baseline
models are being developed taking into account the vaccination process [15–17].
In this paper our purpose is to consider the SIR-type equations for circulation of two viruses in the finite population

N . We suppose for simplicity that one person can only carry one virus and after disease the recovered people
cannot be infected again by any of the viruses. These properties of the considered viruses we call for shortness
“virus orthogonality” in conventional analogy with mathematical orthogonality of functions. Naturally, in contrast
with mathematics both properties are restricted and reflect statistical observations. There is only limited period of
immunity, however much longer than the average disease duration. At the same time disease COVID-19 caused by
two stains which simultaneously present in one sick person is not known (in contrast with the rare cases of COVID-19
and flu).
The model can be easily extended to take into account vaccination and different quarantine measures. Below we

consider the simple case of the free running epidemic under two viruses circulation. This assumption can be considered
as realistic for very fast developing epidemic caused by, e.g., the omicron strain (or another highly contagious virus)
appeared in a population affected earlier by a less contagious virus.
In general case, the SIR model (or SEIR, or DTDEM models) can be generalized for the case of two viruses

circulation by inclusion of various quarantine measures, e.g., through the so-called function of quarantine measures
influence, accounting the government restrictions, vaccination process etc. Also the cases of death, re-infection with
one of the viruses some time after recovery, limited time for effective vaccination and other known factors should be
included in a general model. However, below we consider the simplest SIR model to clarify the main specific features
of competition of two viruses in population. The generalization considered below seems useful for any more advanced
models describing epidemic processes with actively mutating viruses.
Let us introduce S - the number of never non-infected people in a population, I1 and I2 - the number of viruses
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carriers of type 1 and 2. Then equations of the generalized SIR model is written in the form

dS(t)

dt
= −p1

SI1
N

− p2
SI2
N

,

dI1(t)

dt
= p1

SI1
N

− I1
T1

,

dI2(t)

dt
= p2

SI2
N

− I2
T2

. (1)

where the parameters p1 and p2 are the characteristics of the contagiousness for two viruses, T1 and T2 are the
characteristic average time of the diseases caused by viruses of the types 1 and 2.
The evident equalities are: I(t) = I1(t) + I2(t) is the full numbers of virus carriers at the moment t, which is the

sum of carriers I1 of the first and I2 the carriers of the second virus. Introduce also the full numbers of people infected
by some of two viruses to the moment of time t (ill and recovered=affected by the viruses) is Ntot(t) = N1(t)+N2(t),
where Ni(t) (i=1,2) is the number of people affected (ill and recovered) by virus of type i to the moment t.
Therefore N = S(t) +N1(t) +N2(t) ≡ S +Ntot = Const., where N1 = I1 +Nrec

1 , N2 = I1 +Nrec
2 and Nrec

1 , Nrec
2

- the full numbers of recovered after disease by the viruses 1 and 2, respectively.
Now rewrite equations (1) by use the variables I1(t)/N = y1(t), I2(t)/N = y2(t), S/N = u(t)

du(t)

dt
= −p1y1u− p2y2u,

dy1(t)

dt
= p1y1u− y1

T1
,

dy2(t)

dt
= p2y2u− y2

T2
. (2)

The value u(t) ≡ 1 − z(t) is the depletion of the population of non-affected by viruses people, therefore z(t) =
Ntot(t)/N corresponds to the fraction of full population N that are affected (ill and recovered) by both viruses to
the time t. The values y1(t) and y2(t) are the current fractions of population actively infected by the viruses 1 and 2
(viruses carriers) in a moment t, respectively.
The stationary solution (u′(t) = 0; y′1(t) = 0, y′2(t) = 0, where stroke over the letter denotes the time derivative) to

Eqs. (2) exists only if y1(t) = 0, y2(t) = 0 and u(t) = U , where U is an arbitrary constant. Linearization of Eqs. (2)
near this solution gives the condition of stability

U < U0 = min

(
1

p1T1
;

1

p2T2

)
(3)

Corresponding solution Eq. (1) at t → ∞ is

y1,2(t) → 0; u(t) → u∞, (4)

where u∞ is a certain constant, moreover u∞ < U0. It is the estimate for the saturation value.
The consequence of Eq. (1) is u′(t) < 0. If u(t = 0) = u0 and the value piu0 < 1/Ti we conclude that y′i(t) is a

monotonously decreasing function, otherwise yi(t) should reach a maximal value.
Consider first as an example the case p1u0T1 > 1 and p2u0T2 < 1. In this case the second virus appeared in a small

quantity in a population cannot actively spread even in the case p2 > p1 and function y2(t) monotonically decreases.
The respective behavior is shown in Fig. 1, where the spread of only one virus is shown for the parameters p1 = 0,
p2 = 0, y1(0) = 0.01, y2(0) = 0, u(0) = 1− 0.01 and the average duration of the virus carrier T1 = 20 days.
The most interesting case corresponds to the conditions piu0Ti > 1, when both viruses spread infection by increasing

the values yi(t). If at the initial stage of the epidemic the second virus is absent the first one spreads till some initial
level y1(0). We consider t=0 as the moment of the second virus with higher contagiousness. We will suppose,
according to the existing statistical data [18] that z(0) = 1− u(0) ≪ 1, y1(0) ≪ 1, y2(0) = εy01 (ε ≪ 1). We also use
the inequality p1 < p2 which means that the appeared in a small number of infected people virus 2 possesses more
high than virus 1 contagiousness.
Let us consider as an typical example of two viruses circulation in a population the concrete initial conditions

y1(0) = 0.01, y2(0) = 0.001 u(0) = 1 − 0.01 − 0.001. The parameters p1 = 0.1, T1 = 0.1 are the same as for
calculations shown in Fig.1. The characteristic parameters for the second more contagious virus are p2 = 0.2, T2 = 20
days. The result of the calculations is drawn in Fig.2.
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Figure 1: Function y1(t) of virus 1 carriers for the case when second virus is absent at all (time in days). The parameters are
p2 = 0, y1(0) = 0.01, u(0) = 0.99 and the average duration of the virus carrier T1 = 20 days.
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Figure 2: Fractions of the viruses 1 and 2 carriers as a function of time (in days): y1(t) for virus 1 (solid line), y2(t) for more
contagious virus 2 (dashed line) and the sum y1(t) + y2(t) (dashed-dotted line) of the infected at moment t. The parameters
p1 = 0.1, p2 = 0.2, T1 = T2 = 20 days, u(0) = 0.989.

As is easy to see that virus 1 is effectively suppressed by virus 2 since the value of the maximum for the solid curve in
Fig.2 more than three times lower than in Fig.1. Comparison of these figures shows that duration of virus 1 circulation
is also effectively suppressed due to appearance of virus 2. It is easy to see also that the maximum for virus 1 in Fig.
2 is shifted to earlier time in comparison with Fig. 1. It follows from the relations piTiu(ti,max) = 1 for maximums of
functions yi(t) and the condition u′(t) < 0. Denote tI1,max and tII1,max the times of maximal current of virus 1 carriers

on Fig. 1 (case I) and Fig. 2 (case II) respectively. The first one is determined by the equality p1T1uI(t
I
1,max) = 1,

the second one by the equality p1T1uII(t
II
1,max) = 1, where the functions uI and uII correspond to the cases I and II

respectively. Taking into account that u′(t) < 0 and according to the first equation (1) | u′
I(t) |<| u′

II(t) | we arrive
at the explicit inequality tII1,max < tI1,max.
Time behavior of function u(t) for the cases I and II is depicted in Fig.3. We see the more fast flowing epidemic

and more full depletion of the set of healthy people.
It is also essential to find the fractions of people affected (ill and recovered) by the viruses of type 1 and 2 respectively

to the moment t denoted as x1(t) and x2(t). To find x1(t) and x2(t) we use the relations

x1(t) =

∫ t

0

dt′p1y1(t
′)u(t′); and x2(t) =

∫ t

0

dt′p2y2(t
′)u(t′) (5)
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Figure 3: Time behavior of function u(t) for the cases I and II.
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Figure 4: The functions x1(t) and x2(t) of the affected by the viruses 1 and 2 people in the case II.

The result of calculation of functions x1(t) and x2(t) is presented in Fig. 4. Saturation of the epidemic in the case
II takes place on the essential higher level (for the used parameters the full quantity of the affected by virus 2 people
exceeds ones by virus 1 more than in four times).
The main results of the performed consideration for the SIR model generalized for free-running epidemic of two

“orthogonal” viruses show the rapid displacement of a less infectious virus from a population by more contagious
strain. The maximum value of the initially existed strain shifts to an earlier time and essentially decreases. The
epidemic is progressing much faster and affects many more people. The inclusion of the effective quarantine measures
can change the epidemic spread. However, these measures can be essentially restricted if the disease caused by the
second strain is, on average, much easier. The obtained results are in general in an a good agreement with the
qualitative discussions of experts in epidemiology and virology. In the connection of the obtained results the problem
of the artificial creation of the “orthogonal” strains of the viruses SARS or some other “orthogonal” viruses, which
causes the milder disease, can be discussed in future.
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